1
|
Judd AS, Bawa B, Buck WR, Tao ZF, Li Y, Mitten MJ, Bruncko M, Catron N, Doherty G, Durbin KR, Enright B, Frey R, Haasch D, Haman S, Haight AR, Henriques TA, Holms J, Izeradjene K, Judge RA, Jenkins GJ, Kunzer A, Leverson JD, Martin RL, Mitra D, Mittelstadt S, Nelson L, Nimmer P, Palma J, Peterson R, Phillips DC, Ralston SL, Rosenberg SH, Shen X, Song X, Vaidya KR, Wang X, Wang J, Xiao Y, Zhang H, Zhang X, Blomme EA, Boghaert ER, Kalvass JC, Phillips A, Souers AJ. BCL-X L-targeting antibody-drug conjugates are active in preclinical models and mitigate on-mechanism toxicity of small-molecule inhibitors. SCIENCE ADVANCES 2024; 10:eado7120. [PMID: 39365864 PMCID: PMC11451551 DOI: 10.1126/sciadv.ado7120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Overexpression of the antiapoptotic protein B-cell lymphoma-extra large (BCL-XL) is associated with drug resistance and disease progression in numerous cancers. The compelling nature of this protein as a therapeutic target prompted efforts to develop selective small-molecule BCL-XL inhibitors. Although efficacious in preclinical models, we report herein that selective BCL-XL inhibitors cause severe mechanism-based cardiovascular toxicity in higher preclinical species. To overcome this liability, antibody-drug conjugates were constructed using altered BCL-XL-targeting warheads, unique linker technologies, and therapeutic antibodies. The epidermal growth factor receptor-targeting antibody-drug conjugate AM1-15 inhibited growth of tumor xenografts and did not cause cardiovascular toxicity nor dose-limiting thrombocytopenia in monkeys. While an unprecedented BCL-XL-mediated toxicity was uncovered in monkey kidneys upon repeat dosing of AM1-15, this toxicity was mitigated via further drug-linker modification to afford AM1-AAA (AM1-25). The AAA drug-linker has since been incorporated into mirzotamab clezutoclax, the first selective BCL-XL-targeting agent to enter human clinical trials.
Collapse
Affiliation(s)
- Andrew S. Judd
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Bhupinder Bawa
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Wayne R. Buck
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Zhi-Fu Tao
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Yingchun Li
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Milan Bruncko
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - George Doherty
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Brian Enright
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Robin Frey
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Deanna Haasch
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | | - Gary J. Jenkins
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Aaron Kunzer
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Ruth L. Martin
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Diya Mitra
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Lorne Nelson
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Joann Palma
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | | | | | | | - Xiaoqiang Shen
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Xiaohong Song
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Xilu Wang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Jin Wang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Yu Xiao
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Haichao Zhang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Xinxin Zhang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Eric A. Blomme
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - John C. Kalvass
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Andrew Phillips
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
2
|
Kenakin T. Know your molecule: pharmacological characterization of drug candidates to enhance efficacy and reduce late-stage attrition. Nat Rev Drug Discov 2024; 23:626-644. [PMID: 38890494 DOI: 10.1038/s41573-024-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Despite advances in chemical, computational and biological sciences, the rate of attrition of drug candidates in clinical development is still high. A key point in the small-molecule discovery process that could provide opportunities to help address this challenge is the pharmacological characterization of hit and lead compounds, culminating in the selection of a drug candidate. Deeper characterization is increasingly important, because the 'quality' of drug efficacy, at least for G protein-coupled receptors (GPCRs), is now understood to be much more than activation of commonly evaluated pathways such as cAMP signalling, with many more 'efficacies' of ligands that could be harnessed therapeutically. Such characterization is being enabled by novel assays to characterize the complex behaviour of GPCRs, such as biased signalling and allosteric modulation, as well as advances in structural biology, such as cryo-electron microscopy. This article discusses key factors in the assessments of the pharmacology of hit and lead compounds in the context of GPCRs as a target class, highlighting opportunities to identify drug candidates with the potential to address limitations of current therapies and to improve the probability of them succeeding in clinical development.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Guo Y, Xue H, Hu N, Liu Y, Sun H, Yu D, Qin L, Shi G, Wang F, Xin L, Sun W, Zhang F, Song X, Li S, Wei Q, Guo Y, Li Y, Liu X, Chen S, Zhang T, Wu Y, Su D, Zhu Y, Xu A, Xu H, Yang S, Zheng Z, Liu J, Yang X, Yuan X, Hong Y, Sun X, Guo Y, Zhou C, Liu X, Wang L, Wang Z. Discovery of the Clinical Candidate Sonrotoclax (BGB-11417), a Highly Potent and Selective Inhibitor for Both WT and G101V Mutant Bcl-2. J Med Chem 2024; 67:7836-7858. [PMID: 38695063 PMCID: PMC11129194 DOI: 10.1021/acs.jmedchem.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024]
Abstract
The approval of venetoclax, a B-cell lymphoma-2 (Bcl-2) selective inhibitor, for the treatment of chronic lymphocytic leukemia demonstrated that the antiapoptotic protein Bcl-2 is a druggable target for B-cell malignancies. However, venetoclax's limited potency cannot produce a strong, durable clinical benefit in other Bcl-2-mediated malignancies (e.g., diffuse large B-cell lymphomas) and multiple recurrent Bcl-2 mutations (e.g., G101V) have been reported to mediate resistance to venetoclax after long-term treatment. Herein, we described novel Bcl-2 inhibitors with increased potency for both wild-type (WT) and mutant Bcl-2. Comprehensive structure optimization led to the clinical candidate BGB-11417 (compound 12e, sonrotoclax), which exhibits strong in vitro and in vivo inhibitory activity against both WT Bcl-2 and the G101V mutant, as well as excellent selectivity over Bcl-xL without obvious cytochrome P450 inhibition. Currently, BGB-11417 is undergoing phase II/III clinical assessments as monotherapy and combination treatment.
Collapse
Affiliation(s)
- Yunhang Guo
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Hai Xue
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Nan Hu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Ye Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Hanzi Sun
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Desheng Yu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Ling Qin
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Gongyin Shi
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Fan Wang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Lei Xin
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Weihua Sun
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Fan Zhang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xiaomin Song
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Shuran Li
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Qiang Wei
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Ying Guo
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yong Li
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xiaoxin Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Shuaishuai Chen
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Taichang Zhang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yue Wu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Dan Su
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yutong Zhu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Aiying Xu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Haipeng Xu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Shasha Yang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Zhijun Zheng
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Junhua Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xuefei Yang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xi Yuan
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yuan Hong
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xuebing Sun
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yin Guo
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Changyou Zhou
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xuesong Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Lai Wang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Zhiwei Wang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| |
Collapse
|
4
|
Salem AH, Menon RM. Clinical pharmacokinetics and pharmacodynamics of venetoclax, a selective B-cell lymphoma-2 inhibitor. Clin Transl Sci 2024; 17:e13807. [PMID: 38778732 PMCID: PMC11112299 DOI: 10.1111/cts.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 05/25/2024] Open
Abstract
Venetoclax, a highly potent BCL-2 inhibitor, is indicated for treatment of some hematologic malignancies as monotherapy, and/or in combination with other agents. Venetoclax pharmacokinetics has been extensively characterized in patients and healthy participants. After oral dosing, the median time to reach maximum plasma concentration ranged from 5 to 8 h and harmonic mean half-life ranged from 14 to 18 h. Food increases venetoclax bioavailability by 3-5-fold and venetoclax should be administered with food to ensure adequate and consistent bioavailability. Venetoclax is eliminated via cytochrome P450 (CYP)3A metabolism, and a negligible amount of unchanged drug is excreted in urine. Strong CYP3A/P-glycoprotein inhibitors increased venetoclax exposures (AUC) by 1.44- to 6.90-fold while a significant decrease (71%) has been observed when dosed with strong CYP3 inducers. Venetoclax does not inhibit or induce CYP enzymes or transporters. Venetoclax pharmacokinetics is not appreciably altered by age, weight, sex, but the exposure is up to twofold higher in participants from Asian countries. Mild-to-severe renal impairment or end-stage renal disease do not alter venetoclax exposures, and venetoclax is not cleared by dialysis. Although mild-to-moderate hepatic impairment does not affect venetoclax exposures, twofold higher exposure was observed in subjects with severe hepatic impairment. Venetoclax exposure is comparable across patients with different hematologic malignancies and healthy participants. Overall, venetoclax exposure is only affected by food and CYP3A modulators and is only higher in Asian subjects and subjects with severe hepatic impairment. Venetoclax exposure-response relationships are malignancy-dependent and can be different between monotherapy and combination therapy.
