1
|
Karrer S, Unger P, Spindler N, Szeimies RM, Bosserhoff AK, Berneburg M, Arndt S. Optimization of the Treatment of Squamous Cell Carcinoma Cells by Combining Photodynamic Therapy with Cold Atmospheric Plasma. Int J Mol Sci 2024; 25:10808. [PMID: 39409136 PMCID: PMC11477452 DOI: 10.3390/ijms251910808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Actinic keratosis (AK) is characterized by a reddish or occasionally skin-toned rough patch on sun-damaged skin, and it is regarded as a precursor to squamous cell carcinoma (SCC). Photodynamic therapy (PDT), utilizing 5-aminolevulinic acid (ALA) along with red light, is a recognized treatment option for AK that is limited by the penetration depth of light and the distribution of the photosensitizer into the skin. Cold atmospheric plasma (CAP) is a partially ionized gas with permeability-enhancing and anti-cancer properties. This study analyzed, in vitro, whether a combined treatment of CAP and ALA-PDT may improve the efficacy of the treatment. In addition, the effect of the application sequence of ALA and CAP was investigated using in vitro assays and the molecular characterization of human oral SCC cell lines (SCC-9, SCC-15, SCC-111), human cutaneous SCC cell lines (SCL-1, SCL-2, A431), and normal human epidermal keratinocytes (HEKn). The anti-tumor effect was determined by migration, invasion, and apoptosis assays and supported the improved efficacy of ALA-PDT in combination with CAP. However, the application sequence ALA-CAP-red light seems to be more efficacious than CAP-ALA-red light, which is probably due to increased intracellular ROS levels when ALA is applied first, followed by CAP and red light treatment. Furthermore, the expression of apoptosis- and senescence-related molecules (caspase-3, -6, -9, p16INK4a, p21CIP1) was increased, and different genes of the junctional network (ZO-1, CX31, CLDN1, CTNNB1) were induced after the combined treatment of CAP plus ALA-PDT. HEKn, however, were much less affected than SCC cells. Overall, the results show that CAP may improve the anti-tumor effects of conventional ALA-PDT on SCC cells. Whether this combined application is successful in treating AK in vivo has to be carefully examined in follow-up studies.
Collapse
Affiliation(s)
- Sigrid Karrer
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.K.); (P.U.); (N.S.); (M.B.)
| | - Petra Unger
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.K.); (P.U.); (N.S.); (M.B.)
| | - Nina Spindler
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.K.); (P.U.); (N.S.); (M.B.)
| | - Rolf-Markus Szeimies
- Department of Dermatology and Allergology, Klinikum Vest GmbH Academic Teaching Hospital, 45657 Recklinghausen, Germany;
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany;
| | - Mark Berneburg
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.K.); (P.U.); (N.S.); (M.B.)
| | - Stephanie Arndt
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.K.); (P.U.); (N.S.); (M.B.)
| |
Collapse
|
2
|
Zhang J, Xu X, Zhao G, You H, Wang R, Li F. Hydrogenation of Quinones to Hydroquinones under Atmospheric Pressure Catalyzed by a Metal-Ligand Bifunctional Iridium Catalyst. Org Lett 2024; 26:1857-1862. [PMID: 38407095 DOI: 10.1021/acs.orglett.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A general method for the hydrogenation of quinones to hydroquinones under atmospheric pressure has been developed. In the presence of [Cp*Ir(2,2'-bpyO)(H2O)] (0.5-1 mol %), a range of products were obtained in high yields. Furthemore, the expansion of this catalytic system to the hydrogenation of 1,4-benzoquinone diimines was also presented. Functional groups in the bpy ligand were found to be crucial for the catalytic activity of iridium complexes.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Xiangchao Xu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Guoqiang Zhao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Heng You
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Feng Li
