1
|
Wang FY, Yang LM, Wang SS, Lu H, Wang XS, Lu Y, Ni WX, Liang H, Huang KB. Cycloplatinated (II) Complex Based on Isoquinoline Alkaloid Elicits Ferritinophagy-Dependent Ferroptosis in Triple-Negative Breast Cancer Cells. J Med Chem 2024; 67:6738-6748. [PMID: 38526421 DOI: 10.1021/acs.jmedchem.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development and optimization of metal-based anticancer drugs with novel cytotoxic mechanisms have emerged as key strategies to overcome chemotherapeutic resistance and side effects. Agents that simultaneously induce ferroptosis and autophagic death have received extensive attention as potential modalities for cancer therapy. However, only a limited set of drugs or treatment modalities can synergistically induce ferroptosis and autophagic tumor cell death. In this work, we designed and synthesized four new cycloplatinated (II) complexes harboring an isoquinoline alkaloid C∧N ligand. On screening the in vitro activity of these agents, we found that Pt-3 exhibited greater selectivity of cytotoxicity, decreased resistance factors, and improved anticancer activity compared to cisplatin. Furthermore, Pt-3, which we demonstrate can initiate potent ferritinophagy-dependent ferroptosis, exhibits less toxic and better therapeutic activity than cisplatin in vivo. Our results identify Pt-3 as a promising candidate or paradigm for further drug development in cancer treatment.
Collapse
Affiliation(s)
- Feng-Yang Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Liang-Mei Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shan-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hui Lu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Xu-Sheng Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Yuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
2
|
Zangade SB, Dhulshette BS, Patil PB. Flavonoid-metal ion Complexes as Potent Anticancer Metallodrugs: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1046-1060. [PMID: 37867263 DOI: 10.2174/0113895575273658231012040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Flavonoids and their analogous are mainly found in pink lady apples, green and black tea (catechins), celery and red peppers, onions, broccoli and spinach, berries, cherries, soybean, citrus fruits, and fungi. The different derivatives of flavonoids belonging to polyphenolic compounds such as 3,4',5,7-Tetrahydroxyflavylium (pelargonidin), 2-(3,4-Dihydroxyphenyl)chromenylium-3,5,7-triol (cyanidin), 3,3',4',5,5',7-Hexahydroxyflavylium (delphinidin), 3,3',4',5,7-Pentahydroxy-5'-methoxyflavylium (petunidin), and 3,4',5,7-Tetrahydroxy-3',5'-dimethoxyflavylium (malvidin) can act as good chelating agents for metal-chelate complex formation. These flavonoid-metal complexes have been reported to have various biomedical and pharmacological activities. OBJECTIVE Flavonoid-metal ion complexes display a broad spectrum of biological properties such as antioxidant, anti-inflammatory, anti-allergic, antiviral, anticarcinogenic, and cytotoxic activity. The literature survey showed that flavonoid metal complexes have potential therapeutic properties against various cancerous cells. The objective is to gain insight into the current perspective and development of novel anticancer metallodrugs. METHODS The flavonoid-metal ion complexes can be prepared by reacting flavonoid ligand with appropriate metal salt in aqueous or alcoholic reaction medium under stirring or refluxing conditions. In this review article, the various reported methods for the synthesis of flavonoid-metal complexes have been included. The utility of synthetic methods for flavonoid-metal complexes will support the discovery of novel therapeutic drugs. RESULTS In this review study, short libraries of flavonoid-metal ion complexes were studied as potential anticancer agents against various human cancer cell lines. The review report reveals that metal ions such as Fe, Co, Ni, Cu, Zn, Rh, Ru, Ga, Ba, Sn etc., when binding to flavonoid ligands, enhance the anticancer activity compared to free ligands. This review study covered some important literature surveys for the last two decades. CONCLUSION It has been concluded that flavonoid metal complexes have been associated with a wide range of biological properties that could be noteworthy in the medicinal field. Therefore, to develop a new anticancer drug, it is essential to determine the primordial interaction of drug with DNA under physiological or anatomical conditions. The study of numerous flavonoid metal complexes mentioned in this paper could be the future treatment against various cancerous diseases.
Collapse
Affiliation(s)
- Sainath B Zangade
- Department of Chemistry, Madhavrao Patil, ACS College, Palam Dist. Parbhani, 431720, (M.S.), India
| | - Bashweshawar S Dhulshette
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Pravinkumar B Patil
- Department of Chemistry, Mudhoji College, Phaltan, Dist. Satara, 415523, (M.S.), India
| |
Collapse
|
3
|
Bai Y, Aodeng G, Ga L, Hai W, Ai J. Research Progress of Metal Anticancer Drugs. Pharmaceutics 2023; 15:2750. [PMID: 38140091 PMCID: PMC10747151 DOI: 10.3390/pharmaceutics15122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer treatments, including traditional chemotherapy, have failed to cure human malignancies. The main reasons for the failure of these treatments are the inevitable drug resistance and serious side effects. In clinical treatment, only 5 percent of the 50 percent of cancer patients who are able to receive conventional chemotherapy survive. Because of these factors, being able to develop a drug and treatment that can target only cancer cells without affecting normal cells remains a big challenge. Since the special properties of cisplatin in the treatment of malignant tumors were accidentally discovered in the last century, metal anticancer drugs have become a research hotspot. Metal anticancer drugs have unique pharmaceutical properties, such as ruthenium metal drugs with their high selectivity, low toxicity, easy absorption by tumor tissue, excretion, and so on. In recent years, efficient and low-toxicity metal antitumor complexes have been synthesized. In this paper, the scientific literature on platinum (Pt), ruthenium (Ru), iridium (Ir), gold (Au), and other anticancer complexes was reviewed by referring to a large amount of relevant literature at home and abroad.