Collapse
Affiliation(s)
- Ahmed Hamed Salem
- Faculty of PharmacyAin Shams UniversityCairoEgypt
- AbbVie Inc.North ChicagoIllinoisUSA
| | | |
Collapse
|
5
|
Yildirim N, Sarojam L, Smith VM, Pieper NM, Anders M, Jackson RA, Fuhrmann DC, Särchen V, Brücher D, Weigert A, Dyer MJS, Vogler M. Identification of a novel form of caspase-independent cell death triggered by BH3-mimetics in diffuse large B-cell lymphoma cell lines. Cell Death Dis 2024; 15:266. [PMID: 38622118 PMCID: PMC11018778 DOI: 10.1038/s41419-024-06652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
BH3-mimetics represent promising anti-cancer agents in tumors that rely on the anti-apoptotic function of B-Cell Lymphoma 2 (BCL2) proteins, particularly in leukemia and lymphoma cells primed for apoptosis. Mechanistically, BH3-mimetics may displace pro-apoptotic binding partners thus inducing BAX/BAK-mediated mitochondrial permeabilization followed by cytochrome c release, activation of the caspase cascade and apoptosis. Here, we describe a novel mode of caspase-independent cell death (CICD) induced by BH3-mimetics in a subset of diffuse large B-cell lymphoma (DLBCL) cells. Of note, rather than occurring via necroptosis, CICD induced immediately after mitochondrial permeabilization was associated with transcriptional reprogramming mediated by activation of c-Jun N-terminal Kinase (JNK) signaling and Activator Protein 1 (AP1). Thereby, CICD resulted in the JNK/AP1-mediated upregulation of inflammatory chemokines and increased migration of cytotoxic Natural Killer (NK) cells. Taken together, our study describes a novel mode of CICD triggered by BH3-mimetics that may alter the immune response towards dying cells.
Collapse
Affiliation(s)
- Nahide Yildirim
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Lakshmi Sarojam
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Nadja M Pieper
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Marius Anders
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Ross A Jackson
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Dominik C Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Vinzenz Särchen
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniela Brücher
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt, Germany
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Meike Vogler
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
6
|
Rej RK, Allu SR, Roy J, Acharyya RK, Kiran INC, Addepalli Y, Dhamodharan V. Orally Bioavailable Proteolysis-Targeting Chimeras: An Innovative Approach in the Golden Era of Discovering Small-Molecule Cancer Drugs. Pharmaceuticals (Basel) 2024; 17:494. [PMID: 38675453 PMCID: PMC11054475 DOI: 10.3390/ph17040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are an emerging therapeutic modality that show promise to open a target space not accessible to conventional small molecules via a degradation-based mechanism. PROTAC degraders, due to their bifunctional nature, which is categorized as 'beyond the Rule of Five', have gained attention as a distinctive therapeutic approach for oral administration in clinical settings. However, the development of PROTACs with adequate oral bioavailability remains a significant hurdle, largely due to their large size and less than ideal physical and chemical properties. This review encapsulates the latest advancements in orally delivered PROTACs that have entered clinical evaluation as well as developments highlighted in recent scholarly articles. The insights and methodologies elaborated upon in this review could be instrumental in supporting the discovery and refinement of novel PROTAC degraders aimed at the treatment of various human cancers.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Srinivasa Rao Allu
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Joyeeta Roy
- Rogel Cancer Center, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ranjan Kumar Acharyya
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - I. N. Chaithanya Kiran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA;
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - V. Dhamodharan
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|
7
|
Saha P, Hegde M, Chakraborty K, Singha A, Mukerjee N, Ghosh D, Kunnumakkara AB, Khan MS, Ahmad MI, Ghosh A, Kumer A, Sil SK. Targeted inhibition of colorectal cancer proliferation: The dual-modulatory role of 2,4-DTBP on anti-apoptotic Bcl-2 and Survivin proteins. J Cell Mol Med 2024; 28:e18150. [PMID: 38494866 PMCID: PMC10945088 DOI: 10.1111/jcmm.18150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 03/19/2024] Open
Abstract
The anti-apoptotic proteins, Bcl-2 and Survivin, are consistently overexpressed in numerous human malignancies, notably in colorectal cancer. 2,4-Di-tert-butylphenol (2,4-DTBP) is a naturally occurring phenolic compound known for its diverse biological activities, including anti-cancer properties. The mechanism behind 2,4-DTBP-induced inhibition of cell proliferation and apoptosis in human colorectal cancer cells, specifically regarding Bcl-2 and Survivin, remains to be elucidated. In this study, we employed both in silico and in vitro methodologies to underpin this interaction at the molecular level. Molecular docking demonstrated a substantial binding affinity of 2,4-DTBP towards Bcl-2 (ΔG = -9.8 kcal/mol) and Survivin (ΔG = -5.6 kcal/mol), suggesting a potential inhibitory effect. Further, molecular dynamic simulations complemented by MM-GBSA calculations confirmed the significant binding of 2,4-DTBP with Bcl-2 (dGbind = -54.85 ± 6.79 kcal/mol) and Survivin (dGbind = -32.36 ± 1.29 kcal/mol). In vitro assays using HCT116 colorectal cancer cells revealed that 2,4-DTBP inhibited proliferation and promoted apoptosis in both a dose- and time-dependent manner. Fluorescence imaging and scanning electron microscopy illustrated the classical features associated with apoptosis upon 2,4-DTBP exposure. Cell cycle analysis through flow cytometry highlighted a G1 phase arrest and apoptosis assay demonstrated increased apoptotic cell population. Notably, western blotting results indicated a decreased expression of Bcl-2 and Survivin post-treatment. Considering the cytoprotective roles of Bcl-2 and Survivin through the inhibition of mitochondrial dysfunction, our findings of disrupted mitochondrial bioenergetics, characterized by reduced ATP production and oxygen consumption, further accentuate the functional impairment of these proteins. Overall, the integration of in silico and in vitro data suggests that 2,4-DTBP holds promise as a therapeutic agent targeting Bcl-2 and Survivin in colorectal cancer.
Collapse
Affiliation(s)
- Partha Saha
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| | - Mangala Hegde
- Cancer Biology Laboratory and DBT‐AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) GuwahatiGuwahatiAssamIndia
| | - Kanak Chakraborty
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| | - Achinta Singha
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| | - Nobendu Mukerjee
- Center for Global Health ResearchSaveetha Medical College and Hospital, Saveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Deepshikha Ghosh
- Cell Biology and Physiology DivisionCSIR‐Indian Institute of Chemical BiologyKolkataWest BengalIndia
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT‐AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) GuwahatiGuwahatiAssamIndia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Md Irshad Ahmad
- Department of Structural Biology, School of MedicineUTHEALTH Science CenterSan AntonioTexasUSA
| | - Arabinda Ghosh
- Department of Computational Biology and BiotechnologyMahapurusha Srimanta Sankaradeva ViswavidalayaGuwahatiAssamIndia
| | - Ajoy Kumer
- Department of Chemistry, College of Arts and SciencesIUBAT‐International University of Business Agriculture and TechnologyDhakaBangladesh
| | - Samir Kumar Sil
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| |
Collapse
|
8
|
Nayak D, Lv D, Yuan Y, Zhang P, Hu W, Nayak A, Ruben EA, Lv Z, Sung P, Hromas R, Zheng G, Zhou D, Olsen SK. Development and crystal structures of a potent second-generation dual degrader of BCL-2 and BCL-xL. Nat Commun 2024; 15:2743. [PMID: 38548768 PMCID: PMC10979003 DOI: 10.1038/s41467-024-46922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Overexpression of BCL-xL and BCL-2 play key roles in tumorigenesis and cancer drug resistance. Advances in PROTAC technology facilitated recent development of the first BCL-xL/BCL-2 dual degrader, 753b, a VHL-based degrader with improved potency and reduced toxicity compared to previous small molecule inhibitors. Here, we determine crystal structures of VHL/753b/BCL-xL and VHL/753b/BCL-2 ternary complexes. The two ternary complexes exhibit markedly different architectures that are accompanied by distinct networks of interactions at the VHL/753b-linker/target interfaces. The importance of these interfacial contacts is validated via functional analysis and informed subsequent rational and structure-guided design focused on the 753b linker and BCL-2/BCL-xL warhead. This results in the design of a degrader, WH244, with enhanced potency to degrade BCL-xL/BCL-2 in cells. Using biophysical assays followed by in cell activities, we are able to explain the enhanced target degradation of BCL-xL/BCL-2 in cells. Most PROTACs are empirically designed and lack structural studies, making it challenging to understand their modes of action and specificity. Our work presents a streamlined approach that combines rational design and structure-based insights backed with cell-based studies to develop effective PROTAC-based cancer therapeutics.