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Chen XM, Zhou JY, Liu SQ, Song LH, Wang HL, Wang Q, Liang SM, Lu L, Wei JH, Huang R, Zhang Y. Design, synthesis, and antitumor evaluation of morpholine substituted bisnaphthalimides as DNA targeting agents. Bioorg Med Chem Lett 2023; 85:129218. [PMID: 36894107 DOI: 10.1016/j.bmcl.2023.129218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
A series of mono- and bisnaphthalimides derivatives containing 3-nitro and 4-morpholine moieties were designed, synthesized, and evaluated for their in vitro anticancer activities against four cancer cell lines. Some compounds exhibited relatively good antiproliferative activity on the cell lines tested, in comparison with mitonafide and amonafide. It is noteworthy that bisnaphthalimide A6 was identified as the most potent compound in anti-proliferation against MGC-803 cells, with an IC50 lowered to 0.09 μM, a far greater potency than that of mono-naphthalimide A7, mitonafide, and amonafide. A gel electrophoresis assay revealed that DNA and Topo I were the potential targets of compounds A6 and A7. The treatment of CNE-2 cells with compounds A6 and A7 resulted in an S phase cell cycle arrest, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of CDK2 and cyclin E. In addition, compounds A6 and A7-induced apoptosis was further confirmed by flow cytometry, ROS generation assay, and Hoechst 33,258 staining. In particular, in vivo antitumor assay results revealed that bisnaphthalimide A6 exhibited potent anticancer efficiency in an MGC-803 xenograft tumor model, in comparison with mitonafide, and had lower toxicity than mono-naphthalimide A7. In brief, the results suggested that bisnaphthalimide derivatives containing 3-nitro and 4-morpholine moieties might serve as DNA binding agents for the development of new antitumor agents.
Collapse
Affiliation(s)
- Xiao-Man Chen
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Yu Zhou
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Shuang-Qiang Liu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Long-Hao Song
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Hui-Ling Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Qi Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Si-Min Liang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Lin Lu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Rizhen Huang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Ye Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| |
Collapse
|
4
|
Pandya N, Rani R, Kumar V, Kumar A. Discovery of potent Guanidine derivative that selectively binds and stabilizes the human BCL-2 G-quadruplex DNA and downregulates the transcription. Gene 2022; 851:146975. [PMID: 36261091 DOI: 10.1016/j.gene.2022.146975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/09/2022]
Abstract
Small molecules that interact with quadruplexes offer a wide range of potential applications, including not just as medications but also as sensors for quadruplexes structures. The BCL-2 is a proto-oncogene that often gets mutated in lethal cancer and could be an interesting target for developing an anti-cancer drug. In the present study, we have employed various biophysical techniques such as fluorescence, CD, Isothermal calorimeter, gel retardation, and PCR stop assay, indicating that Guanidine derivatives GD-1 and GD-2 selectively interact with high affinity with BCL-2 G-quadruplex over other G-quadruplex DNA and duplex DNA. The most promising small molecule GD-1 increases the thermostability of the BCL-2 GQ structure by 12°C. Our biological experiments such as ROS generation, qRT-PCR, western blot, TFP based Reporter assay, show that the GD-1 ligand causes a synthetic lethal interaction by suppressing the expression BCL-2 genes via interaction and stabilization of its the promoter G-quadruplexes in HeLa cells and act as a potential anti-cancer agent.
Collapse
Affiliation(s)
- Nirali Pandya
- Department for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, Simrol, India
| | - Reshma Rani
- Department of Biotechnology, Amity University, Noida
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research
| | - Amit Kumar
- Department for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, Simrol, India.
