1
|
Huyen NTT, Phuc BV, Huyen TT, Hong TT, Nguyen H, Nguyen VH, Nguyen MT, Hung TQ, Dinh CP, Dang TT. Design and Synthesis of Novel β-Carboline-Bisindole Hybrids as Potential Anticancer Agents. ChemMedChem 2024; 19:e202400316. [PMID: 38856518 DOI: 10.1002/cmdc.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
We are reporting a short and convenient pathway for the synthesis of novel β-carboline-bisindole hybrid compounds from relatively cheap and commercially available chemicals such as tryptamine, dialdehydes and indoles. These newly designed compounds can also be prepared in high yields with the tolerance of many functional groups under mild conditions. Notably, these β-carboline-bisindole hybrid compounds exhibited some promising applications as anticancer agents against the three common cancer cell lines MCF-7 (breast cancer), SK-LU-1 (lung cancer), and HepG2 (liver cancer). The two best compounds 5 b and 5 g inhibited the aforementioned cell lines with the same IC50 range of the reference Ellipticine at less than 2 μM. A molecular docking study to gain more information about the interactions between the synthesized molecules and the kinase domain of the EGFR was performed. Therefore, this finding can have significant impacts on the development of future research in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Huyen
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| | - Ban Van Phuc
- Institute of Chemistry, Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Tran Thi Huyen
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| | - Tran Thi Hong
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| | - Hien Nguyen
- Faculty of Chemistry, Hanoi National University of Education (HNUE), Vietnam
| | - Van Ha Nguyen
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| | - Minh Tho Nguyen
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam
| | - Tran Quang Hung
- Institute of Chemistry, Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
| | - Chau Phi Dinh
- NuChem Sciences, a Sygnature Discovery Business, 480 rue Perreault, Lévis, QC, G6 W 7 V6, Canada
| | - Tuan Thanh Dang
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| |
Collapse
|
2
|
Haji N, Faizi M, Koutentis PA, Carty MP, Aldabbagh F. Heterocyclic Iminoquinones and Quinones from the National Cancer Institute (NCI, USA) COMPARE Analysis. Molecules 2023; 28:5202. [PMID: 37446864 DOI: 10.3390/molecules28135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This review uses the National Cancer Institute (NCI) COMPARE program to establish an extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth inhibition patterns across the 60-cell line panel of the NCI Developmental Therapeutics Program (DTP). Many natural products and synthetic analogues are revealed as potential NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates, through correlations to dipyridoimidazo[5,4-f]benzimidazoleiminoquinone (DPIQ), and as potential thioredoxin reductase (TrxR) inhibitors, through correlations to benzo[1,2,4]triazin-7-ones and pleurotin. The strong correlation to NQO1 infers the enzyme has a major influence on the amount of the active compound with benzo[e]perimidines, phenoxazinones, benz[f]pyrido[1,2-a]indole-6,11-quinones, seriniquinones, kalasinamide, indolequinones, and furano[2,3-b]naphthoquinones, hypothesised as prodrugs. Compounds with very strong correlations to known TrxR inhibitors had inverse correlations to the expression of both reductase enzymes, NQO1 and TrxR, including naphtho[2,3-b][1,4]oxazepane-6,11-diones, benzo[a]carbazole-1,4-diones, pyranonaphthoquinones (including kalafungin, nanaomycin A, and analogues of griseusin A), and discorhabdin C. Quinoline-5,8-dione scaffolds based on streptonigrin and lavendamycin can correlate to either reductase. Inhibitors of TrxR are not necessarily (imino)quinones, e.g., parthenolides, while oxidising moieties are essential for correlations to NQO1, as with the mitosenes. Herein, an overview of synthetic methods and biological activity of each family of heterocyclic imino(quinone) is provided.