Collapse
Affiliation(s)
- Digant Nayak
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Dongwen Lv
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yaxia Yuan
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Anindita Nayak
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Eliza A Ruben
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Zongyang Lv
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Patrick Sung
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Möbitz H. Design Principles for Balancing Lipophilicity and Permeability in beyond Rule of 5 Space. ChemMedChem 2024; 19:e202300395. [PMID: 37986275 DOI: 10.1002/cmdc.202300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/13/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
An ab initio conformational analysis of oral beyond Rule of 5 (bRo5) drugs was complemented with measured permeability and logP(octanol) to derive design principles conferring oral bioavailability. 3D polar surface area (PSA) thresholds for oral bRo5 drugs coincided with those reported for Ro5 space. The majority of oral bRo5 drugs exceeded the Ro5 logP threshold of 5, reflecting a bias for permeability. Above 500 Da molecular weight (MW), oral drugs and highly permeable Novartis compounds occupy a narrow polarity range (topological or TPSA/MW) of 0.1-0.3 Å2 /Da, whose upper half coincides with the lower 90 percentiles of the Novartis logP set. This TPSA/MW range and 3D PSA below 100 Å2 define the "Rule of ~1 /₅" for balancing lipophilicity and permeability. Neutral TPSA, defined as TPSA minus 3D PSA occurs independent of conformation, intramolecular hydrogen bonds (IMHB) and MW, suggesting it is an intrinsic molecular property. Neutral TPSA increased in the lead optimization (LO) campaigns of three first in class de novo designed bRo5 drugs and may be a useful design parameter in bRo5 space.
Collapse
Affiliation(s)
- Henrik Möbitz
- Computer-Aided Drug Design, Global Discovery Chemistry, Novartis BioMedical Research, 4002, Basel, Switzerland
| |
Collapse
|
10
|
Pardo I, Fagundes PB, de Oliveira RS, Campregher PV. A molecular approach to triple-negative breast cancer: targeting the Notch signaling pathway. EINSTEIN-SAO PAULO 2024; 22:eRW0552. [PMID: 38324848 PMCID: PMC10948095 DOI: 10.31744/einstein_journal/2024rw0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer is an aggressive subtype of breast cancer characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. This phenotype renders triple-negative breast cancer cells refractory to conventional therapies, resulting in poor clinical outcomes and an urgent need for novel therapeutic approaches. Recent studies have implicated dysregulation of the Notch receptor signaling pathway in the development and progression of triple-negative breast cancer. OBJECTIVE This study aimed to conduct a comprehensive literature review to identify potential therapeutic targets of the Notch pathway. Our analysis focused on the upstream and downstream components of this pathway to identify potential therapeutic targets. RESULTS Modulating the Notch signaling pathway may represent a promising therapeutic strategy to treat triple-negative breast cancer. Several potential therapeutic targets within this pathway are in the early stages of development, including upstream (such as Notch ligands) and downstream (including specific molecules involved in triple-negative breast cancer growth). These targets represent potential avenues for therapeutic intervention in triple-negative breast cancer. COMMENTS Additional research specifically addressing issues related to toxicity and improving drug delivery methods is critical for the successful translation of these potential therapeutic targets into effective treatments for patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- Isabele Pardo
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| | - Pedro Brecheret Fagundes
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| | - Rafael Santana de Oliveira
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| | - Paulo Vidal Campregher
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| |
Collapse
|
11
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
12
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Jacob M, Wiedemann S, Brücher D, Pieper NM, Birkhold M, Särchen V, Jeroch J, Demes MC, Gretser S, Braun Y, Gradhand E, Rothweiler F, Michaelis M, Cinatl J, Vogler M. Increased MCL1 dependency leads to new applications of BH3-mimetics in drug-resistant neuroblastoma. Br J Cancer 2023; 129:1667-1678. [PMID: 37723317 PMCID: PMC10646009 DOI: 10.1038/s41416-023-02430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric cancer that is characterised by poor prognosis for chemoresistant disease, highlighting the need for better treatment options. Here, we asked whether BH3-mimetics inhibiting BCL2 proteins may eliminate chemoresistant neuroblastoma cells. METHODS We utilised cisplatin-adapted neuroblastoma cell lines as well as patient tissues before and after relapse to study alterations of BCL2 proteins upon chemoresistance. RESULTS In a direct comparison of cisplatin-resistant cells we identified a prominent loss of sensitivity to BCL2/BCL-XL inhibitors that is associated with an increase in MCL1 dependency and high expression of MCL1 in patient tumour tissues. Screening of FDA-approved anti-cancer drugs in chemoresistant cells identified therapeutics that may be beneficial in combination with the clinically tested BH3-mimetic ABT263, but no synergistic drug interactions with the selective MCL1 inhibitor S63845. Further exploration of potential treatment options for chemoresistant neuroblastoma identified immunotherapy based on NK cells as highly promising, since NK cells are able to efficiently kill both parental and chemoresistant cells. CONCLUSIONS These data highlight that the application of BH3-mimetics may differ between first line treatment and relapsed disease. Combination of NK cell-based immunotherapy with BH3-mimetics may further increase killing of chemoresistant neuroblastoma, outlining a new treatment strategy for relapsed neuroblastoma.
Collapse
Affiliation(s)
- Maureen Jacob
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sara Wiedemann
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Daniela Brücher
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Moni Birkhold
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Jan Jeroch
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Melanie C Demes
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Steffen Gretser
- Department of Pediatric and Perinatal Pathology, Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yannick Braun
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Elise Gradhand
- Department of Pediatric and Perinatal Pathology, Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Florian Rothweiler
- Institute for Medical Virology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany
| | - Martin Michaelis
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany
- School of Biosciences, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institute for Medical Virology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Teng M, Gray NS. The rise of degrader drugs. Cell Chem Biol 2023; 30:864-878. [PMID: 37494935 DOI: 10.1016/j.chembiol.2023.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
The cancer genomics revolution has served up a plethora of promising and challenging targets for the drug discovery community. The field of targeted protein degradation (TPD) uses small molecules to reprogram the protein homeostasis system to destroy desired target proteins. In the last decade, remarkable progress has enabled the rational development of degraders for a large number of target proteins, with over 20 molecules targeting more than 12 proteins entering clinical development. While TPD has been fully credentialed by the prior development of immunomodulatory drug (IMiD) class for the treatment of multiple myeloma, the field is poised for a "Gleevec moment" in which robust clinical efficacy of a rationally developed novel degrader against a preselected target is firmly established. Here, we endeavor to provide a high-level evaluation of exciting developments in the field and comment on steps that may realize the full potential of this new therapeutic modality.
Collapse
Affiliation(s)
- Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
16
|
Nakao F, Setoguchi K, Semba Y, Yamauchi T, Nogami J, Sasaki K, Imanaga H, Terasaki T, Miyazaki M, Hirabayashi S, Miyawaki K, Kikushige Y, Masuda T, Akashi K, Maeda T. Targeting a mitochondrial E3 ubiquitin ligase complex to overcome AML cell-intrinsic Venetoclax resistance. Leukemia 2023; 37:1028-1038. [PMID: 36973350 DOI: 10.1038/s41375-023-01879-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
To identify molecules/pathways governing Venetoclax (VEN) sensitivity, we performed genome-wide CRISPR/Cas9 screens using a mouse AML line insensitive to VEN-induced mitochondrial apoptosis. Levels of sgRNAs targeting March5, Ube2j2 or Ube2k significantly decreased upon VEN treatment, suggesting synthetic lethal interaction. Depletion of either Ube2j2 or Ube2k sensitized AML cells to VEN only in the presence of March5, suggesting coordinate function of the E2s Ube2j2 and Ube2k with the E3 ligase March5. We next performed CRISPR screens using March5 knockout cells and identified Noxa as a key March5 substrate. Mechanistically, Bax released from Bcl2 upon VEN treatment was entrapped by Mcl1 and Bcl-XL and failed to induce apoptosis in March5 intact AML cells. By contrast, in March5 knockout cells, liberated Bax did not bind to Mcl1, as Noxa likely occupied Mcl1 BH3-binding grooves and efficiently induced mitochondrial apoptosis. We reveal molecular mechanisms underlying AML cell-intrinsic VEN resistance and suggest a novel means to sensitize AML cells to VEN.