| |
Collapse
|
5
|
Hore S, Singh A, De S, Singh N, Gandon V, Singh RP. Polyarylquinone Synthesis by Relayed Dehydrogenative [2 + 2 + 2] Cycloaddition. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shreemoyee De
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Orsay Cedex 91405, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Ravi P. Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
6
|
In Vitro and Computational Studies of Perezone and Perezone Angelate as Potential Anti-Glioblastoma Multiforme Agents. Molecules 2022; 27:molecules27051565. [PMID: 35268667 PMCID: PMC8911992 DOI: 10.3390/molecules27051565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) represents the most malignant type of astrocytoma, with a life expectancy of two years. It has been shown that Poly (ADP-ribose) polymerase 1 (PARP-1) protein is over-expressed in GBM cells, while its expression in healthy tissue is low. In addition, perezone, a phyto-compound, is a PARP-1 inhibitor with anti-neoplastic activity. As a consequence, in the present study, both in vitro and computational evaluations of perezone and its chemically related compound, perezone angelate, as anti-GBM agents were performed. Hence, the anti-proliferative assay showed that perezone angelate induces higher cytotoxicity in the GBM cell line (U373 IC50 = 6.44 μM) than perezone (U373 IC50 = 51.20 μM) by induction of apoptosis. In addition, perezone angelate showed low cytotoxic activity in rat glial cells (IC50 = 173.66 μM). PARP-1 inhibitory activity (IC50 = 5.25 μM) and oxidative stress induction by perezone angelate were corroborated employing in vitro studies. In the other hand, the performed docking studies allowed explaining the PARP-1 inhibitory activity of perezone angelate, and ADMET studies showed its probability to permeate cell membranes and the blood–brain barrier, which is an essential characteristic of drugs to treat neurological diseases. Finally, it is essential to highlight that the results confirm perezone angelate as a potential anti-GBM agent.
Collapse
|
7
|
ROS as Regulators of Cellular Processes in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1208690. [PMID: 34725562 PMCID: PMC8557056 DOI: 10.1155/2021/1208690] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
In this review, we examine the multiple roles of ROS in the pathogenesis of melanoma, focusing on signal transduction and regulation of gene expression. In recent years, different studies have analyzed the dual role of ROS in regulating the redox system, with both negative and positive consequences on human health, depending on cell concentration of these agents. High ROS levels can result from an altered balance between oxidant generation and intracellular antioxidant activity and can produce harmful effects. In contrast, low amounts of ROS are considered beneficial, since they trigger signaling pathways involved in physiological activities and programmed cell death, with protective effects against melanoma. Here, we examine these beneficial roles, which could have interesting implications in melanoma treatment.
Collapse
|
8
|
Synthesis and biological evaluation of novel 1,3-diphenylurea quinoxaline derivatives as potent anticancer agents. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Nguyen HTH, Do LH. Organoiridium-quinone conjugates for facile hydrogen peroxide generation. Chem Commun (Camb) 2020; 56:13381-13384. [PMID: 33034316 PMCID: PMC7642182 DOI: 10.1039/d0cc04970k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An organoiridium complex bearing a quinone moiety was shown to significantly accelerate the rate of H2O2 formation in the presence of air and sodium formate at low catalyst concentrations. This reaction is proposed to operate through a synergistic mechanism involving transfer hydrogenation catalysis and radical chemistry. Our bifunctional iridium complex could potentially be used in anti-cancer chemotherapy or other applications requiring rapid generation of reactive oxygen species.
Collapse
Affiliation(s)
- Huong T H Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | | |
Collapse
|
10
|
Zuo Z, Liu X, Qian X, Zeng T, Sang N, Liu H, Zhou Y, Tao L, Zhou X, Su N, Yu Y, Chen Q, Luo Y, Zhao Y. Bifunctional Naphtho[2,3-d][1,2,3]triazole-4,9-dione Compounds Exhibit Antitumor Effects In Vitro and In Vivo by Inhibiting Dihydroorotate Dehydrogenase and Inducing Reactive Oxygen Species Production. J Med Chem 2020; 63:7633-7652. [PMID: 32496056 DOI: 10.1021/acs.jmedchem.0c00512] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zeping Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinying Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ting Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Na Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Huan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Na Su