Collapse
Affiliation(s)
- Yun Bai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Gerile Aodeng
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| |
Collapse
|
4
|
Mohmad M, Agnihotri N, Kumar V, Azam M, Kamal R, Kumar A, Sharma U, Javed S, Muthu S, Min K. Preparation of a Pt(II)-3-Hydroxy-2-tolyl-4 H-chromen-4-one Complex Having Antimicrobial, Anticancerous, and Radical Scavenging Activities with Related Computational Studies. ACS OMEGA 2023; 8:31648-31660. [PMID: 37692249 PMCID: PMC10483677 DOI: 10.1021/acsomega.3c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
A novel benzopyran-based platinum (II)-3-hydroxy-2-tolyl-4H-chromen-4-one (HToC) complex has been prepared and studied by UV-visible spectrophotometry. The study is based on the colored complexation between Pt(II) and HToC in the pH range of 8.92-9.21, resulting in the formation of a stable binary yellow complex exhibiting λmax at 509-525 nm. The formed complex maintains linearity between 0.0 and 1.8 μg Pt(II) mL-1. The well-known qualitative analytical methods, including Job's method of continuous variations and the mole ratio approach, have both proven that the stoichiometry of the complex is 1:2 [Pt(II)/HToC]. Hence, the analytical results suggest that the formed platinum complex exhibits a square planar geometry. The values of various attributes corresponding to spectrophotometric studies and statistical calculations, such as the molar extinction coefficient (6.790 × 104 L mol-1 cm-1), Sandell's sensitivity (0.0029 μg Pt(II) cm-2), standard deviation (± 0.0011), RSD (0.317%), limit of detection (0.0147 μg mL-1) and correlation coefficient (0.9999), show that the performed study satisfies all of the criteria for good sensitivity, versatility, and cost-effectiveness. In order to have an apprehension of the molecular geometry and other structural specifics of the complex, DFT studies have been carried out. The in vitro anticancer potential of the ligand and its platinum complex in the human breast cancer cell line (T-27D), as determined by the MTT assay, reveals that the complex has better antiproliferative potential than the ligand. The antimicrobial potential of the complex has been successfully tested against both Gram-positive and -negative bacteria. Antioxidant capacity results suggest the better radical scavenging capacity of the complex than that of the ligand.
Collapse
Affiliation(s)
- Masrat Mohmad
- Department
of Chemistry, Maharishi Markandeshwar (Deemed
to be University), Mullana, Ambala 133207, India
| | - Nivedita Agnihotri
- Department
of Chemistry, Maharishi Markandeshwar (Deemed
to be University), Mullana, Ambala 133207, India
| | - Vikas Kumar
- Department
of Biotechnology, Maharishi Markandeshwar
(Deemed to be University), Mullana, Ambala 133207, India
| | - Mohammad Azam
- Department
of Chemistry, College of Science, King Saud
University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Raj Kamal
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Ashish Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Ujjawal Sharma
- Department
of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bhatinda 151401, India
| | - Saleem Javed
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Sambantham Muthu
- Department
of Physics, Aringnar Anna Govt. Arts College, Cheyyar 604407, India
| | - Kim Min
- Department
of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju 780714, Gyeongbuk, South Korea
| |
Collapse
|
5
|
Gukathasan S, Obisesan OA, Saryazdi S, Ratliff L, Parkin S, Grossman RB, Awuah SG. A Conformationally Restricted Gold(III) Complex Elicits Antiproliferative Activity in Cancer Cells. Inorg Chem 2023; 62:13118-13129. [PMID: 37530672 PMCID: PMC11268950 DOI: 10.1021/acs.inorgchem.3c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Diamine ligands are effective structural scaffolds for tuning the reactivity of transition-metal complexes for catalytic, materials, and phosphorescent applications and have been leveraged for biological use. In this work, we report the synthesis and characterization of a novel class of cyclometalated [C^N] Au(III) complexes bearing secondary diamines including a norbornane backbone, (2R,3S)-N2,N3-dibenzylbicyclo[2.2.1]heptane-2,3-diamine, or a cyclohexane backbone, (1R,2R)-N1,N2-dibenzylcyclohexane-1,2-diamine. X-ray crystallography confirms the square-planar geometry and chirality at nitrogen. The electronic character of the conformationally restricted norbornane backbone influences the electrochemical behavior with redox potentials of -0.8 to -1.1 V, atypical for Au(III) complexes. These compounds demonstrate promising anticancer activity, particularly, complex 1, which bears a benzylpyridine organogold framework, and supported by the bicyclic conformationally restricted diaminonorbornane, shows good potency in A2780 cells. We further show that a cellular response to 1 evokes reactive oxygen species (ROS) production and does not induce mitochondrial dysfunction. This class of complexes provides significant stability and reactivity for different applications in protein modification, catalysis, and therapeutics.
Collapse
Affiliation(s)
| | | | - Setareh Saryazdi
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Libby Ratliff
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Robert B. Grossman
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
6
|
Calvo-Martín G, Plano D, Martínez-Sáez N, Aydillo C, Moreno E, Espuelas S, Sanmartín C. Norbornene and Related Structures as Scaffolds in the Search for New Cancer Treatments. Pharmaceuticals (Basel) 2022; 15:ph15121465. [PMID: 36558915 PMCID: PMC9780886 DOI: 10.3390/ph15121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The norbornene scaffold has arisen as a promising structure in medicinal chemistry due to its possible therapeutic application in cancer treatment. The development of norbornene-based derivatives as potential chemotherapeutic agents is attracting significant attention. Here, we report an unprecedented review on the recent advances of investigations into the antitumoral efficacy of different compounds, including the abovementioned bicyclic scaffold in their structure, in combination with chemotherapeutic agents or forming metal complexes. The impact that structural modifications to these bicyclic compounds have on the antitumoral properties and the mechanisms by which these norbornene derivatives act are discussed in this review. In addition, the use of norbornene, and its related compounds, encapsulation in nanosystems for its use in cancer therapies is here detailed.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Correspondence: (D.P.); (C.A.); Tel.: +34-948425600 (ext. 806358) (D.P.); +34-948425600 (ext. 803183) (C.A.)
| | - Nuria Martínez-Sáez
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Correspondence: (D.P.); (C.A.); Tel.: +34-948425600 (ext. 806358) (D.P.); +34-948425600 (ext. 803183) (C.A.)
| | - Esther Moreno
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Socorro Espuelas
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
7
|
Liu F, Yang C, Li S, Wu X, Xue K, Zhou Y, Liang X, Cheng X, Shi Q, Su W. Design and biological features of platinum (II) complexes with 3-hydroxy-3-(Trifluoromethyl)cyclobutane-1,1-Dicarboxylate as a leaving ligand. Eur J Med Chem 2022; 242:114673. [PMID: 36049275 DOI: 10.1016/j.ejmech.2022.114673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022]
Abstract
A series of platinum compounds 2a-5a and 2b-5b with fluoro-functional groups are designed and synthesized. Among them, complex 2b is the most effective agent with 3-hydroxy-3-(trifluoromethyl)cyclobutane-1,1-dicarboxylate as a leaving ligand, which showed better cytotoxic activity than compounds containing only CF3 or OH group at 3-position of cyclobutane-1,1-dicarboxylate. The water solubility of 2a is better than that of carboplatin (32 mg/mL vs. 16 mg/mL), and its antitumor activity on A549 is 4.6-fold higher than that of carboplatin. The IC50 value of 2b on A549 cells is 4.73 ± 0.64 μM, which is comparable to that of oxaliplatin and higher than that of carboplatin. Meanwhile, 2a and 2b are less toxic than oxaliplatin and cisplatin toward BEAS-2B cells. Moreover, 2a and 2b induce cell apoptosis in vitro by the Bax-Bcl-2-caspase-3 pathway and ferroptosis through inhibiting GPx-4 and elevating COX2. Results from in vivo experiment show that the inhibition rate of A549 xenograft tumor is cisplatin > 2b > oxaliplatin > 2a > carboplatin.