Collapse
Affiliation(s)
- Fumihiko Nakao
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kiyoko Setoguchi
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kensuke Sasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroshi Imanaga
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tatsuya Terasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Manaka Miyazaki
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shigeki Hirabayashi
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
17
|
Pal P, Zhang P, Poddar SK, Zheng G. Patent landscape of inhibitors and PROTACs of the anti-apoptotic BCL-2 family proteins. Expert Opin Ther Pat 2022; 32:1003-1026. [PMID: 35993382 PMCID: PMC9942934 DOI: 10.1080/13543776.2022.2116311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The anti-apoptotic BCL-2 family proteins, such as BCL-2, BCL-XL, and MCL-1, are excellent cancer therapeutic targets. The FDA approval of BCL-2 selective inhibitor venetoclax in 2016 validated the strategy of targeting these proteins with BH3 mimetic small molecule inhibitors. AREAS COVERED This review provides an overview of the patent literature between 2016 and 2021 covering inhibitors and PROTACs of the anti-apoptotic BCL-2 proteins. EXPERT OPINION Since the FDA approval of venetoclax, tremendous efforts have been made to develop its analogues with improved drug properties. These activities will likely result in new drugs in coming years. Significant progress on MCL-1 inhibitors has also been made, with multiple compounds entering clinical trials. However, MCL-1 inhibition could cause on-target toxicity to normal tissues especially the heart. Similar issue exists with BCL-XL inhibitors, which cause on-target platelet toxicity. To overcome this issue, several strategies have been applied, including prodrug, dendrimer-based drug delivery, antibody-drug conjugate (ADC), and proteolysis targeting chimera (PROTAC); and amazingly, each of these approaches has resulted in a drug candidate entering clinical trials. We envision technologies like ADC and PROTAC could also be utilized to increase the therapeutic index of MCL-1 inhibitors.
Collapse
Affiliation(s)
- Pratik Pal
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Saikat K Poddar
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Romanelli MN, Manetti D, Braconi L, Dei S, Gabellini A, Teodori E. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opin Drug Discov 2022; 17:969-984. [PMID: 35848922 DOI: 10.1080/17460441.2022.2103535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Piperazine is a structural element present in drugs belonging to various chemical classes and used for numerous different therapeutic applications; it has been considered a privileged scaffold for drug design. AREAS COVERED The authors have searched examples of piperazine-containing compounds among drugs recently approved by the FDA, and in some research fields (nicotinic receptor modulators, compounds acting against cancer and bacterial multi-drug resistance), looking in particular to the design behind the insertion of this moiety. EXPERT OPINION Piperazine is widely used due to its peculiar characteristics, such as solubility, basicity, chemical reactivity, and conformational properties. This moiety has represented an important tool to modulate pharmacokinetic and pharmacodynamic properties of drugs.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessio Gabellini
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Franco F, Meninno S, Overgaard J, Rossi S, Benaglia M, Lattanzi A. Catalytic Enantioselective Entry to Triflones Featuring a Quaternary Stereocenter. Org Lett 2022; 24:4371-4376. [PMID: 35687515 PMCID: PMC9490835 DOI: 10.1021/acs.orglett.2c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 11/30/2022]
Abstract
A highly enantioselective one-pot synthesis of functionalized triflones, bearing a quaternary stereocenter, has been developed, exploiting the Michael reaction of α-(trifluoromethylsulfonyl) aryl acetic acid esters with N-acryloyl-1H-pyrazole catalyzed by commercially available Takemoto's catalyst, followed by nucleophilic acyl substitution with alcohols. Preliminary investigations highlighted the attractive potential of the triflinate anion as the leaving group for stereocontrolled postfunctionalizations.
Collapse
Affiliation(s)
- Francesca Franco
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Sara Meninno
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Jacob Overgaard
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Sergio Rossi
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Maurizio Benaglia
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Alessandra Lattanzi
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| |
Collapse
|
20
|
Red Blood Cell BCL-x L Is Required for Plasmodium falciparum Survival: Insights into Host-Directed Malaria Therapies. Microorganisms 2022; 10:microorganisms10040824. [PMID: 35456874 PMCID: PMC9027239 DOI: 10.3390/microorganisms10040824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023] Open
Abstract
The development of antimalarial drug resistance is an ongoing problem threatening progress towards the elimination of malaria, and antimalarial treatments are urgently needed for drug-resistant malaria infections. Host-directed therapies (HDT) represent an attractive strategy for the development of new antimalarials with untapped targets and low propensity for resistance. In addition, drug repurposing in the context of HDT can lead to a substantial decrease in the time and resources required to develop novel antimalarials. Host BCL-xL is a target in anti-cancer therapy and is essential for the development of numerous intracellular pathogens. We hypothesised that red blood cell (RBC) BCL-xL is essential for Plasmodium development and tested this hypothesis using six BCL-xL inhibitors, including one FDA-approved compound. All BCL-xL inhibitors tested impaired proliferation of Plasmodium falciparum 3D7 parasites in vitro at low micromolar or sub-micromolar concentrations. Western blot analysis of infected cell fractions and immunofluorescence microscopy assays revealed that host BCL-xL is relocated from the RBC cytoplasm to the vicinity of the parasite upon infection. Further, immunoprecipitation of BCL-xL coupled with mass spectrometry analysis identified that BCL-xL forms unique molecular complexes with human μ-calpain in uninfected RBCs, and with human SHOC2 in infected RBCs. These results provide interesting perspectives for the development of host-directed antimalarial therapies and drug repurposing efforts.
Collapse
|
21
|
Zehnle PMA, Wu Y, Pommerening H, Erlacher M. Stayin‘ alive: BCL-2 proteins in the hematopoietic system. Exp Hematol 2022; 110:1-12. [DOI: 10.1016/j.exphem.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
|
22
|
Joly F, Fabbro M, Follana P, Lequesne J, Medioni J, Lesoin A, Frenel JS, Abadie-Lacourtoisie S, Floquet A, Gladieff L, You B, Gavoille C, Kalbacher E, Briand M, Brachet PE, Giffard F, Weiswald LB, Just PA, Blanc-Fournier C, Leconte A, Clarisse B, Leary A, Poulain L. A phase II study of Navitoclax (ABT-263) as single agent in women heavily pretreated for recurrent epithelial ovarian cancer: The MONAVI – GINECO study. Gynecol Oncol 2022; 165:30-39. [DOI: 10.1016/j.ygyno.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/31/2022]
|
23
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient
ortho
‐Selective Trifluoromethane‐sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Songlin Bai
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Xiangbing Qi
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| |
Collapse
|
24
|
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22:45-64. [PMID: 34663943 DOI: 10.1038/s41568-021-00407-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of programmed cell death that is regulated by the balance between prosurvival and proapoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark of cancer that arises when this balance is tipped in favour of survival. One form of anticancer therapeutic, termed 'BH3-mimetic drugs', has been developed to directly activate the apoptosis machinery in malignant cells. These drugs bind to and inhibit specific prosurvival BCL-2 family proteins, thereby mimicking their interaction with the BH3 domains of proapoptotic BCL-2 family proteins. The BCL-2-specific inhibitor venetoclax is approved by the US Food and Drug Administration and many regulatory authorities worldwide for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. BH3-mimetic drugs targeting other BCL-2 prosurvival proteins have been tested in preclinical models of cancer, and drugs targeting MCL-1 or BCL-XL have advanced into phase I clinical trials for certain cancers. As with all therapeutics, efficacy and tolerability need to be carefully balanced to achieve a therapeutic window whereby there is significant anticancer activity with an acceptable safety profile. In this Review, we outline the current state of BH3-mimetic drugs targeting various prosurvival BCL-2 family proteins and discuss emerging data regarding primary and acquired resistance to these agents and approaches that may overcome this. We highlight issues that need to be addressed to further advance the clinical application of BH3-mimetic drugs, both alone and in combination with additional anticancer agents (for example, standard chemotherapeutic drugs or inhibitors of oncogenic kinases), for improved responses in patients with cancer.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient ortho-Selective Trifluoromethane-sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2021; 61:e202115611. [PMID: 34904339 DOI: 10.1002/anie.202115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/14/2022]
Abstract
A metal- and oxidant-free, practical and efficient method for the synthesis of highly versatile and synthetically useful ortho-trifluoromethanesulfonylated anilines from arylhydroxylamines and trifluoromethanesulfinic chloride was developed. This rapid transformation proceeded smoothly with good yields and excellent ortho-selectivity in the absence of any metals or ligands. Mechanistically, the reaction comprised a noncanonical O-trifluoromethanesulfinylation of the arylhydroxylamine, and the subsequent [2,3]-sigmatropic rearrangement to afford ortho-trifluoromethanesulfonylated aniline derivatives. The practical application of this reaction was demonstrated by further conversion into a series of functional molecules under different reaction conditions.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Songlin Bai
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| |
Collapse
|
26
|
Desai J, Patel B, Darji B, Gite A, Panchal N, Bhosale G, Shedage S, Patel S, Kadam P, Patel G, Kumar Srivastava B, Joharapurkar A, Kshirsagar S, Giri P, Bhayani H, Patel A, Ghoshdastidar K, Bandyopadhyay D, Kumar S, Jain M, Sharma R. Discovery of novel, potent and orally efficacious inhibitor of neutral amino acid transporter B 0AT1 (SLC6A19). Bioorg Med Chem Lett 2021; 53:128421. [PMID: 34718128 DOI: 10.1016/j.bmcl.2021.128421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 01/11/2023]
Abstract
Amino acid restriction by inhibition of neutral amino acid transporter, B0AT1 (SLC6A19) activity has been recently shown to improve glyceamic control by upregulating glucagon like peptide (GLP1) and fibroblast growth factor (FGF21) in mice. Hence, pharmacological inhibition of B0AT1 is expected to treat type-2 diabetes and related disorder. In this study, rationally designed trifluoromethyl sulfonyl derivatives were identified as novel, potent and orally bioavailable B0AT1 inhibitors. Compound 39 was found to be nanomolar potent (IC50: 0.035 µM) B0AT1 inhibitor with excellent pharmacokinetic profile (%F: 66) in mice and efficacious in vivo in diet induced obese (DIO) mice model.