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Kuang S, Liao X, Zhang X, Rees TW, Guan R, Xiong K, Chen Y, Ji L, Chao H. FerriIridium: A Lysosome‐Targeting Iron(III)‐Activated Iridium(III) Prodrug for Chemotherapy in Gastric Cancer Cells. Angew Chem Int Ed Engl 2020; 59:3315-3321. [DOI: 10.1002/anie.201915828] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xianrui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional MoleculeSchool of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
12
|
Kuang S, Liao X, Zhang X, Rees TW, Guan R, Xiong K, Chen Y, Ji L, Chao H. FerriIridium: A Lysosome‐Targeting Iron(III)‐Activated Iridium(III) Prodrug for Chemotherapy in Gastric Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xianrui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
13
|
Espinosa-Bustos C, Canales C, Ramírez G, Jaque P, Salas CO. Unveiling interactions between DNA and cytotoxic 2-arylpiperidinyl-1,4-naphthoquinone derivatives: A combined electrochemical and computational study. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Li Q, Chen L, Dong Z, Zhao Y, Deng H, Wu J, Wu X, Li W. Piperlongumine analogue L50377 induces pyroptosis via ROS mediated NF-κB suppression in non-small-cell lung cancer. Chem Biol Interact 2019; 313:108820. [PMID: 31518571 DOI: 10.1016/j.cbi.2019.108820] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 09/09/2019] [Indexed: 01/19/2023]
Abstract
Natural products with potent activity and less toxicity provide major sources for development of novel anti-cancer drugs. Herein, we evaluated the effects and the underlying mechanisms of a novel piperlongumine (PL) analogue L50377 on non-small-cell lung cancer (NSCLC) cells. The results revealed that L50377 displayed greater potentials of suppressing cell growth than PL. In addition, L50377 promoted cell apoptosis and pyroptosis via stimulating reactive oxygen species (ROS) generation in NSCLC cells. More interestingly, ROS mediated NF-κB suppression might be implicated in the mechanisms of L50377-induced pyroptosis in NSCLC cells. Taken together, our results suggested that L50377 served as a novel chemical agent might have great potentials for NSCLC treatment.
Collapse
Affiliation(s)
- Qian Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Liping Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Zhaojun Dong
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Ya Zhao
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China; Department of Periodontics, Hospital & School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hui Deng
- Department of Periodontics, Hospital & School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianzhang Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| | - Xiaoping Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China; Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632, China.
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
15
|
Smolyaninov IV, Pitikova OV, Korchagina EO, Poddel'sky AI, Fukin GK, Luzhnova SA, Tichkomirov AM, Ponomareva EN, Berberova NT. Catechol thioethers with physiologically active fragments: Electrochemistry, antioxidant and cryoprotective activities. Bioorg Chem 2019; 89:103003. [PMID: 31132599 DOI: 10.1016/j.bioorg.2019.103003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
A number of asymmetrical thioethers based on 3,5-di-tert-butylcatechol containing sulfur atom bonding with physiologically active groups in the sixth position of aromatic ring have been synthesized and the electrochemical properties, antioxidant, cryoprotective activities of new thioethers have been evaluated. Cyclic voltammetry was used to estimate the oxidation potentials of thioethers in acetonitrile. The electrooxidation of compounds at the first stage leads to the formation of o-benzoquinones. The antioxidant activities of the compounds were determined using 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) assay, experiments on the oxidative damage of the DNA, the reaction of 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) induced glutathione depletion (GSH), the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro, and iron(II) chelation test. Compounds 1-9 have greater antioxidant effectiveness than 3,5-di-tert-butylcatechol (CatH2) in all assays. The variation of physiologically active groups at sulfur atom allows to regulate lipophilic properties and antioxidant activity of compounds. Thioethers 3, 4 and 7 demonstrate the combination of radical scavenging, antioxidant activity and iron(II) binding properties. The researched compounds 1-9 were studied as possible cryoprotectants of the media for cryopreservation of the Russian sturgeon sperm. Novel cryoprotective additives in cryomedium reduce significantly the content of membrane-permeating agent (DMSO). A cryoprotective effect of an addition of the catechol thioethers depends on the structure of groups at sulfur atom. The cryoprotective properties of compounds 3, 4 and 7 are caused by combination of catechol fragment, bonded by a thioether linker with a long hydrocarbon chain and a terminal ionizable group or with a biologically relevant acetylcysteine residue.