Collapse
Affiliation(s)
- Naemah Haji
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Masoma Faizi
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | | | - Michael P Carty
- School of Biological and Chemical Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| |
Collapse
|
3
|
Drogosz-Stachowicz J, Gach-Janczak K, Mirowski M, Pietrzak J, Janecki T, Janecka A. Anticancer Properties of 3-Dietoxyphosphorylfuroquinoline-4,9-dione. Molecules 2023; 28:molecules28073128. [PMID: 37049894 PMCID: PMC10095652 DOI: 10.3390/molecules28073128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Herein, the antitumor activity of a novel synthetic analog with 5,8-quinolinedione scaffold, diethyl (2-(2-chlorophenyl)-4,9-dioxo-4,9-dihydrofuro [3,2-g]quinolin-3-yl)phosphonate (AJ-418) was investigated on two breast cancer cell lines. This analog was selected from a small library of synthetic quinolinediones on the basis of its strong antiproliferative activity against MCF-7 and MDA-MB-231 cells and 4-5-fold lower cytotoxicity towards healthy MCF-10A cells. The morphology of MCF-7 and MDA-MB-231 cancer cells treated with AJ-418 changed drastically, while non-tumorigenic MCF-10A cells remained unaffected. In MCF-7 cells, after 24 h incubation, the increased number of apoptotic cells coincided with a decrease in proliferation and cell viability. The 24 h treatment of MDA-MB-231 cells with the tested compound reduced their cell viability and proliferation rate; however, a significant pro-apoptotic effect was visible only after longer incubation times (48 h and 72 h). Then, the maximum tolerated dose (MTD) of compound AJ-418 in C3H mice after subcutaneous administration was determined to be 160 mg/kg, showing that this analog was well tolerated and can be further evaluated to assess its potential therapeutic effect in tumor-bearing mice.
Collapse
Affiliation(s)
- Joanna Drogosz-Stachowicz
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Marek Mirowski
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Jacek Pietrzak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
4
|
In silico design of novel diamino-quinoline-5,8‑dione derivatives as putative inhibitors of NAD(P)H:Quinone oxidoreductase 1 based on docking studies and molecular dynamics simulations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Gupta M, Patel S. Nature-derived Quinolines and Isoquinolines: A Medicinal Chemistry Perspective. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190614115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quinoline and isoquinoline motifs are commonly encountered in natural products
of diverse origins. These moderately basic fused-heterocyclic rings containing natural
products are adorned with remarkable biological activities with clinical use in various diseases
demonstrating nature elegance and creativity. Therefore, these privileged rings have
attracted profound interest from the scientific community. In this perspective, we have discussed
medicinal chemistry perspective of the natural products containing quinoline and
isoquinoline scaffolds.
Collapse
Affiliation(s)
- Mohit Gupta
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Saloni Patel
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
6
|
Enantioseparation of ß-carboline, tetrahydroisoquinoline and benzazepine analogues of pharmaceutical importance: Utilization of chiral stationary phases based on polysaccharides and sulfonic acid modified Cinchonaalkaloids in high-performance liquid and subcritical fluid chromatography. J Chromatogr A 2020; 1615:460771. [DOI: 10.1016/j.chroma.2019.460771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022]
|
7
|
Kadela-Tomanek M, Bębenek E, Chrobak E, Marciniec K, Latocha M, Kuśmierz D, Jastrzębska M, Boryczka S. Betulin-1,4-quinone hybrids: Synthesis, anticancer activity and molecular docking study with NQO1 enzyme. Eur J Med Chem 2019; 177:302-315. [DOI: 10.1016/j.ejmech.2019.05.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022]
|
8
|
Synthesis and biological evaluation of 2-chloro-3-[(thiazol-2-yl)amino]-1,4-naphthoquinones. Bioorg Med Chem Lett 2019; 29:1572-1575. [DOI: 10.1016/j.bmcl.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
|
9
|
da Silva Júnior EN, Jardim GAM, Jacob C, Dhawa U, Ackermann L, de Castro SL. Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur J Med Chem 2019; 179:863-915. [PMID: 31306817 DOI: 10.1016/j.ejmech.2019.06.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023]
Abstract
Naphthoquinones are of key importance in organic synthesis and medicinal chemistry. In the last few years, various synthetic routes have been developed to prepare bioactive compounds derived or based on lapachones. In this sense, this review is mainly focused on the synthetic aspects and strategies used for the design of these compounds on the basis of their biological activities for the development of drugs against the neglected diseases leishmaniases and Chagas disease and also cancer. Three strategies used to develop bioactive quinones are discussed and categorized: (i) C-ring modification, (ii) redox centre modification and (iii) A-ring modification. Framed within these strategies for the development of naphthoquinoidal compounds against T. cruzi. Leishmania and cancer, reactions including copper-catalyzed azide-alkyne cycloaddition (click chemistry), palladium-catalysed cross couplings, C-H activation reactions, Ullmann couplings and heterocyclisations reported up to July 2019 will be discussed. The aim of derivatisation is the generation of novel molecules that can potentially inhibit cellular organelles/processes, generate reactive oxygen species and increase lipophilicity to enhance penetration through the plasma membrane. Modified lapachones have emerged as promising prototypes for the development of drugs against leishmaniases, Chagas disease and cancer.