Collapse
Affiliation(s)
- Jigar Desai
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India.
| | - Bhaumin Patel
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Brijesh Darji
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Archana Gite
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Nandini Panchal
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Gokul Bhosale
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Sandeep Shedage
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Sandip Patel
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Pravin Kadam
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Gautam Patel
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Brijesh Kumar Srivastava
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Amit Joharapurkar
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Samadhan Kshirsagar
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Poonam Giri
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Hitesh Bhayani
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Ankit Patel
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Krishnarup Ghoshdastidar
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Debdutta Bandyopadhyay
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Sanjay Kumar
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Mukul Jain
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Rajiv Sharma
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India.
| |
Collapse
|
27
|
Foo BJA, Eu JQ, Hirpara JL, Pervaiz S. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1341604. [PMID: 34777681 PMCID: PMC8580634 DOI: 10.1155/2021/1341604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are the main powerhouse of the cell, generating ATP through the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS), which drives myriad cellular processes. In addition to their role in maintaining bioenergetic homeostasis, changes in mitochondrial metabolism, permeability, and morphology are critical in cell fate decisions and determination. Notably, mitochondrial respiration coupled with the passage of electrons through the electron transport chain (ETC) set up a potential source of reactive oxygen species (ROS). While low to moderate increase in intracellular ROS serves as secondary messenger, an overwhelming increase as a result of either increased production and/or deficient antioxidant defenses is detrimental to biomolecules, cells, and tissues. Since ROS and mitochondria both regulate cell fate, attention has been drawn to their involvement in the various processes of carcinogenesis. To that end, the link between a prooxidant milieu and cell survival and proliferation as well as a switch to mitochondrial OXPHOS associated with recalcitrant cancers provide testimony for the remarkable metabolic plasticity as an important hallmark of cancers. In this review, the regulation of cell redox status by mitochondrial metabolism and its implications for cancer cell fate will be discussed followed by the significance of mitochondria-targeted therapies for cancer.
Collapse
Affiliation(s)
- Brittney Joy-Anne Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jie Qing Eu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Cancer Science Institute, NUS, Singapore, Singapore
| | | | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- NUS Medicine Healthy Longevity Program, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, NUS, Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Faculté de Médicine, Université de Paris, Paris, France
| |
Collapse
|
28
|
Discovery of potent and selective Bcl-2 inhibitors with acyl sulfonamide skeleton. Bioorg Med Chem 2021; 47:116350. [PMID: 34536651 DOI: 10.1016/j.bmc.2021.116350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The antiapoptotic protein B-cell lymphoma 2 (Bcl-2), overexpressed in many tumor cells, is an attractive target for potential small molecule anticancer drug discovery. Herein, a series of novel derivatives with acyl sulfonamide skeleton was designed, synthesized, and evaluated as Bcl-2 inhibitors by means of bioisosteric replacement. Among them, compound 24g demonstrated equal efficient inhibition activity against RS4;11 cell line compared to positive control ABT-199. Moreover, it showed improved selectivity for Bcl-2/Bcl-xL inhibitory effects, the result of which was consistent with platelet toxicity studies. In vitro and in vivo pharmacokinetic properties of compound 24g had a significantly improved profiles. Taken together, those results suggested it as a promising candidate for development of novel therapeutics targeting Bcl-2 in cancer.
Collapse
|
29
|
Dong Y, Mei B, Zhang XP, Xu H. Selective Gram-Scale C-H Carbenoid Functionalization of N-Sulfonylarylamides with a Rhodium Catalyst. J Org Chem 2021; 86:11660-11672. [PMID: 34382402 DOI: 10.1021/acs.joc.1c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work describes an effective Cp*RhIII-catalyzed C-H carbenoid functionalization of N-sulfonylarylamides. Compared to the previous late-stage C-H modification methods of N-sulfonylarylamide analogues, this method efficiently achieves the gram-scale transformation with 2.5 mol % Rh-catalyst loading at 0 °C or with a 0.1 mol % Rh-catalyst loading at room temperature. The reaction medium has a great influence on the reaction rate. Methanol is optimal, and adding a nonpolar solvent (such as toluene or 1,2-dichloroethane) causes the rate to decrease. Experiments and density functional theory calculations were performed to rationalize the mechanism of rate control by a polar medium.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Mei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue-Peng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
30
|
Tao ZF, Wang X, Chen J, Ingram JP, Jin S, Judge RA, Kovar PJ, Park C, Sun C, Wakefield BD, Zhou L, Zhang H, Elmore SW, Phillips DC, Judd AS, Leverson JD, Souers AJ. Structure-Based Design of A-1293102, a Potent and Selective BCL-X L Inhibitor. ACS Med Chem Lett 2021; 12:1011-1016. [PMID: 34141086 PMCID: PMC8201748 DOI: 10.1021/acsmedchemlett.1c00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
BCL-XL, an antiapoptotic member of the BCL-2 family of proteins, drives tumor survival and maintenance and thus represents a key target for cancer treatment. Herein we report the rational design of a novel series of selective BCL-XL inhibitors exemplified by A-1293102. This molecule contains structural elements of selective BCL-XL inhibitor A-1155463 and the dual BCL-XL/BCL-2 inhibitors ABT-737 and navitoclax, while representing a distinct pharmacophore as assessed by an objective cheminformatic evaluation. A-1293102 exhibited picomolar binding affinity to BCL-XL and both efficiently and selectively killed BCL-XL-dependent tumor cells. X-ray crystallographic analysis demonstrated a key hydrogen bonding network in the P2 binding pocket of BCL-XL, while the bent-back moiety achieved efficient occupancy of the P4 pocket in a manner similar to that of navitoclax. A-1293102 represents one of the few distinct structural series of selective BCL-XL inhibitors, and thus serves as a useful tool for biological studies as well as a lead compound for further optimization.
Collapse
Affiliation(s)
- Zhi-Fu Tao
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Xilu Wang
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Jun Chen
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Justin P. Ingram
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Sha Jin
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Russell A. Judge
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Peter J. Kovar
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Chang Park
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Chaohong Sun
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Brian D. Wakefield
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Li Zhou
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Haichao Zhang
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Steven W. Elmore
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Darren C. Phillips
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Andrew S. Judd
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Joel D. Leverson
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Andrew J. Souers
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| |
Collapse
|
31
|
Quinlan RBA, Brennan PE. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chem Biol 2021; 2:759-795. [PMID: 34458810 PMCID: PMC8341094 DOI: 10.1039/d1cb00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.