Collapse
Affiliation(s)
- Fengfan Liu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Chen Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shaoguang Li
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoqi Wu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Keming Xue
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yibo Zhou
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaobing Liang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiang Cheng
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiwen Shi
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
8
|
de la Cueva-Alique I, de la Torre-Rubio E, Muñoz L, Calvo-Jareño A, Perez-Redondo A, Gude L, Cuenca T, Royo E. Stereoselective synthesis of oxime containing Pd(II) compounds: Highly effective, selective and stereo-regulated cytotoxicity against carcinogenic PC-3 cells. Dalton Trans 2022; 51:12812-12828. [DOI: 10.1039/d2dt01403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladium compounds [Pd{(1S,4R)-NOH^NH(R)}Cl2] (R = Ph 1a or Bn 1b), [Pd{(1S,4R)-NOH^NH(R)}{(1S,4R)-NO^NH(R)}][Cl] (R = Ph 2a or Bn 2b) and corresponding [Pd{(1R,4S)-NOH^NH(R)}Cl2] (R = Ph 1a’ or Bn 1b’) and...
Collapse
|
9
|
Bakhonsky VV, Pashenko AA, Becker J, Hausmann H, De Groot HJM, Overkleeft HS, Fokin AA, Schreiner PR. Synthesis and antiproliferative activity of hindered, chiral 1,2-diaminodiamantane platinum(II) complexes. Dalton Trans 2021; 49:14009-14016. [PMID: 33078783 DOI: 10.1039/d0dt02391d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platinum-based antineoplastic agents play a major role in the treatment of numerous types of cancer. A new bulky, lipophilic, and chiral ligand based on 1,2-diaminodiamantane in both of its enantiomeric forms was employed for the preparation of new platinum(ii) complexes with chloride and oxalate ligands. The dichloride complexes have a higher solubility and were evaluated as anti-proliferation agents for human ovarian cancer cell lines A2780 and cisplatin-resistant A2780cis. Its R,R-enantiomer showed increased efficacy compared to cisplatin for both cancer cell lines. A chromatographic approach was used to estimate the solvent partition coefficient of the dichloride complex. The binding of diamondoid-based platinum complexes to nucleotides was tested for both enantiomers with guanosine monophosphate (GMP) and deoxyguanosine monophosphate (dGMP) and occurs at a similar or faster rate for both isomers compared to cisplatin despite greatly increased steric demand. These findings highlight the potential in 1,2-diaminodiamantane as a viable pharmacophore.
Collapse
Affiliation(s)
- Vladyslav V Bakhonsky
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany. and Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Pobedy Ave. 37, 03056 Kiev, Ukraine.
| | - Aleksander A Pashenko
- Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Pobedy Ave. 37, 03056 Kiev, Ukraine. and Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Heike Hausmann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| | - Huub J M De Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands
| | - Andrey A Fokin
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany. and Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Pobedy Ave. 37, 03056 Kiev, Ukraine.
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| |
Collapse
|
10
|
Strong in vitro and in vivo cytotoxic effects of two platinum(II) complexes with cryptolepine derivatives. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02739-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Wang Z, Li Y, Zhang T, Li H, Yang Z, Wang C. Effect of Micelle-Incorporated Cisplatin With Sizes Ranging From 8 to 40 nm for the Therapy of Lewis Lung Carcinoma. Front Pharmacol 2021; 12:632877. [PMID: 33762955 PMCID: PMC7982401 DOI: 10.3389/fphar.2021.632877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Insufficient transport of therapeutic cargo into tumor bed is a bottleneck in cancer nanomedicine. Block copolymers are promising carriers with smaller particle size by ratio modification. Here, we constructed cisplatin nanoparticles with sizes ranging from 8 to 40 nm to study the permeability and therapy of Lewis lung carcinoma. We synthesized methoxypoly(ethylene glycol)2000-block poly(L-glutamic acid sodium salt)1979 loading cisplatin through complexation reaction. The cisplatin nanomedicine has high drug loading and encapsulation efficiency. In vitro data demonstrated that cisplatin nanoparticles had equivalent growth-inhibiting effects on Lewis lung carcinoma cells compared to free cisplatin. In vivo evidences showed cisplatin nanoparticles had superior antitumor effects on the Lewis lung carcinoma mouse model with no obvious side effects. All results indicated that optimizing the ratio of block copolymers to obtain smaller sized nanomedicine could act as a promising strategy for overcoming the inadequate accumulation in poorly vascularized tumors.
Collapse
Affiliation(s)
- Zhicheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yumin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Tong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Hongxia Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhao Yang
- Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Cheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Synthesis, structures and anticancer potentials of five platinum(II) complexes with benzothiazole-benzopyran targeting mitochondria. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wang Z, Fang L, Zhao J, Gou S. Insight into the antitumor actions of sterically hindered platinum(ii) complexes by a combination of STD NMR and LCMS techniques. Metallomics 2021; 12:427-434. [PMID: 32022072 DOI: 10.1039/c9mt00258h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sterically hindered platinum(ii) complexes have shown great advantages in overcoming platinum drug resistance. In this study, the antitumor actions of sterically hindered platinum(ii) complex 1 (cis-dichloro[(1R,2R)-N1-(2-fluorobenzyl)-1,2-diaminocyclohexane-N,N']platinum(ii), C13H19FPtCl2) were investigated by using saturation transfer difference nuclear magnetic resonance (STD NMR) and liquid chromatography-mass spectrometry (LCMS) techniques. STD NMR was applied to study the HSA (human serum albumin) binding properties, while the interactions between guanosine 5'-monophosphate (5'-GMP) and complex 1 were studied by LCMS. For HSA binding experiments, strong STD signals were observed for protons of sterically hindered parts of carrier ligands, indicating that the sterically hindered moieties of the carrier ligand could be situated inside the binding pocket of HSA. A 19F NMR experiment indicated that complex 1 could interact with HSA. Furthermore, the binding modes of complex 1 with guanosine 5'-monophosphate (5'-GMP) were studied in the absence and presence of glutathione by LCMS. According to the HPLC profiles, a mono-functional binding mode was observed for complex 1 both in the presence and in the absence of glutathione, while a bi-adduct was observed for Pt(DACH)Cl2, which may be one of the reasons for their different biological activities. Hence, this study demonstrated that the NMR method combined with the LCMS technique could provide valuable information to understand the transport and the underlying anticancer mechanisms of the platinum(ii) complex at the molecular level. Moreover, the results reported here can help to reveal the binding mechanisms of the sterically hindered platinum(ii) compounds with biomolecules, which may shed light on the design of novel platinum(ii) anticancer agents with suitable sterically hindered groups.