Collapse
Affiliation(s)
- Eufrânio N da Silva Júnior
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| | - Guilherme A M Jardim
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123, Saarbruecken, Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Solange L de Castro
- Laboratory of Cell Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| |
Collapse
|
10
|
Beesu M, Mehta G. Synthesis of Quinolines and Isoquinolines via Site-Selective, Domino Benzannulation of 2- and 3-Chloropyridyl Ynones with Nitromethane. J Org Chem 2019; 84:8731-8742. [DOI: 10.1021/acs.joc.9b00950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mallesh Beesu
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
11
|
Wu X, Li X, Li Z, Yu Y, You Q, Zhang X. Discovery of Nonquinone Substrates for NAD(P)H: Quinone Oxidoreductase 1 (NQO1) as Effective Intracellular ROS Generators for the Treatment of Drug-Resistant Non-Small-Cell Lung Cancer. J Med Chem 2018; 61:11280-11297. [PMID: 30508483 DOI: 10.1021/acs.jmedchem.8b01424] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The elevation of oxidative stress preferentially in cancer cells by efficient NQO1 substrates, which promote ROS generation through redox cycling, has emerged as an effective strategy for cancer therapy, even for treating drug-resistant cancers. Here, we described the identification and structural optimization studies of the hit compound 1, a new chemotype of nonquinone substrate for NQO1 as an efficient ROS generator. Further structure-activity relationship studies resulted in the most active compound 20k, a tricyclic 2,3-dicyano indenopyrazinone, which selectively inhibited the proliferation of NQO1-overexpressing A549 and A549/Taxol cancer cells. Furthermore, 20k dramatically elevated the intracellular ROS levels through NQO1-catalyzed redox cycling and induced PARP-1-mediated cell apoptosis in A549/Taxol cells. In addition, 20k significantly suppressed the growth of A549/Taxol xenograft tumors in mice with no apparent toxicity observed in vivo. Together, 20k acts as an efficient NQO1 substrate and may be a new option for the treatment of NQO1-overexpresssing drug-resistant NSCLC.
Collapse
Affiliation(s)
- Xingsen Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Chemistry, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Xiang Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Pharmaceutical Engineering , China Pharmaceutical University , Nanjing , 211198 , China
| | - Zhihong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Chemistry, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Yancheng Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Chemistry, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Chemistry, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| |
Collapse
|
12
|
Bajtai A, Lajkó G, Szatmári I, Fülöp F, Lindner W, Ilisz I, Péter A. Dedicated comparisons of diverse polysaccharide- and zwitterionic Cinchona alkaloid-based chiral stationary phases probed with basic and ampholytic indole analogs in liquid and subcritical fluid chromatography mode. J Chromatogr A 2018; 1563:180-190. [DOI: 10.1016/j.chroma.2018.05.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 11/28/2022]
|
13
|
Development of novel amino-quinoline-5,8-dione derivatives as NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors with potent antiproliferative activities. Eur J Med Chem 2018; 154:199-209. [PMID: 29803003 DOI: 10.1016/j.ejmech.2018.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 01/09/2023]
Abstract
Fourteen novel amino-quinoline-5,8-dione derivatives (6a-h and 7a-h) were designed and synthesized by coupling different alkyl- or aryl-amino fragments at the C6- or C7-position of quinoline-5,8-dione. All target compounds showed antiproliferative potency in the low micromolar range in both drug sensitive HeLaS3 and multidrug resistant KB-vin cell lines. Compounds 6h, 6d, 7a, and 7d exhibited more potent antiproliferative effects than the other compounds. Especially, compounds 6d and 7d displayed NQO1-dependent cytotoxicity and competitive NQO1 inhibitory effects in both drug sensitive HeLaS3 and multidrug resistant KB-vin cell lines. Furthermore, compounds 6h, 6d, 7a, and 7d induced a dose-dependent lethal mitochondrial dysfunction in both drug sensitive HeLaS3 and multidrug resistant KB-vin cells by increasing intracellular reactive oxygen species (ROS) levels. Notably, compound 7d selectively inhibited cancer cells, but not non-tumor liver cell proliferation in vitro, and significantly triggered HeLaS3 cell apoptosis by regulating apoptotic proteins of Bcl-2, Bax, and cleaved caspase-3 in a dose-dependent manner. Our findings suggest that these novel C6- or C7-substituted amino-quinoline-5,8-dione derivatives, such as 7d, could be further developed in the future as potent and selective antitumor agents to potentially circumvent multi-drug resistance (MDR).