Collapse
Affiliation(s)
- Robert B A Quinlan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
| | - Paul E Brennan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Alzheimer's Research (UK) Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
32
|
Bewarder M, Stilgenbauer S, Thurner L, Kaddu-Mulindwa D. Current Treatment Options in CLL. Cancers (Basel) 2021; 13:2468. [PMID: 34069354 PMCID: PMC8158749 DOI: 10.3390/cancers13102468] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
After impressive developments in recent years with the rise of new targeted agents, chemoimmunotherapy (CIT) only plays a minor role in the treatment of patients with chronic lymphocytic leukemia (CLL). Inhibitors of the Bruton tyrosine kinase (BTK), such as ibrutinib or more recently acalabrutinib, are highly effective, even in poor-risk or chemo-refractory patients. Venetoclax, an inhibitor of the anti-apoptotic BCL2 protein and, to a lesser extent, phosphoinositide-3 kinase (PI3K) delta inhibitors, add to the armamentarium of targeted agents for the treatment of CLL. Furthermore, anti-CD20 monoclonal antibodies are used very successfully either alone or in combination with BTK, BCL2 or PI3K inhibitors. Despite these advances, there is still an ongoing pursuit for new therapeutic approaches in the treatment of CLL. An even bigger challenge poses the determination of the optimal combination and sequence of those drugs. Here, we give an overview of current treatment options in CLL, weighing the advantages and disadvantages of each approach in the light of different clinical settings.
Collapse
Affiliation(s)
| | | | | | - Dominic Kaddu-Mulindwa
- Department of Hematology, Oncology, Clinical Immunology, Rheumatology, Medical School, University of Saarland, 66424 Homburg, Germany; (M.B.); (S.S.); (L.T.)
| |
Collapse
|
33
|
Roy MJ, Vom A, Okamoto T, Smith BJ, Birkinshaw RW, Yang H, Abdo H, White CA, Segal D, Huang DCS, Baell JB, Colman PM, Czabotar PE, Lessene G. Structure-Guided Development of Potent Benzoylurea Inhibitors of BCL-X L and BCL-2. J Med Chem 2021; 64:5447-5469. [PMID: 33904752 DOI: 10.1021/acs.jmedchem.0c01771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The BCL-2 family of proteins (including the prosurvival proteins BCL-2, BCL-XL, and MCL-1) is an important target for the development of novel anticancer therapeutics. Despite the challenges of targeting protein-protein interaction (PPI) interfaces with small molecules, a number of inhibitors (called BH3 mimetics) have entered the clinic and the BCL-2 inhibitor, ABT-199/venetoclax, is already proving transformative. For BCL-XL, new validated chemical series are desirable. Here, we outline the crystallography-guided development of a structurally distinct series of BCL-XL/BCL-2 inhibitors based on a benzoylurea scaffold, originally proposed as α-helix mimetics. We describe structure-guided exploration of a cryptic "p5" pocket identified in BCL-XL. This work yields novel inhibitors with submicromolar binding, with marked selectivity toward BCL-XL. Extension into the hydrophobic p2 pocket yielded the most potent inhibitor in the series, binding strongly to BCL-XL and BCL-2 (nanomolar-range half-maximal inhibitory concentration (IC50)) and displaying mechanism-based killing in cells engineered to depend on BCL-XL for survival.
Collapse
Affiliation(s)
- Michael J Roy
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Amelia Vom
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Toru Okamoto
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Brian J Smith
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Hong Yang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Houda Abdo
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Christine A White
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - David Segal
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Jonathan B Baell
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Peter M Colman
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
34
|
Yao Y, Lu C, Gao L, Cao K, Yuan H, Zhang X, Gao X, Yuan Q. Gold Cluster Capped with a BCL-2 Antagonistic Peptide Exerts Synergistic Antitumor Activity in Chronic Lymphocytic Leukemia Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21108-21118. [PMID: 33942607 DOI: 10.1021/acsami.1c05550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is still incurable by conventional chemotherapy due to the resistance to apoptosis. We have previously found that a peptide-capped gold cluster (Au25Sv9) can target on the aberrant oxidative stress in CLL cells to specially inhibit thioredoxin reductase (TrxR) activity, resulting in significant apoptosis. However, the required doses of the gold cluster for inducing apoptosis are high, restricting its potential for further applications. Notably, the most recent studies suggested that CLL cells overexpressed antiapoptotic BCL-2 protein to prevent chemotherapy-induced apoptosis, indicating that BCL-2 could be a promising target for CLL therapy. Regrettably, the nonmitochondrial-targeted Au25Sv9 has little effect on BCL-2. In this study, we successfully screened a modified BADBH3 peptide (B1P) that could antagonize BCL-2 protein in CLL cells. We found that B1P could effectively sensitize MEC-1 cells to a subliminal dose of Au25Sv9. To simplify the treatment regimen, we directly fabricated a gold cluster capped with the B1P peptides by one-step synthesis to integrate the BCL-2 antagonistic activity into the gold the cluster, named BGC. We already found that low doses of BGC could significantly induce more apoptosis in MEC-1 cells than equivalent doses of the Au25Sv9 cluster or B1P peptide alone. Mechanistically, in addition to the inherent inhibitory effect of gold clusters on TrxR activity, BGC could bind to BCL-2 on mitochondria and activate the BCL-2 family-mediated mitochondrial apoptosis cascade more effectively. These results demonstrated that antagonizing the overexpressed BCL-2 in CLL cells, together with inhibiting TrxR simultaneously by a single gold cluster, is a promising strategy for the treatment of CLL cells. This study will provide a paradigm and reference for the development of functionalized gold clusters with rationally designed peptides, and opens up a new opportunity for the treatment of CLL in clinical settings.
Collapse
MESH Headings
- Amino Acid Sequence
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Gold/chemistry
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Peptides/chemistry
- Peptides/pharmacology
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Reactive Oxygen Species/metabolism
- Thioredoxin-Disulfide Reductase/antagonists & inhibitors
Collapse
Affiliation(s)
- Yawen Yao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Cao Lu
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Hui Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
35
|
Targeting BCL-2 in Cancer: Advances, Challenges, and Perspectives. Cancers (Basel) 2021; 13:cancers13061292. [PMID: 33799470 PMCID: PMC8001391 DOI: 10.3390/cancers13061292] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Apoptosis, a programmed form of cell death, represents the main mechanism by which cells die. Such phenomenon is highly regulated by the BCL-2 family of proteins, which includes both pro-apoptotic and pro-survival proteins. The decision whether cells live or die is tightly controlled by a balance between these two classes of proteins. Notably, the pro-survival Bcl-2 proteins are frequently overexpressed in cancer cells dysregulating this balance in favor of survival and also rendering cells more resistant to therapeutic interventions. In this review, we outlined the most important steps in the development of targeting the BCL-2 survival proteins, which laid the ground for the discovery and the development of the selective BCL-2 inhibitor venetoclax as a therapeutic drug in hematological malignancies. The limitations and future directions are also discussed. Abstract The major form of cell death in normal as well as malignant cells is apoptosis, which is a programmed process highly regulated by the BCL-2 family of proteins. This includes the antiapoptotic proteins (BCL-2, BCL-XL, MCL-1, BCLW, and BFL-1) and the proapoptotic proteins, which can be divided into two groups: the effectors (BAX, BAK, and BOK) and the BH3-only proteins (BIM, BAD, NOXA, PUMA, BID, BIK, HRK). Notably, the BCL-2 antiapoptotic proteins are often overexpressed in malignant cells. While this offers survival advantages to malignant cells and strengthens their drug resistance capacity, it also offers opportunities for novel targeted therapies that selectively kill such cells. This review provides a comprehensive overview of the extensive preclinical and clinical studies targeting BCL-2 proteins with various BCL-2 proteins inhibitors with emphasis on venetoclax as a single agent, as well as in combination with other therapeutic agents. This review also discusses recent advances, challenges focusing on drug resistance, and future perspectives for effective targeting the Bcl-2 family of proteins in cancer.