Collapse
Affiliation(s)
- Zhimei Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Lei Fang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Jian Zhao
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
14
|
Synthesis, structures, and anticancer potentials of four platinum (II) complexes with benzopyran derivatives targeting mitochondria. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Liu Z, Wang M, Wang H, Fang L, Gou S. Targeting RAS-RAF pathway significantly improves antitumor activity of Rigosertib-derived platinum(IV) complexes and overcomes cisplatin resistance. Eur J Med Chem 2020; 194:112269. [PMID: 32248002 DOI: 10.1016/j.ejmech.2020.112269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
RAS-RAF pathway presents a valuable target for the cancer treatment due to its important roles in the regulation of tumor proliferation, apoptosis and the obtained resistance. To explore such target a RAS/CRAF interference agent, was therefore conjugated with Pt(IV) prodrugs via ester bond, resulting in total eleven multifunctional Pt(IV) complexes. The complexes could target genomic DNA and disrupt the signaling transduction from RAS protein to CRAF so that block the mitogen-activated protein kinase (MAPK) signaling pathway. Experiments in vitro indicated that all of the Pt(IV) complexes showed potent anti-tumor activity with IC50 values ranged from 8 nM to 22.55 μM, which were significantly improved as compared with cisplatin (CDDP) whose IC50 values ranged from 5.45 μM to 9.05 μM. Among them, 26 exerted the best anti-tumor activity in vitro, which not only exhibited excellent cytotoxicity against normal tumor cells, but also against CDDP-resistance cell lines (e.g. A549/CDDP and SKOV-3/CDDP). Importantly, 26 only showed little effect on normal cell lines such as HUEVC and LO2. Besides, the following biological mechanisms studies demonstrated that 26 could efficiently enter. A549 cells, significantly arrest cell cycle at G2/M phase, disrupt the signaling pathway and trigger endogenous caspase apoptosis pathway. Furthermore, results of a xenograft subcutaneous model of A549 tumor showed that 26 could effectively decrease tumor growth rates without causing loss of bodyweight.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
16
|
Tan MX, Wang ZF, Qin QP, Huang XL, Zou BQ, Liang H. Complexes of platinum(II/IV) with 2-phenylpyridine derivatives as a new class of promising anti-cancer agents. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
17
|
Liu F, Dong X, Shi Q, Chen J, Su W. Improving the anticancer activity of platinum(iv) prodrugs using a dual-targeting strategy with a dichloroacetate axial ligand. RSC Adv 2019; 9:22240-22247. [PMID: 35519447 PMCID: PMC9066701 DOI: 10.1039/c9ra03690c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Four novel platinum(iv) complexes, characteristic of DCA/TFA and with chloride ions as axial ligands, were designed and synthesized. This type of platinum(iv) complexes 1a–2b exhibited significant cytotoxic activity, and the cytotoxicity of 1b was the greatest among these four complexes, which was 20.61 fold and 7.65 fold higher than that of cisplatin against HepG-2 and NCI-H460 cancer cells, respectively. The result from the apoptosis assay of 1b was consistent with the result from the cytotoxicity assay. In addition, complexes 1a and 1b induced cell cycle arrest at the S phase on HepG-2 cells. Taken together, our data showed that Pt(iv) complex 1b released the corresponding Pt(ii) complex and DCA, and induced apoptosis as well as disruption of the mitochondrial membrane potential, establishing Pt(iv) complex 1b as a potential dual-targeting anticancer agent. Complex 1b could release complex B and DCA, playing a dual-targeting anti-tumor effect against cancer cells, targeting nuclear DNA and mitochondria, respectively.![]()
Collapse
Affiliation(s)
- Fengfan Liu
- National Engineering Research Center for Process Decelopment of Active Pharmaceutial Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou P. R. China
| | - Xiaomei Dong
- National Engineering Research Center for Process Decelopment of Active Pharmaceutial Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou P. R. China
| | - Qiwen Shi
- National Engineering Research Center for Process Decelopment of Active Pharmaceutial Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou P. R. China
| | - Jianli Chen
- National Engineering Research Center for Process Decelopment of Active Pharmaceutial Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou P. R. China
| | - Weike Su
- National Engineering Research Center for Process Decelopment of Active Pharmaceutial Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou P. R. China .,College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou P. R. China
| |
Collapse
|
18
|
Wang FY, Liu R, Huang KB, Feng HW, Liu YN, Liang H. New platinum(II)-based DNA intercalator: Synthesis, characterization and anticancer activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Two novel platinum(II) complexes with sorafenib and regorafenib: Synthesis, structural characterization, and evaluation of in vitro antitumor activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Huang GB, Chen S, Qin QP, Luo JR, Tan MX, Wang ZF, Zou BQ, Liang H. Preparation of platinum(II) complexes with naphthalene imide derivatives and exploration of their in vitro cytotoxic activities. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Kritchenkov AS, Stanishevskii YM, Skorik YA. Design and Antitumor Activity of Platinum Complexes. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01947-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Hua S, Chen F, Wang X, Wang Y, Gou S. Pt(IV) hybrids containing a TDO inhibitor serve as potential anticancer immunomodulators. J Inorg Biochem 2019; 195:130-140. [PMID: 30952082 DOI: 10.1016/j.jinorgbio.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/21/2022]
Abstract
Tryptophan 2,3-dioxygenase (TDO), an immunosuppressive enzyme, can involve in immune evasion and tumor tolerance. TDO inhibitors can boost the efficacy of chemotherapeutics by promoting immunity. Herein, a strategy to introduce a TDO inhibitor into Pt(IV) complexes for reversing tumor immune suppression was adopted. A mono-modified Pt(IV) complex, 3, displayed significant antitumor activity against human liver cancer cells. Flow cytometry study revealed that complex 3 could induce cell death via a mitochondrial-dependent apoptosis pathway and arrest the cell cycle at S phase. Furthermore, complex 3 was effective to enhance T-cell immune responses by inhibiting the TDO enzyme expression to block the kynurenine production and inactivating the downstream of aryl hydrocarbon receptor (AHR).