Collapse
|
14
|
Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem 2018; 61:6983-7003. [DOI: 10.1021/acs.jmedchem.8b00124] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dong Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kun Ma
- Center for Drug Evaluation, China Food and Drug Administration, Beijing 100038, China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
15
|
Zhang X, Bian J, Li X, Wu X, Dong Y, You Q. 2-Substituted 3,7,8-trimethylnaphtho[1,2- b ]furan-4,5-diones as specific L-shaped NQO1-mediated redox modulators for the treatment of non-small cell lung cancer. Eur J Med Chem 2017; 138:616-629. [DOI: 10.1016/j.ejmech.2017.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 02/03/2023]
|
16
|
Wei W, Liu Q, Li ZZ, Shi WK, Fu X, Liu J, Zhu X, Wang XC, Xu N, Li TF, Jiang FR, Xiao ZP, Zhu HL. Synthesis and evaluation of adenosine containing 3-arylfuran-2(5 H )-ones as tyrosyl-tRNA synthetase inhibitors. Eur J Med Chem 2017; 133:62-68. [DOI: 10.1016/j.ejmech.2017.03.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 01/18/2023]
|
17
|
Alves Esteves CH, Smith PD, Donohoe TJ. Catalytic Enolate Arylation with 3-Bromoindoles Allows the Formation of β-Carbolines. J Org Chem 2017; 82:4435-4443. [PMID: 28362489 DOI: 10.1021/acs.joc.7b00299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis of substituted β-carbolines was accomplished by utilizing the catalytic enolate arylation reaction of ketones in conjunction with several 3-bromoindole derivatives. Quenching of the arylation reaction in situ with an electrophile allowed ready incorporation of functionality at the carboline C-4 position in an efficient one-pot protocol.
Collapse
Affiliation(s)
- C Henrique Alves Esteves
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford OX1 3TA, U.K
| | - Peter D Smith
- AstraZeneca, Pharmaceutical Sciences , Silk Road Business Park, Macclesfield SK10 2NA, U.K
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
18
|
Bian J, Li X, Wang N, Wu X, You Q, Zhang X. Discovery of quinone-directed antitumor agents selectively bioactivated by NQO1 over CPR with improved safety profile. Eur J Med Chem 2017; 129:27-40. [DOI: 10.1016/j.ejmech.2017.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
|
19
|
Bian J, Li X, Xu L, Wang N, Qian X, You Q, Zhang X. Affinity-based small fluorescent probe for NAD(P)H:quinone oxidoreductase 1 (NQO1). Design, synthesis and pharmacological evaluation. Eur J Med Chem 2017; 127:828-839. [DOI: 10.1016/j.ejmech.2016.10.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022]
|
20
|
Xiao ZP, Wei W, Liu Q, Wang PF, Luo X, Chen FY, Cao Y, Huang HX, Liu MM, Zhu HL. C-7 modified flavonoids as novel tyrosyl-tRNA synthetase inhibitors. RSC Adv 2017. [DOI: 10.1039/c6ra28061g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Twenty C-7 modified flavonoids were designed and synthesized.
Collapse
|
21
|
Fathimath Salfeena CT, Ashitha KT, Sasidhar BS. BF3·Et2O mediated one-step synthesis of N-substituted-1,2-dihydropyridines, indenopyridines and 5,6-dihydroisoquinolines. Org Biomol Chem 2016; 14:10165-10169. [DOI: 10.1039/c6ob02133f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient one-pot ring annulation provides quick access to N-substituted-1,2-dihydropyridines, indenopyridines and 5,6-dihydroisoquinolines.