Collapse
Affiliation(s)
- Ivan V Smolyaninov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., Rostov-on-Don 344006, Russia.
| | - Olga V Pitikova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Eugenia O Korchagina
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Andrey I Poddel'sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Georgy K Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Svetlana A Luzhnova
- Department of Microbiology and Immunology, Pyatigorsk Medicinal and Pharmaceutical Institute, 11 Kalinina str., Pyatigorsk 357500, Russia
| | - Andrey M Tichkomirov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Elena N Ponomareva
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., Rostov-on-Don 344006, Russia
| | - Nadezhda T Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| |
Collapse
|
16
|
Zhang G, Li L, Shi Z, Yang Y, Wu Y, Song H, Long J, Lu X, Zeng S, Qin J, Sun H, Chen Z, Liang H, Peng Y. Mitochondrion-Targeting Identification of a Fluorescent Apoptosis-Triggering Molecule by Mass Spectrometry Elucidates Drug Tracking. Chembiochem 2019; 20:778-784. [PMID: 30499207 DOI: 10.1002/cbic.201800598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Indexed: 11/08/2022]
Abstract
The real-time tracking of localization and dynamics of small molecules in organelles helps to understand their function and identification of their potential targets at subcellular resolution. To identify the mitochondrion-targeting effects of small molecules (NA-17 and NA-2a) in cancer cells, we used mass spectrometry to study their distribution and accumulation in mitochondria and in the surrounding cytoplasm thus enabling tracing of action processes of therapeutic compounds. Colocalization analysis with the aid of imaging agents suggests that both NA-17 and NA-2a display mitochondrion-targeting effects. However, MS analysis reveals that only NA-2a displays both a mitochondrion-targeting effect and an accumulation effect, whereas NA-17 only distributes in the surrounding cytoplasm. A combination of mitochondrion imaging, immunoblotting, and MS analysis in mitochondria indicated that NA-17 neither has the ability to enter mitochondria directly nor displays any mitochondrion-targeting effect. Further studies revealed that NA-17 could not enter into mitochondria even when the mitochondrial permeability in cells changed after NA-17 treatment, as was evident from reactive oxygen species (ROS) generation and cytochrome c release. In the process of cellular metabolism, NA-17 itself is firmly restricted to the cytoplasm during the metabolic process, but its metabolites containing fluorophores could accumulate in mitochondria for cell imaging. Our studies have furnished new insights into the drug metabolism processes.
Collapse
Affiliation(s)
- Guohai Zhang
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Liangping Li
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Zhenhao Shi
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Yang Yang
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Yiming Wu
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Huanhuan Song
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Jingxian Long
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Xing Lu
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Jiangke Qin
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Hongbin Sun
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Zhenfeng Chen
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Yan Peng
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| |
Collapse
|
17
|
Electrochemical transformations and antiradical activity of asymmetrical RS-substituted pyrocatechols. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2299-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Smolyaninov I, Pitikova O, Korchagina E, Poddel’sky A, Luzhnova S, Berberova N. Electrochemical behavior and anti/prooxidant activity of thioethers with redox-active catechol moiety. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2264-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Katsuki N, Isshiki S, Fukatsu D, Okamura J, Kuramochi K, Kawabata T, Tsubaki K. Total Synthesis of Dendrochrysanene through a Frame Rearrangement. J Org Chem 2018; 82:11573-11584. [PMID: 28967251 DOI: 10.1021/acs.joc.7b02223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The first total synthesis of dendrochrysanene (1) was achieved. The key reaction for the construction of dendrochrysanene was an oxidative frame rearrangement reaction from a phenanthrene dimer to a spiro-lactone skeleton, which we serendipitously identified. Owing to the steric hindrance of the substituent on the peri position of the phenanthrene dimer, high-temperature conditions were required for the rearrangement reaction; however, at such temperatures, the substrate decomposed. To address this issue, we added phenylethylamine or benzylamine to the reaction system. We assumed that the amine trapped generated hydrochloric acid and acted as a ligand for iron, helping to maintain an appropriate redox potential. The total synthesis of dendrochrysanene, involving this rearrangement reaction, is an important sequence interlinking phenanthrene derivatives, phenanthrene dimers, and spiro-lactone compounds, which are frequently isolated from plants of Orchidaceae.