Collapse
Affiliation(s)
- Shixian Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
23
|
Hu W, Zhao J, Hua W, Gou S. A study on platinum(iv) species containing an estrogen receptor modulator to reverse tamoxifen resistance of breast cancer. Metallomics 2019; 10:346-359. [PMID: 29349448 DOI: 10.1039/c7mt00289k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several dual-action Tam-Pt(iv) complexes derived from tamoxifen (Tam) and platinum(ii) drugs were designed and synthesized for targeting estrogen receptors (ERs) and DNA. These novel compounds not only exhibited potent cytotoxicity against breast cancer cells, but also reversed the tamoxifen resistance of TamR-MCF-7 cancer cells. Computational docking assays together with cellular uptake data demonstrated that the ER ligand portion of these conjugates plays a targeting role in ER-positive tumor cells and promotes the uptake of platinum via an estrogen receptor-mediated pathway. A study on the preliminary mechanism of the typical conjugate, complex 1, revealed that the Tam-Pt(iv) complex induced apoptosis via the mitochondrial-dependent apoptosis pathway mediated through the activation of caspase 3 and PARP proteins. These results suggested that the conjugation of estrogen receptor modulators with the platinum moiety could facilitate a selective enrichment of platinum in estrogen-positive tumors and possibly broaden the scope of ER ligand clinical use to resistant breast tumors.
Collapse
Affiliation(s)
- Weiwei Hu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | | | |
Collapse
|
24
|
de la Cueva-Alique I, Muñoz-Moreno L, de la Torre-Rubio E, Bajo AM, Gude L, Cuenca T, Royo E. Water soluble, optically active monofunctional Pd(ii) and Pt(ii) compounds: promising adhesive and antimigratory effects on human prostate PC-3 cancer cells. Dalton Trans 2019; 48:14279-14293. [DOI: 10.1039/c9dt02873k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water soluble, enantiomerically pure “rule breakers” Pd(ii) and Pt(ii) compounds with promising anticancer potential are reported.
Collapse
Affiliation(s)
- Isabel de la Cueva-Alique
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| | - Laura Muñoz-Moreno
- Departamento de Biología de Sistemas
- Facultad de Medicina y Ciencias de la Salud
- Universidad de Alcalá
- Madrid
- Spain
| | - Elena de la Torre-Rubio
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| | - Ana M. Bajo
- Departamento de Biología de Sistemas
- Facultad de Medicina y Ciencias de la Salud
- Universidad de Alcalá
- Madrid
- Spain
| | - Lourdes Gude
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| | - Tomás Cuenca
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| | - Eva Royo
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| |
Collapse
|
25
|
Wang FY, Huang KB, Feng HW, Chen ZF, Liu YN, Liang H. New Platinum(II) agent induces bimodal death of apoptosis and autophagy against A549 cancer cell. Free Radic Biol Med 2018; 129:418-429. [PMID: 30266678 DOI: 10.1016/j.freeradbiomed.2018.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Agents with multiple modes of tumor cell death can be effective chemotherapeutic drugs. One example of a bimodal chemotherapeutic approach is an agent that can induce both apoptosis and autophagic death. Thus far, no clinical anticancer drug has been shown to simultaneously induce both these pathways. Mono-functional platinum complexes are potent anticancer drug candidates which act through mechanisms distinct from cisplatin. Here, we describe the synthesis and characterize of two mono-functional platinum complexes containing 8-substituted quinoline derivatives as ligands. In comparison to cisplatin, n-Mon-Pt-1 exhibited a greater in vitro cytotoxicity, was more effective in resistant cells and elicited a better anticancer effect. Mechanistic experiments indicate that n-Mon-Pt-1 mainly accumulates in mitochondria, and stimulates significant TrxR inhibition, ROS release and an ER stress response, ultimately resulting in a simultaneous induction of apoptosis and autophagy. Importantly, compared to cisplatin, n-Mon-Pt-1 exhibits lower acute toxicity and better anticancer activity in a murine tumor model.
Collapse
Affiliation(s)
- Feng-Yang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China.
| | - Hai-Wen Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Hong Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
26
|
Qin QP, Zou BQ, Tan MX, Luo DM, Wang ZF, Wang SL, Liu YC. High in vitro anticancer activity of a dinuclear palladium(II) complex with a 2‑phenylpyridine ligand. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Novel tacrine platinum(II) complexes display high anticancer activity via inhibition of telomerase activity, dysfunction of mitochondria, and activation of the p53 signaling pathway. Eur J Med Chem 2018; 158:106-122. [PMID: 30205260 DOI: 10.1016/j.ejmech.2018.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/18/2023]
Abstract
In this work, we designed and synthesized tacrine platinum(II) complexes [PtClL(DMSO)]⋅CH3OH (Pt1), [PtClL(DMP)] (Pt2), [PtClL(DPPTH)] (Pt3), [PtClL(PTH)] (Pt4), [PtClL(PIPTH)] (Pt5), [PtClL(PM)] (Pt6) and [PtClL(en)] (Pt7) with 4,4'-dimethyl-2,2'-bipyridine (DMP), 4,7-diphenyl-1,10-phenanthroline (DPPTH), 1,10-phenanthroline (PTH), 2-(1-pyrenecarboxaldehyde) imidazo [4,5-f]-[1,10] phenanthroline (PIPTH), 2-picolylamine (PM) and 1,2-ethylenediamine (en) as telomerase inhibitors and p53 activators. Biological evaluations demonstrated that Pt1Pt7 exhibited cytotoxic activity against the tested NCIH460, Hep-G2, SK-OV-3, SK-OV-3/DDP and MGC80-3 cancer cell lines, with Pt5 displaying the highest cytotoxicity. Pt5 exhibited an IC50 value of 0.13 ± 0.16 μM against SK-OV-3/DDP cancer cells and significantly reduced tumor growth in a Hep-G2 xenograft mouse model (tumor growth inhibition (TGI) = 40.8%, p < 0.05) at a dose of 15.0 mg/kg. Interestingly, Pt1Pt7 displayed low cytotoxicity against normal HL-7702 cells. Mechanistic studies revealed that these compounds caused cell cycle arrest at the G2/M and S phases, and regulated the expression of CDK2, cyclin A, p21, p53 and p27. Further mechanistic studies showed that Pt5 induced SK-OV3/DDP cell apoptosis via dysfunction of mitochondria, inhibition of the telomerase activity by directly targeting the c-myc promoter, and activation of the p53 signaling pathway. Taken together, Pt5 has the potential to be further developed as a new antitumor drug.