Collapse
Affiliation(s)
- C. T. Fathimath Salfeena
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi 110001
- India
- Organic Chemistry Section
- Chemical Sciences and Technology Division
| | - K. T. Ashitha
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi 110001
- India
- Organic Chemistry Section
- Chemical Sciences and Technology Division
| | - B. S. Sasidhar
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi 110001
- India
- Organic Chemistry Section
- Chemical Sciences and Technology Division
| |
Collapse
|
22
|
2-Substituted 3-methylnaphtho[1,2-b]furan-4,5-diones as novel L-shaped ortho-quinone substrates for NAD(P)H:quinone oxidoreductase (NQO1). Eur J Med Chem 2014; 82:56-67. [DOI: 10.1016/j.ejmech.2014.05.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/18/2022]
|
23
|
|
24
|
Keyari CM, Kearns AK, Duncan NS, Eickholt EA, Abbott G, Beall HD, Diaz P. Synthesis of new quinolinequinone derivatives and preliminary exploration of their cytotoxic properties. J Med Chem 2013; 56:3806-19. [PMID: 23574193 DOI: 10.1021/jm301689x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 7-amino- and 7-acetamidoquinoline-5,8-diones with aryl substituents at the 2-position were synthesized, characterized, and evaluated as potential NAD(P)H:quinone oxidoreductase (NQO1) -directed antitumor agents. The synthesis of lavendamycin analogues is illustrated. Metabolism studies demonstrated that 7-amino analogues were generally better substrates for NQO1 than 7-amido analogues, as were compounds with smaller heteroaromatic substituents at the C-2 position. Surprisingly, only two compounds, 7-acetamido-2-(8'-quinolinyl)quinoline-5,8-dione (11) and 7-amino-2-(2-pyridinyl)quinoline-5,8-dione (23), showed selective cytotoxicity toward the NQO1-expressing MDA468-NQ16 breast cancer cells versus the NQO1-null MDA468-WT cells. For all other compounds, NQO1 protected against quinoline-5,8-dione cytotoxicity. Compound 22 showed potent activity against human breast cancer cells expressing or not expressing NQO1, with respective IC50 values of 190 nM and 140 nM and a low NQO1-mediated reduction rate, which suggests that the mode of action of 22 differs from that of lavendamycin and involves an unidentified target(s).
Collapse
Affiliation(s)
- Charles M Keyari
- Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, The University of Montana , Missoula, Montana 59812, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ramesh S, Nagarajan R. A Formal Synthesis of Lavendamycin Methyl Ester, Nitramarine, and Their Analogues: A Povarov Approach. J Org Chem 2012; 78:545-58. [DOI: 10.1021/jo302389s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Mendoza MF, Hollabaugh NM, Hettiarachchi SU, McCarley RL. Human NAD(P)H:quinone oxidoreductase type I (hNQO1) activation of quinone propionic acid trigger groups. Biochemistry 2012; 51:8014-26. [PMID: 22989153 DOI: 10.1021/bi300760u] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NAD(P)H:quinone oxidoreductase type I (NQO1) is a target enzyme for triggered delivery of drugs at inflamed tissue and tumor sites, particularly those that challenge traditional therapies. Prodrugs, macromolecules, and molecular assemblies possessing trigger groups that can be cleaved by environmental stimuli are vehicles with the potential to yield active drug only at prescribed sites. Furthermore, quinone propionic acids (QPAs) covalently attached to prodrugs or liposome surfaces can be removed by application of a reductive trigger stimulus, such as that from NQO1; their rates of reductive activation should be tunable via QPA structure. We explored in detail the recombinant human NAD(P)H:quinone oxidoreductase type I (rhNQO1)-catalyzed NADH reduction of a family of substituted QPAs and obtained high precision kinetic parameters. It is found that small changes in QPA structure-in particular, single atom and function group substitutions on the quinone ring at R(1)-lead to significant impacts on the Michaelis constant (K(m)), maximum velocity (V(max)), catalytic constant (k(cat)), and catalytic efficiency (k(cat)/K(m)). Molecular docking simulations demonstrate that alterations in QPA structure result in large changes in QPA alignment and placement with respect to the flavin isoalloxazine ring in the active site of rhNQO1; a qualitative relationship exists between the kinetic parameters and the depth of QPA penetration into the rhNQO1 active site. From a quantitative perspective, a very good correlation is observed between log(k(cat)/K(m)) and the molecular-docking-derived distance between the flavin hydride donor site and quinone hydride acceptor site in the QPAs, an observation that is in agreement with developing theories. The comprehensive kinetic and molecular modeling knowledge obtained for the interaction of recombinant human NQO1 with the quinone propionic acid analogues provides insight into the design and implementation of the QPA trigger groups for drug delivery applications.