Collapse
|
36
|
Haasler L, Kondadi AK, Tsigaras T, von Montfort C, Graf P, Stahl W, Brenneisen P. The BH3 mimetic (±) gossypol induces ROS-independent apoptosis and mitochondrial dysfunction in human A375 melanoma cells in vitro. Arch Toxicol 2021; 95:1349-1365. [PMID: 33523262 PMCID: PMC8032633 DOI: 10.1007/s00204-021-02987-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
A major challenge in current cancer therapy is still the treatment of metastatic melanomas of the skin. BH3 mimetics represent a novel group of substances inducing apoptosis. In this study, we investigated the cytotoxic effect of (±) gossypol (GP), a natural compound from cotton seed, on A375 melanoma cells and the underlying biochemical mechanisms. To prevent undesired side effects due to toxicity on normal (healthy) cells, concentrations only toxic for tumor cells have been elaborated. Viability assays were performed to determine the cytotoxicity of GP in A375 melanoma and normal (healthy) cells. For the majority of experiments, a concentration of 2.5 µM GP was used resulting in a ROS-independent but caspase-dependent cell death of A375 melanoma cells. At this level, GP was non-toxic for normal human epidermal melanocytes. GP has a very short half-life, however, it was demonstrated that only the “parent” compound and not decomposition products are responsible for the cytotoxic effect in A375 melanoma cells. GP significantly decreased mitochondrial membrane potential accompanied by a Drp1-dependent loss of mitochondrial integrity (fragmentation) in tumor cells. Taken together, GP induced a ROS-independent intrinsic apoptosis leading to the conclusion that within a specific concentration range, GP may work as effective anticancer drug without harmful side effects.
Collapse
Affiliation(s)
- Lisa Haasler
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Graf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
37
|
Upadhyay N, Tilekar K, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Meyer-Almes FJ, Pokrovsky VS, Lavecchia A, Ramaa CS. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg Chem 2021; 107:104527. [PMID: 33317839 DOI: 10.1016/j.bioorg.2020.104527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In search for new and safer anti-cancer agents, a structurally guided pharmacophore hybridization strategy of two privileged scaffolds, namely diaryl pyrazolines and imidazolidine-2,4-dione (hydantoin), was adopted resulting in a newfangled series of compounds (H1-H22). Herein, a bio-isosteric replacement of "pyrrolidine-2,5-dione" moiety of our recently reported antitumor hybrid incorporating diaryl pyrazoline and pyrrolidine-2,5-dione scaffolds with "imidazoline-2,4-dione" moiety has been incorporated. Complete biological studies revealed the most potent analog among all i.e. compound H13, which was at-least 10-fold more potent compared to the corresponding pyrrolidine-2,5-dione, in colon and breast cancer cells. In-vitro studies showed activation of caspases, arrest of G0/G1 phase of cell cycle, decrease in the expression of anti-apoptotic protein (Bcl-2) and increased DNA damage. In-vivo assay on HT-29 (human colorectal adenocarcinoma) animal xenograft model unveiled the significant anti-tumor efficacy along with oral bioavailability with maximum TGI 36% (i.p.) and 44% (per os) at 50 mg/kg dose. These findings confirm the suitability of hybridized pyrazoline and imidazolidine-2,4-dione analog H13 for its anti-cancer potential and starting-point for the development of more efficacious analogs.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via E. Orabona, 4, 70126 Bari, Italy
| | - Natalia Yu Anisimova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Galina B Smirnova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, NC, USA
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Darmstadt, Germany
| | - Vadim S Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia; Department of Biochemistry, People's Friendship University, Moscow, Russia.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy.
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India.
| |
Collapse
|
38
|
Binas O, de Jesus V, Landgraf T, Völklein AE, Martins J, Hymon D, Kaur Bains J, Berg H, Biedenbänder T, Fürtig B, Lakshmi Gande S, Niesteruk A, Oxenfarth A, Shahin Qureshi N, Schamber T, Schnieders R, Tröster A, Wacker A, Wirmer‐Bartoschek J, Wirtz Martin MA, Stirnal E, Azzaoui K, Richter C, Sreeramulu S, José Blommers MJ, Schwalbe H. 19 F NMR-Based Fragment Screening for 14 Different Biologically Active RNAs and 10 DNA and Protein Counter-Screens. Chembiochem 2021; 22:423-433. [PMID: 32794266 PMCID: PMC7436455 DOI: 10.1002/cbic.202000476] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Indexed: 11/17/2022]
Abstract
We report here the nuclear magnetic resonance 19 F screening of 14 RNA targets with different secondary and tertiary structure to systematically assess the druggability of RNAs. Our RNA targets include representative bacterial riboswitches that naturally bind with nanomolar affinity and high specificity to cellular metabolites of low molecular weight. Based on counter-screens against five DNAs and five proteins, we can show that RNA can be specifically targeted. To demonstrate the quality of the initial fragment library that has been designed for easy follow-up chemistry, we further show how to increase binding affinity from an initial fragment hit by chemistry that links the identified fragment to the intercalator acridine. Thus, we achieve low-micromolar binding affinity without losing binding specificity between two different terminator structures.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Tom Landgraf
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Albrecht Eduard Völklein
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Jason Martins
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Hannes Berg
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Thomas Biedenbänder
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Santosh Lakshmi Gande
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Anna Niesteruk
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Robbin Schnieders
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Alix Tröster
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Julia Wirmer‐Bartoschek
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Maria Alexandra Wirtz Martin
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Kamal Azzaoui
- Saverna TherapeuticsGewerbestrasse 244123AllschwilSwitzerland
| | - Christian Richter
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | | | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
39
|
Diethelm-Varela B. Using NMR Spectroscopy in the Fragment-Based Drug Discovery of Small-Molecule Anticancer Targeted Therapies. ChemMedChem 2020; 16:725-742. [PMID: 33236493 DOI: 10.1002/cmdc.202000756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/21/2020] [Indexed: 12/19/2022]
Abstract
Against the challenge of providing personalized cancer care, the development of targeted therapies stands as a promising approach. The discovery of these agents can benefit from fragment-based drug discovery (FBDD) methods that help guide ligand design and provide key structural information on the targets of interest. In particular, nuclear magnetic resonance spectroscopy is a promising biophysical tool in fragment discovery due to its detection capabilities and versatility. This review provides an overview of FBDD, describes the basis of NMR-based fragment screening, summarizes some exciting technical advances reported over the past decades, and closes with a discussion of selected case studies where this technique has been used as part of drug discovery campaigns to produce lead compounds towards the design of anti-cancer targeted therapies.
Collapse
Affiliation(s)
- Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., Baltimore, MD 21201, USA
| |
Collapse
|
40
|
Pharmacological targeting of c-FLIP L and Bcl-2 family members promotes apoptosis in CD95L-resistant cells. Sci Rep 2020; 10:20823. [PMID: 33257694 PMCID: PMC7705755 DOI: 10.1038/s41598-020-76079-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/21/2020] [Indexed: 11/08/2022] Open
Abstract
The development of efficient combinatorial treatments is one of the key tasks in modern anti-cancer therapies. An apoptotic signal can either be induced by activation of death receptors (DR) (extrinsic pathway) or via the mitochondria (intrinsic pathway). Cancer cells are characterized by deregulation of both pathways. Procaspase-8 activation in extrinsic apoptosis is controlled by c-FLIP proteins. We have recently reported the small molecules FLIPinB/FLIPinBγ targeting c-FLIPL in the caspase-8/c-FLIPL heterodimer. These small molecules enhanced caspase-8 activity in the death-inducing signaling complex (DISC), CD95L/TRAIL-induced caspase-3/7 activation and subsequent apoptosis. In this study to increase the pro-apoptotic effects of FLIPinB/FLIPinBγ and enhance its therapeutic potential we investigated costimulatory effects of FLIPinB/FLIPinBγ in combination with the pharmacological inhibitors of the anti-apoptotic Bcl-2 family members such as ABT-263 and S63845. The combination of these inhibitors together with FLIPinB/FLIPinBγ increased CD95L-induced cell viability loss, caspase activation and apoptosis. Taken together, our study suggests new approaches for the development of combinatorial anti-cancer therapies specifically targeting both intrinsic and extrinsic apoptosis pathways.