Collapse
|
28
|
Li L, Huang X, Huang R, Gou S, Wang Z, Wang H. Pt(IV) prodrugs containing microtubule inhibitors displayed potent antitumor activity and ability to overcome cisplatin resistance. Eur J Med Chem 2018; 156:666-679. [PMID: 30031977 DOI: 10.1016/j.ejmech.2018.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022]
Abstract
It is well-known that cisplatin exhibited a broad spectrum of anticancer activities against many solid tumors, but its severe toxicity and drug resistance have largely limited wider clinical applications. Various strategies have been tried to discover new Pt (II) drugs with at least equal activity as well as low toxicity compared to cisplatin, but the inherent problem remains unsolved. Here we report that Pt (IV) complexes comprising a CA-4 analogue, as dual-targeting Pt (IV) prodrug, were synthesized and evaluated for anti-proliferative activity using MTT assay. Among them, complex 19 displayed most potent activity against the tested cancer cell lines, and simultaneously exhibited better cell selectivity between cancer cells and normal cells than that of cisplatin. Mechanism studies revealed that complex 19 effectively induced cell cycle arrest at the G2/M phase and dramatically disrupted the microtubule organization. Moreover, complex 19 significantly induced cell apoptosis and decreased MMP. Importantly, complex 19 significantly inhibited tumor growth in SK-OV-3 xenograft model in vivo without apparent toxicity.
Collapse
Affiliation(s)
- Lingxue Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Xiaochao Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Rizhen Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
29
|
Mitochondria-targeted platinum(II) complexes induce apoptosis-dependent autophagic cell death mediated by ER-stress in A549 cancer cells. Eur J Med Chem 2018; 155:639-650. [PMID: 29935437 DOI: 10.1016/j.ejmech.2018.06.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/02/2023]
Abstract
Agents with multiple modes of tumor cell death can be effective chemotherapeutic drugs. One example of a bimodal chemotherapeutic approach is an agent that can induce both apoptosis and autophagic death. Thus far, no clinical anticancer drug has been shown to simultaneously induce both these pathways. Mono-functional platinum complexes are potent anticancer drug candidates which act through mechanisms distinct from cisplatin. Here, we describe the synthesis and characterize of two mono-functional platinum complexes containing 8-substituted quinoline derivatives as ligands, [PtL1Cl]Cl [L1 = (Z)-1-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) methanamine] (Mon-Pt-1) and [PtL2Cl]Cl [L2 = (Z)-2-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) ethanamine] (Mon-Pt-2). In comparison to cisplatin, Mon-Pt-2 exhibited a greater in vitro cytotoxicity, was more effective in resistant cells and elicited a better anticancer effect. Mechanistic experiments indicate that Mon-Pt-2 mainly accumulates in mitochondria, and stimulates significant TrxR inhibition ROS release and an ER stress response, mediated by mitochondrial dysfunction, ultimately resulting in a simultaneous induction of apoptosis and autophagy. Importantly, compared to cisplatin, Mon-Pt-2 exhibits lower acute toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Mon-Pt-2 is the first mono-functional platinum complex inducing pro-death autophagy and apoptosis of cancer cells.
Collapse
|
30
|
Gur'eva YA, Alekseev IN, Dvornikova IA, Zalevskaya OA, Kuchin AV. Synthesis and characterization of new palladium complexes based on polydentate chiral Schiff base and amines ligands derived from (+)-2-hydroxypinan-3-one. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Huang KB, Wang FY, Tang XM, Feng HW, Chen ZF, Liu YC, Liu YN, Liang H. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells. J Med Chem 2018; 61:3478-3490. [PMID: 29606001 DOI: 10.1021/acs.jmedchem.7b01694] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Agents inducing both apoptosis and autophagic death can be effective chemotherapeutic drugs. In our present work, we synthesized two organometallic gold(III) complexes harboring C^N ligands that structurally resemble tetrahydroisoquinoline (THIQ): Cyc-Au-1 (AuL1Cl2, L1 = 3,4-dimethoxyphenethylamine) and Cyc-Au-2 (AuL2Cl2, L2 = methylenedioxyphenethylamine). In screening their in vitro activity, we found both gold complexes exhibited lower toxicity, lower resistance factors, and better anticancer activity than those of cisplatin. The organometallic gold(III) complexes accumulate in mitochondria and induce elevated ROS and an ER stress response through mitochondrial dysfunction. These effects ultimately result in simultaneous apoptosis and autophagy. Importantly, compared to cisplatin, Cyc-Au-2 exhibits lower toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Cyc-Au-2 is the first organometallic Au(III) compound that induces apoptosis and autophagic death. On the basis of our results, we believe Cyc-Au-2 to be a promising anticancer agent or lead compound for further anticancer drug development.
Collapse
Affiliation(s)
- Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Feng-Yang Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P.R. China
| | - Xiao-Ming Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Hai-Wen Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P.R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China.,College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P.R. China
| |
Collapse
|
32
|
Chen F, Wang X, Jin X, Zhao J, Gou S. Oxidative DNA double strand breaks and autophagy in the antitumor effect of sterically hindered platinum(II) complexes in NSCLCs. Oncotarget 2018; 8:30933-30955. [PMID: 28427237 PMCID: PMC5458179 DOI: 10.18632/oncotarget.15944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/23/2017] [Indexed: 12/31/2022] Open
Abstract
A series of novel platinum(II) complexes with (1R,2R)-N1,N2-diisobutyl-1,2-diaminocyclohexane as a carrier ligand, while N1,N2-diisobutyl moiety serving as steric hindrance were designed, synthesized and characterized. The in vitro biological assays demonstrated that complex 3 had increased cytotoxicity against lung cancer cells, especially non-small-cell lung cancer (NSCLC) compared to its mono-substituted complex 3a, indicating that the sterically hindered alkyl moieties have significant influences on its antitumor property. However, the mechanism still remains unclear. The further studies revealed that complex 3 could induce ROS overproduction, severe DNA double strands breaks and inhibit the activation of DNA damage repair proteins within nucleus, leading to cell-cycle arrest and cell death. Moreover, complex 3 could induce autophagy via the accumulation of autophagic vacuoles and alterations of autophagic protein expression. Interestingly, the ROS scavengers, N-acetyl-cysteine (NAC) could reverse complex 3-induced DNA double strands breaks and autophagic responses more significantly compared to complex 3a. The results demonstrated that the ROS generation plays an important role in the DNA double strands breaks and autophagic responses in the antitumor effect of complex 3 with N1,N2-diisobutyl moiety. Our study offered a novel therapeutic strategy and put new insights into the anticancer research of the complexes with N1,N2-diisobutyl moiety served as steric hindrance.