Collapse
Affiliation(s)
- Maria F Mendoza
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803-1804, USA
| | | | | | | |
Collapse
|
27
|
LIAO K, NIU F, HAO HP, WANG GJ. Advances on structure-activity relationship of NQO1-targeting antitumor quinones. Chin J Nat Med 2012. [DOI: 10.3724/sp.j.1009.2012.00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Lanfranchi DA, Cesar-Rodo E, Bertrand B, Huang HH, Day L, Johann L, Elhabiri M, Becker K, Williams DL, Davioud-Charvet E. Synthesis and biological evaluation of 1,4-naphthoquinones and quinoline-5,8-diones as antimalarial and schistosomicidal agents. Org Biomol Chem 2012; 10:6375-87. [PMID: 22777178 PMCID: PMC3423093 DOI: 10.1039/c2ob25812a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Improving the solubility of polysubstituted 1,4-naphthoquinone derivatives was achieved by introducing nitrogen in two different positions of the naphthoquinone core, at C-5 and at C-8 of menadione through a two-step, straightforward synthesis based on the regioselective hetero-Diels-Alder reaction. The antimalarial and the antischistosomal activities of these polysubstituted aza-1,4-naphthoquinone derivatives were evaluated and led to the selection of distinct compounds for antimalarial versus antischistosomal action. The Ag(II)-assisted oxidative radical decarboxylation of the phenyl acetic acids using AgNO(3) and ammonium peroxodisulfate was modified to generate the 3-picolinyl-menadione with improved pharmacokinetic parameters, high antimalarial effects and capacity to inhibit the formation of β-hematin.
Collapse
Affiliation(s)
- Don Antoine Lanfranchi
- European School of Chemistry, Polymers and Materials (ECPM) University of Strasbourg, UMR CNRS 7509, 25 Rue Becquerel, F-67087 Strasbourg, France. Fax: +33 (0)3 68 85 27 42; Tel: +33 3 68 85 26 20
| | - Elena Cesar-Rodo
- European School of Chemistry, Polymers and Materials (ECPM) University of Strasbourg, UMR CNRS 7509, 25 Rue Becquerel, F-67087 Strasbourg, France. Fax: +33 (0)3 68 85 27 42; Tel: +33 3 68 85 26 20
| | - Benoît Bertrand
- European School of Chemistry, Polymers and Materials (ECPM) University of Strasbourg, UMR CNRS 7509, 25 Rue Becquerel, F-67087 Strasbourg, France. Fax: +33 (0)3 68 85 27 42; Tel: +33 3 68 85 26 20
| | - Hsin-Hung Huang
- Department of Immunology/Microbiology, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Latasha Day
- Department of Immunology/Microbiology, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Laure Johann
- European School of Chemistry, Polymers and Materials (ECPM) University of Strasbourg, UMR CNRS 7509, 25 Rue Becquerel, F-67087 Strasbourg, France. Fax: +33 (0)3 68 85 27 42; Tel: +33 3 68 85 26 20
| | - Mourad Elhabiri
- European School of Chemistry, Polymers and Materials (ECPM) University of Strasbourg, UMR CNRS 7509, 25 Rue Becquerel, F-67087 Strasbourg, France. Fax: +33 (0)3 68 85 27 42; Tel: +33 3 68 85 26 20
| | - Katja Becker
- Interdisciplinary Research Center, Nutritional Biochemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, D-35392 Giessen, Germany
| | - David L. Williams
- Department of Immunology/Microbiology, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Elisabeth Davioud-Charvet
- European School of Chemistry, Polymers and Materials (ECPM) University of Strasbourg, UMR CNRS 7509, 25 Rue Becquerel, F-67087 Strasbourg, France. Fax: +33 (0)3 68 85 27 42; Tel: +33 3 68 85 26 20
| |
Collapse
|
29
|
Fagan V, Bonham S, Carty MP, Saenz-Méndez P, Eriksson LA, Aldabbagh F. COMPARE analysis of the toxicity of an iminoquinone derivative of the imidazo[5,4-f]benzimidazoles with NAD(P)H:quinone oxidoreductase 1 (NQO1) activity and computational docking of quinones as NQO1 substrates. Bioorg Med Chem 2012; 20:3223-32. [PMID: 22522008 DOI: 10.1016/j.bmc.2012.03.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Synthesis and cytotoxicity of imidazo[5,4-f]benzimidazolequinones and iminoquinone derivatives is described, enabling structure-activity relationships to be obtained. The most promising compound (an iminoquinone derivative) has undergone National Cancer Institute (NCI) 60 cell line (single and five dose) screening, and using the NCI COMPARE program, has shown correlation to NQO1 activity and to other NQO1 substrates. Common structural features suggest that the iminoquinone moiety is significant with regard to NQO1 specificity. Computational docking into the active site of NQO1 was performed, and the first comprehensive mitomycin C (MMC)-NQO1 docking study is presented. Small distances for hydride reduction and high binding affinities are characteristic of MMC and of iminoquinones showing correlations with NQO1 via COMPARE analysis. Docking also indicated that the presence of a substituent capable of hydrogen bonding to the His194 residue is important in influencing the orientation of the substrate in the NQO1 active site, leading to more efficient reduction.