Collapse
Affiliation(s)
- Naoki Katsuki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shumpei Isshiki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Daisuke Fukatsu
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Juan Okamura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kouji Kuramochi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science , 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takeo Kawabata
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
20
|
Zhu Z. Miltirone-induced apoptosis in cisplatin-resistant lung cancer cells through upregulation of p53 signaling pathways. Oncol Lett 2018; 15:8841-8846. [PMID: 29928326 DOI: 10.3892/ol.2018.8440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/08/2017] [Indexed: 01/05/2023] Open
Abstract
The active ingredients of natural plants are important sources of antitumor agents. Miltirone is a major effective ingredient in traditional Chinese medicine and it is considered to have anti-infection and immunosuppressive activities. Clinically, it is often used for the treatment of arthritis and immune diseases. The effect of miltirone on cisplatin-resistant lung cancer cells has not been investigated to date. The present study aimed to examine the anticancer effect of miltirone in cisplatin-resistant lung cancer cells. Treatment with miltirone suppressed cell viability and induced apoptosis in HCC827 and A549 platinum-resistant lung cancer cells. It was also revealed that miltirone increased caspase-3/8 activity as well as B-cell lymphoma 2-associated X-protein, apoptosis-inducing factor (AIF), p53 and poly(ADP-ribose) polymerase (PARP) protein expression, whereas it inhibited mitochondrial reactive oxygen species (ROS) generation and matrix metalloproteinase (MMP)-2/9 protein expression in HCC827 and A549 platinum-resistant lung cancer cells. The results of the present study demonstrated that miltirone induces apoptosis in cisplatin-resistant lung cancer cells through ROS-p53, AIF, PARP and MMP2/9 signaling pathways.
Collapse
Affiliation(s)
- Zhongcheng Zhu
- Department of Radiotherapy, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
21
|
Zhang X, Bian J, Li X, Wu X, Dong Y, You Q. 2-Substituted 3,7,8-trimethylnaphtho[1,2- b ]furan-4,5-diones as specific L-shaped NQO1-mediated redox modulators for the treatment of non-small cell lung cancer. Eur J Med Chem 2017; 138:616-629. [DOI: 10.1016/j.ejmech.2017.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 02/03/2023]
|
22
|
Ndombera FT. Anti-cancer agents and reactive oxygen species modulators that target cancer cell metabolism. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractTraditionally the perspective on reactive oxygen species (ROS) has centered on the role they play as carcinogenic or cancer-causing radicals. Over the years, characterization and functional studies have revealed the complexity of ROS as signaling molecules that regulate various physiological cellular responses or whose levels are altered in various diseases. Cancer cells often maintain high basal level of ROS and are vulnerable to any further increase in ROS levels beyond a certain protective threshold. Consequently, ROS-modulation has emerged as an anticancer strategy with synthesis of various ROS-inducing or responsive agents that target cancer cells. Of note, an increased carbohydrate uptake and/or induction of death receptors of cancer cells was exploited to develop glycoconjugates that potentially induce cellular stress, ROS and apoptosis. This mini review highlights the development of compounds that target cancer cells by taking advantage of redox or metabolic alteration in cancer cells.
Collapse
|
23
|
Bian J, Li X, Wang N, Wu X, You Q, Zhang X. Discovery of quinone-directed antitumor agents selectively bioactivated by NQO1 over CPR with improved safety profile. Eur J Med Chem 2017; 129:27-40. [DOI: 10.1016/j.ejmech.2017.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
|
24
|
Dharmaraja AT. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem 2017; 60:3221-3240. [DOI: 10.1021/acs.jmedchem.6b01243] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Allimuthu T. Dharmaraja
- Department of Genetics and Genome Sciences and Comprehensive Cancer
Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
25
|
Qiu YR, Zhang RF, Zhang SL, Cheng S, Li QL, Ma CL. Novel organotin(iv) complexes derived from 4-fluorophenyl-selenoacetic acid: synthesis, characterization and in vitro cytostatic activity evaluation. NEW J CHEM 2017. [DOI: 10.1039/c7nj00500h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A cluster of novel organotin(iv) complexes were designed, synthesized, and characterized by elemental analysis, FT-IR, and NMR (1H, 13C, and 119Sn) spectroscopy as well as single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Ya-Ru Qiu
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Ru-Fen Zhang
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shao-Liang Zhang