Collapse
Affiliation(s)
- Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xiufeng Jin
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
33
|
Huang X, Huang R, Wang Z, Li L, Gou S, Liao Z, Wang H. Pt(IV) complexes conjugating with chalcone analogue as inhibitors of microtubule polymerization exhibited selective inhibition in human cancer cells. Eur J Med Chem 2018; 146:435-450. [PMID: 29407969 DOI: 10.1016/j.ejmech.2018.01.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/17/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Six novel of Pt(IV) complexes comprising chalcone analogues were synthesized and evaluated for anti-proliferative activity using MTT assay. In vitro evaluation revealed that all Pt(IV) complexes showed better and more potent activity against three human cancer cells including CDDP resistant cells than that of their corresponding mother Pt(II) species. Among them, two representative complexes, 14 and 17, exhibited better cell selectivity between cancer cells and normal cells than CDDP. Molecular docking study indicated that complexes 14 and 17 could bind to the colchicine site of tubulin. Moreover, complexes 14 and 17 also remarkably displayed inhibition of cell migration against HUVEC cells in vitro. Molecular mechanism studies suggested that 14 and 17 induced production of reactive oxygen species (ROS), cell cycle arrest at the G2/M phase, and mitochondria-mediated apoptosis by regulating the expression of Bcl-2 family members.
Collapse
Affiliation(s)
- Xiaochao Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Rizhen Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Lingxue Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
34
|
Cai L, Yu C, Ba L, Liu Q, Qian Y, Yang B, Gao C. Anticancer platinum-based complexes with non-classical structures. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4228] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linxiang Cai
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Congtao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Linkui Ba
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Qinghua Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Yunxu Qian
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Bo Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| |
Collapse
|
35
|
Chen H, Chen F, Hu W, Gou S. Effective platinum(IV) prodrugs conjugated with lonidamine as a functional group working on the mitochondria. J Inorg Biochem 2017; 180:119-128. [PMID: 29253663 DOI: 10.1016/j.jinorgbio.2017.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023]
Abstract
Platinum-based anticancer drugs are one of the most widely used anticancer chemotherapeutics in oncology. Lonidamine (LND) could increase the response of human tumor cells to platinum(II) drugs in preclinical studies by working on the mitochondria. Herein, five platinum(IV) prodrugs conjugated with their potentiator LND are prepared, and most of the target complexes achieve improved anticancer activities compared with their platinum(II) precursors. Notably, Pt(NH3)2(LND)Cl3 (complex 1) derived from cisplatin achieve significantly improved anticancer activities against LNCaP cells and could trigger cancer cell death via an apoptotic pathway and the cell cycle arrest mainly at S phases. And the induction of apoptosis by complex 1 in LNCaP cells is closely associated with mitochondrial function disruption and reactive oxygen species (ROS) accumulation. Moreover, it is possessed of the ability to overcome cisplatin-resistance. Further research revealed that complex 1 could be easily reduced to release its platinum(II) precursor and axial ligand by ascorbic acid. All the results provid evidence to support the design strategy of conjugating platinum complexes with its potentiator to improve their anticancer effect.
Collapse
Affiliation(s)
- Hong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; JiangsuProvince Hi-Tech Key Laboratory for Bio-medical Research, SoutheastUniversity, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; JiangsuProvince Hi-Tech Key Laboratory for Bio-medical Research, SoutheastUniversity, Nanjing 211189, China
| | - Weiwei Hu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; JiangsuProvince Hi-Tech Key Laboratory for Bio-medical Research, SoutheastUniversity, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; JiangsuProvince Hi-Tech Key Laboratory for Bio-medical Research, SoutheastUniversity, Nanjing 211189, China.
| |
Collapse
|
36
|
Bai L, Gao C, Cai L, Liu Q, Qian Y, Yang B. Synthesis and in vitro cytotoxicity of novel dinuclear platinum(II) complexes containing a chiral tetradentate ligand. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1398822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
37
|
Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140:349-382. [PMID: 28985575 DOI: 10.1016/j.ejmech.2017.09.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Since the antitumor activity of cisplatin was discovered in 1967 by Rosenberg, platinum-based anticancer drugs have played an important role in chemotherapy in clinic. Nevertheless, platinum anticancer drugs also have caused severe side effects and cross drug resistance which limited their applications. Therefore, a significant amount of efforts have been devoted to developing new platinum-based anticancer agents with equal or higher antitumor activity but lower toxicity. Until now, a large number of platinum-based complexes have been prepared and extensively investigated in vitro and in vivo. Among them, some platinum-based complexes revealing excellent anticancer activity showed the potential to be developed as novel type of anticancer agents. In this account, we present such platinum-based anticancer complexes which owning various types of ligands, such as, amine carrier ligands, leaving groups, reactive molecule, steric hindrance groups, non-covalently binding platinum (II) complexes, Platinum(IV) complexes and polynuclear platinum complexes. Overall, platinum-based anticancer complexes reported recently years upon modern structure are emphasized.
Collapse
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Congtao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuxin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
38
|
Hu W, Fang L, Hua W, Gou S. Biotin-Pt (IV)-indomethacin hybrid: A targeting anticancer prodrug providing enhanced cancer cellular uptake and reversing cisplatin resistance. J Inorg Biochem 2017; 175:47-57. [PMID: 28700961 DOI: 10.1016/j.jinorgbio.2017.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/06/2017] [Accepted: 07/02/2017] [Indexed: 01/08/2023]
Abstract
A Pt(IV) prodrug (2) composed of cancer-targeting biotin and nonsteroidal anti-inflammatory drug indomethacin in the axial positions of the six-coordinated octahedral geometry derived from cisplatin was developed, which could be highly accumulated in cancer cells more than normal ones and activated by endogenous reducing molecules to release cisplatin and indomethacin moieties simultaneously to inhibit tumor progression synergistically. In vitro assays revealed that 2 exhibited significantly selective inhibition to the tested cancer cell lines and sensitivity to cisplatin resistant cancer cells. Moreover, 2 presented cyclooxygenases inhibition properties to reduce tumor-associated inflammation, reduced the invasiveness of the highly aggressive PC-3 cells, and disrupted capillary-like tube formation in EA.hy926 cells. In all, this study offers a new strategy to enhance sensitivity and reduce toxicity of cisplatin.