Collapse
Affiliation(s)
- Vincent Fagan
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
30
|
Medina S, González-Gómez Á, Domínguez G, Pérez-Castells J. Medium-sized and strained heterocycles from non-catalysed and gold-catalysed conversions of β-carbolines. Org Biomol Chem 2012; 10:7167-76. [DOI: 10.1039/c2ob25755f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
|
32
|
Synthesis and antitubercular evaluation of novel substituted aryl and thiophenyl tethered dihydro-6H-quinolin-5-ones. Bioorg Med Chem Lett 2011; 21:1214-7. [DOI: 10.1016/j.bmcl.2010.12.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/07/2010] [Accepted: 12/16/2010] [Indexed: 11/24/2022]
|
33
|
Huan T, Wu X, Chen JY. Systems biology visualization tools for drug target discovery. Expert Opin Drug Discov 2010; 5:425-39. [DOI: 10.1517/17460441003725102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Verniest G, Wang X, De Kimpe N, Padwa A. Heteroaryl cross-coupling as an entry toward the synthesis of lavendamycin analogues: a model study. J Org Chem 2010; 75:424-33. [PMID: 20017470 DOI: 10.1021/jo902287t] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ABC analogues of the antitumor antibiotic lavendamycin, which contain the key metal chelation site and redox-active quinone unit essential for biological activity, were prepared via the palladium(0)-catalyzed cross-coupling reaction of various 2-haloheteroaromatics with 2-stannylated pyridines and quinolines. Using the Stille reaction, 2-bromo substituted quinolines and 1-bromoisoquinolines were found to undergo efficient coupling with 2-pyridinylstannanes to provide unsymmetrical heterobiaryl derivatives. While the Stille reaction using the reverse coupling partners (i.e., 2-quinolinylstannanes and haloheteroaromatics) had not received much attention in the literature, we found that this alternative coupling reaction efficiently provided several new heterobiaryl derivatives. The gold-catalyzed intramolecular cycloisomerization of N-(prop-2-ynyl)-1H-indole-2-carboxamide smoothly afforded a beta-carbolinone derivative that was subsequently used for a Pd(0)-catalyzed cross-coupling directed toward the synthesis of lavendamycin analogues.
Collapse
Affiliation(s)
- Guido Verniest
- Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
35
|
Cai W, Hassani M, Karki R, Walter ED, Koelsch KH, Seradj H, Lineswala JP, Mirzaei H, York JS, Olang F, Sedighi M, Lucas JS, Eads TJ, Rose AS, Charkhzarrin S, Hermann NG, Beall HD, Behforouz M. Synthesis, metabolism and in vitro cytotoxicity studies on novel lavendamycin antitumor agents. Bioorg Med Chem 2010; 18:1899-909. [PMID: 20149966 DOI: 10.1016/j.bmc.2010.01.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 11/29/2022]
Abstract
A series of lavendamycin analogues with two, three or four substituents at the C-6, C-7 N, C-2', C-3' and C-11' positions were synthesized via short and efficient methods and evaluated as potential NAD(P)H:quinone oxidoreductase (NQO1)-directed antitumor agents. The compounds were prepared through Pictet-Spengler condensation of the desired 2-formylquinoline-5,8-diones with the required tryptophans followed by further needed transformations. Metabolism and toxicity studies demonstrated that the best substrates for NQO1 were also the most selectively toxic to NQO1-rich tumor cells compared to NQO1-deficient tumor cells.
Collapse
Affiliation(s)
- Wen Cai
- Chemistry Department, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
González-Gómez Á, Domínguez G, Pérez-Castells J. Novel chemistry of β-carbolines. Expedient synthesis of polycyclic scaffolds. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.02.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|