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shuang Cheng
- School of Agriculture
- Liaocheng University
- Liaocheng
- China
| | - Qian-Li Li
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Chun-Lin Ma
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| |
Collapse
|
26
|
Zappavigna S, Scuotto M, Cossu AM, Ingrosso D, De Rosa M, Schiraldi C, Filosa R, Caraglia M. The 1,4 benzoquinone-featured 5-lipoxygenase inhibitor RF-Id induces apoptotic death through downregulation of IAPs in human glioblastoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:167. [PMID: 27770821 PMCID: PMC5075202 DOI: 10.1186/s13046-016-0440-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/06/2016] [Indexed: 12/23/2022]
Abstract
Background Embelin is a potent dual inhibitor of 5-lipoxigenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES)-1 that suppresses proliferation of human glioma cells and induces apoptosis by inhibiting XIAP and NF-κB signaling pathway. Synthetic structural modification yielded the derivative 3-((decahydronaphthalen-6-yl)methyl)-2,5-dihydroxycyclohexa-2,5-diene-1,4-dione (RF-Id), an embelin constrained analogue, with improved efficiency against 5-LOX in human neutrophils and anti-inflammatory activity in vivo. Taking into account that lipoxygenase (LOX) metabolites, from arachidonic acid and linoleic acid, have been implicated in tumor progression, here, we determined whether RF-Id was able to hinder glioblastoma (GBM) cancer cell growth and the related mechanisms. Methods U87MG and LN229 cells were plated in 96-wells and treated with increasing concentrations of RF-Id. Cell viability was evaluated by MTT assay. The effects of the compounds on cell cycle, apoptosis, oxidative stress and autophagy were assessed by flow cytometry (FACS). The mode of action was confirmed by Taqman apoptosis array and evaluating caspase cascade and NFκB pathway by western blotting technique. Results Here, we found that RF-Id induced a stronger inhibition of GBM cell growth than treatment with embelin. Flow cytometry analysis showed that RF-Id induced about 30 % apoptosis and a slight increase of autophagy after 72 h on U87-MG cells. Moreover, the compound induced an increase in the percentage of cells in G2 and S phase that was paralleled by an increase of p21 and p27 expression but no significant changes of the mitochondrial membrane potential; array analysis showed a significant upregulation of CASP8 and a downregulation of IAP family and NFκB genes in cells treated with RF-Id. RF-Id induced a significant cleavage of caspases 8, 9, 3 and 7, blocked c-IAP2/XIAP interaction by inducing XIAP degradation and inhibited NFκB pathway. Conclusions RF-Id induced a caspase-dependent apoptosis in GBM cells by inhibiting IAP family proteins and NFκB pathway and represents a promising lead compound for designing a new class of anti-cancer drugs with multiple targets. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0440-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples, 80138, Italy
| | - M Scuotto
- Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - A M Cossu
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples, 80138, Italy
| | - D Ingrosso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples, 80138, Italy
| | - M De Rosa
- Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - C Schiraldi
- Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - R Filosa
- Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio, 7, Naples, 80138, Italy.
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples, 80138, Italy.
| |
Collapse
|
27
|
Martín-Acosta P, Feresin G, Tapia A, Estévez-Braun A. Microwave-Assisted Organocatalytic Intramolecular Knoevenagel/Hetero Diels–Alder Reaction with O-(Arylpropynyloxy)-Salicylaldehydes: Synthesis of Polycyclic Embelin Derivatives. J Org Chem 2016; 81:9738-9756. [DOI: 10.1021/acs.joc.6b01818] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pedro Martín-Acosta
- Instituto
Universitario de Bio-Orgánica Antonio González (CIBICAN),
Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez No. 2, 38206, La Laguna, Tenerife, Spain
| | - Gabriela Feresin
- Instituto
de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400, San Juan, Argentina
| | - Alejandro Tapia
- Instituto
de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400, San Juan, Argentina
| | - Ana Estévez-Braun
- Instituto
Universitario de Bio-Orgánica Antonio González (CIBICAN),
Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez No. 2, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|
28
|
Yuan X, Davis JA, Nico PS. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1731-1740. [PMID: 26789138 DOI: 10.1021/acs.est.5b03939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.
Collapse
Affiliation(s)
- Xiu Yuan
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - James A Davis
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Peter S Nico
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|