Collapse
Affiliation(s)
- Weiwei Hu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lei Fang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Wuyang Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
39
|
Huang X, Huang R, Gou S, Wang Z, Wang H. Anticancer Platinum(IV) Prodrugs Containing Monoaminophosphonate Ester as a Targeting Group Inhibit Matrix Metalloproteinases and Reverse Multidrug Resistance. Bioconjug Chem 2017; 28:1305-1323. [PMID: 28276682 DOI: 10.1021/acs.bioconjchem.7b00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel class of platinum(IV) complexes comprising a monoaminophosphonate ester moiety, which can not only act as a bone-targeting group but also inhibit matrix metalloproteinases (MMPs), were designed and synthesized. Biological assay of these compounds showed that they had potent antitumor activities against the tested cancer cell lines compared with cisplatin and oxaliplatin and indicated low cytotoxicity to human normal liver cells. Particularly, the platinum(IV) complexes were very sensitive to cisplatin resistant cancer cell lines. The corresponding structure-activity relationships were studied and discussed. Related mechanism study revealed that the typical complex 11 caused cell cycle arrest at S phase and induced apoptosis in Bel-7404 cells via a mitochondrial-dependent apoptosis pathway. Moreover, complex 11 had potent ability to inhibit the tumor growth in the NCI-H460 xenograft model comparable to cisplatin.
Collapse
Affiliation(s)
| | | | | | | | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University , Guilin 541004, China
| |
Collapse
|
40
|
Yan QQ, Yuan Z, Liu GJ, Lv ZH, Fu B, Du JL, Li LJ. Synthesis, characterization and cytotoxicity of platinum(II) complexes containing reduced amino acid ester Schiff bases. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qin-Qin Yan
- College of Chemistry and Environmental Science; Chemical Biology Key Laboratory of Hebei Province; Hebei University; Baoding 071002 China
| | - Zhen Yuan
- College of Chemistry and Environmental Science; Chemical Biology Key Laboratory of Hebei Province; Hebei University; Baoding 071002 China
| | - Guo-Jun Liu
- College of Chemistry and Environmental Science; Chemical Biology Key Laboratory of Hebei Province; Hebei University; Baoding 071002 China
| | - Zheng-Hua Lv
- College of Chemistry and Environmental Science; Chemical Biology Key Laboratory of Hebei Province; Hebei University; Baoding 071002 China
| | - Bin Fu
- College of Chemistry and Environmental Science; Chemical Biology Key Laboratory of Hebei Province; Hebei University; Baoding 071002 China
| | - Jian-Long Du
- College of Chemistry and Environmental Science; Chemical Biology Key Laboratory of Hebei Province; Hebei University; Baoding 071002 China
| | - Li-Jun Li
- College of Chemistry and Environmental Science; Chemical Biology Key Laboratory of Hebei Province; Hebei University; Baoding 071002 China
| |
Collapse
|
41
|
Lorenzo J, Montaña ÁM. The molecular shape and the field similarities as criteria to interpret SAR studies for fragment-based design of platinum(IV) anticancer agents. Correlation of physicochemical properties with cytotoxicity. J Mol Graph Model 2016; 69:39-60. [PMID: 27567201 DOI: 10.1016/j.jmgm.2016.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Molecular shape similarity and field similarity have been used to interpret, in a qualitative way, the structure-activity relationships in a selected series of platinum(IV) complexes with anticancer activity. MM and QM calculations have been used to estimate the electron density, electrostatic potential maps, partial charges, dipolar moments and other parameters to correlate the stereo-electronic properties with the differential biological activity of complexes. Extended Electron Distribution (XED) field similarity has been also evaluated for the free 1,4-diamino carrier ligands, in a fragment-based drug design approach, comparing Connolly solvent excluded surface, hydrophobicity field surface, Van der Waals field surface, nucleophilicity field surface, electrophilicity field surface and the extended electron-distribution maxima field points. A consistency has been found when comparing the stereo-electronic properties of the studied series of platinum(IV) complexes and/or the free ligands evaluated and their in vitro anticancer activity.
Collapse
Affiliation(s)
- Julia Lorenzo
- Instituto de Biotecnología y Biomedicina Vicent Villar Palasí, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ángel M Montaña
- Unidad de Química Orgánica Industrial y Aplicada, Departamento de Química Orgánica, Universidad de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
42
|
Huang X, Huang R, Gou S, Wang Z, Liao Z, Wang H. Combretastatin A-4 Analogue: A Dual-Targeting and Tubulin Inhibitor Containing Antitumor Pt(IV) Moiety with a Unique Mode of Action. Bioconjug Chem 2016; 27:2132-48. [PMID: 27494235 DOI: 10.1021/acs.bioconjchem.6b00353] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three new Pt(IV) complexes comprising a combretastatin A-4 analogue were designed and synthesized. The resulting antitumor Pt(IV) complexes could significantly improve the antiproliferative activity and overcome the drug resistance of cisplatin in vitro. Interestingly, these novel compounds not only can carry the DNA binding Pt(II) warhead into the cancer cells but also have a small molecule fragment that can inhibit tubulin polymerization. Among them, complex 13, which was attached to an inhibitor of tubulin at one axial position of Pt(IV) octahedral coordination sphere, could effectively enter cancer cells, arrest the cell cycle in HepG-2 cancer cells at G2/M phases, and induce activation of caspases triggering apoptotic signaling via the mitochondrial-dependent apoptosis pathways. Moreover, complex 13 has the ability to effectively inhibit the tumor growth in the HepG-2 xenograft model without causing significant loss of animal body weight in comparison with cisplatin.
Collapse
Affiliation(s)
| | | | | | | | | | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004, China
| |
Collapse
|
43
|
Wang Z, Wu M, Gou S. Toward a better understanding of the oxaliplatin mode of action upon the steric hindrance of 1,2-diaminocyclohexane and its analogue. J Inorg Biochem 2016; 157:1-7. [DOI: 10.1016/j.jinorgbio.2016.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 01/12/2023]
|
44
|
Liu F, Hu W, Fang L, Gou S. Synthesis and biological evaluation of water-soluble trans-[bicyclo[2.2.2]octane-7R,8R-diamine]platinum(II) complexes with linear or branched alkoxyacetates as leaving groups. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1163546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fengfan Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Weiwei Hu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
- Pharmaceutical Research Center, Southeast University, Nanjing, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
- Pharmaceutical Research Center, Southeast University, Nanjing, China
| |
Collapse
|