Collapse
|
41
|
Bohler S, Afreen S, Fernandez-Orth J, Demmerath EM, Molnar C, Wu Y, Weiss JM, Mittapalli VR, Konstantinidis L, Schmal H, Kunze M, Erlacher M. Inhibition of the anti-apoptotic protein MCL-1 severely suppresses human hematopoiesis. Haematologica 2020; 106:3136-3148. [PMID: 33241675 PMCID: PMC8634190 DOI: 10.3324/haematol.2020.252130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/16/2022] Open
Abstract
BH3-mimetics inhibiting anti-apoptotic BCL-2 proteins represent a novel and promising class of antitumor drugs. While the BCL-2 inhibitor venetoclax is already approved by the Food and Drug Administration, BCL-XL and MCL-1 inhibitors are currently in early clinical trials. To predict side effects of therapeutic MCL-1 inhibition on the human hematopoietic system, we used RNA interference and the small molecule inhibitor S63845 on cord blood-derived CD34+ cells. Both approaches resulted in almost complete depletion of human hematopoietic stem and progenitor cells. As a consequence, maturation into the different hematopoietic lineages was severely restricted and CD34+ cells expressing MCL-1 shRNA showed a very limited engraftment potential upon xenotransplantation. In contrast, mature blood cells survived normally in the absence of MCL-1. Combined inhibition of MCL-1 and BCL-XL resulted in synergistic effects with relevant loss of colony-forming hematopoietic stem and progenitor cells already at inhibitor concentrations of 0.1 mM each, indicating “synthetic lethality” of the two BH3- mimetics in the hematopoietic system.
Collapse
Affiliation(s)
- Sheila Bohler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg
| | - Sehar Afreen
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Juncal Fernandez-Orth
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Eva-Maria Demmerath
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Christian Molnar
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg
| | - Ying Wu
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg
| | - Julia Miriam Weiss
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Venugopal Rao Mittapalli
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Lukas Konstantinidis
- Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg
| | - Mirjam Kunze
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg
| |
Collapse
|
42
|
Sreeramulu S, Richter C, Kuehn T, Azzaoui K, Blommers MJJ, Del Conte R, Fragai M, Trieloff N, Schmieder P, Nazaré M, Specker E, Ivanov V, Oschkinat H, Banci L, Schwalbe H. NMR quality control of fragment libraries for screening. JOURNAL OF BIOMOLECULAR NMR 2020; 74:555-563. [PMID: 32533387 PMCID: PMC7683495 DOI: 10.1007/s10858-020-00327-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Fragment-based screening has evolved as a remarkable approach within the drug discovery process both in the industry and academia. Fragment screening has become a more structure-based approach to inhibitor development, but also towards development of pathway-specific clinical probes. However, it is often witnessed that the availability, immediate and long-term, of a high quality fragment-screening library is still beyond the reach of most academic laboratories. Within iNEXT (Infrastructure for NMR, EM and X-rays for Translational research), a EU-funded Horizon 2020 program, a collection of 782 fragments were assembled utilizing the concept of "poised fragments" with the aim to facilitate downstream synthesis of ligands with high affinity by fragment ligation. Herein, we describe the analytical procedure to assess the quality of this purchased and assembled fragment library by NMR spectroscopy. This quality assessment requires buffer solubility screening, comparison with LC/MS quality control and is supported by state-of-the-art software for high throughput data acquisition and on-the-fly data analysis. Results from the analysis of the library are presented as a prototype of fragment progression through the quality control process.
Collapse
Affiliation(s)
- Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | | | | | | | - Rebecca Del Conte
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Florence, Italy
| | - Marco Fragai
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Florence, Italy
| | - Nils Trieloff
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Peter Schmieder
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Marc Nazaré
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Edgar Specker
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Vladimir Ivanov
- Enamine, ENAMINE Ltd., 78 Chervonotkatska Street, Kiev, 02660, Ukraine
| | - Hartmut Oschkinat
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Florence, Italy
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
43
|
Sleebs BE, Jarman KE, Frolich S, Wong W, Healer J, Dai W, Lucet IS, Wilson DW, Cowman AF. Development and application of a high-throughput screening assay for identification of small molecule inhibitors of the P. falciparum reticulocyte binding-like homologue 5 protein. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:188-200. [PMID: 33152623 PMCID: PMC7645381 DOI: 10.1016/j.ijpddr.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
The P. falciparum parasite, responsible for the disease in humans known as malaria, must invade erythrocytes to provide an environment for self-replication and survival. For invasion to occur, the parasite must engage several ligands on the host erythrocyte surface to enable adhesion, tight junction formation and entry. Critical interactions include binding of erythrocyte binding-like ligands and reticulocyte binding-like homologues (Rhs) to the surface of the host erythrocyte. The reticulocyte binding-like homologue 5 (Rh5) is the only member of this family that is essential for invasion and it binds to the basigin host receptor. The essential nature of Rh5 makes it an important vaccine target, however to date, Rh5 has not been targeted by small molecule intervention. Here, we describe the development of a high-throughput screening assay to identify small molecules which interfere with the Rh5-basigin interaction. To validate the utility of this assay we screened a known drug library and the Medicines for Malaria Box and demonstrated the reproducibility and robustness of the assay for high-throughput screening purposes. The screen of the known drug library identified the known leukotriene antagonist, pranlukast. We used pranlukast as a model inhibitor in a post screening evaluation cascade. We procured and synthesised analogues of pranlukast to assist in the hit confirmation process and show which structural moieties of pranlukast attenuate the Rh5 – basigin interaction. Evaluation of pranlukast analogues against P. falciparum in a viability assay and a schizont rupture assay show the parasite activity was not consistent with the biochemical inhibition of Rh5, questioning the developability of pranlukast as an antimalarial. The high-throughput assay developed from this work has the capacity to screen large collections of small molecules to discover inhibitors of P. falciparum Rh5 for future development of invasion inhibitory antimalarials. A high-throughput screening assay was developed to identify inhibitors of Rh5. The assay was applied in a screen of the MMV Malaria Box and a known drug library. Pranlukast was identified as a hit, but could not be conclusively validated. Assay enables future screens of large compound libraries to discover Rh5 inhibitors.
Collapse
Affiliation(s)
- Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sonja Frolich
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Wilson Wong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Weiwen Dai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
44
|
Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther 2020; 5:213. [PMID: 32968059 PMCID: PMC7511340 DOI: 10.1038/s41392-020-00315-3] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Protein-protein interactions (PPIs) have pivotal roles in life processes. The studies showed that aberrant PPIs are associated with various diseases, including cancer, infectious diseases, and neurodegenerative diseases. Therefore, targeting PPIs is a direction in treating diseases and an essential strategy for the development of new drugs. In the past few decades, the modulation of PPIs has been recognized as one of the most challenging drug discovery tasks. In recent years, some PPIs modulators have entered clinical studies, some of which been approved for marketing, indicating that the modulators targeting PPIs have broad prospects. Here, we summarize the recent advances in PPIs modulators, including small molecules, peptides, and antibodies, hoping to provide some guidance to the design of novel drugs targeting PPIs in the future.
Collapse
Affiliation(s)
- Haiying Lu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Jun He
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Sichuan, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Cheng Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| |
Collapse
|
45
|
Tilekar K, Upadhyay N, Meyer-Almes FJ, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Pokrovsky VS, Lavecchia A, S Ramaa C. Synthesis and Biological Evaluation of Pyrazoline and Pyrrolidine-2,5-dione Hybrids as Potential Antitumor Agents. ChemMedChem 2020; 15:1813-1825. [PMID: 32715626 DOI: 10.1002/cmdc.202000458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 02/06/2023]
Abstract
In search of novel and effective antitumor agents, pyrazoline-substituted pyrrolidine-2,5-dione hybrids were designed, synthesized and evaluated in silico, in vitro and in vivo for anticancer efficacy. All the compounds exhibited remarkable cytotoxic effects in MCF7 and HT29 cells. The excellent antiproliferative activity toward MCF7 (IC50 =0.78±0.01 μM), HT29 (IC50 =0.92±0.15 μM) and K562 (IC50 =47.25±1.24 μM) cell lines, prompted us to further investigate the antitumor effects of the best compound S2 (1-(2-(3-(4-fluorophenyl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione). In cell-cycle analysis, S2 was found to disrupt the growth phases with increased cell population in G1 /G0 phase and decreased cell population in G2 /M phase. The excellent in vitro effects were also supported by inhibition of anti-apoptotic protein Bcl-2. In vivo tumor regression studies of S2 in HT29 xenograft nude mice, exhibited equivalent and promising tumor regression with maximum TGI, 66 % (i. p. route) and 60 % (oral route) at 50 mg kg-1 dose by both the routes, indicating oral bioavailability and antitumor efficacy. These findings advocate that hybridization of pyrazoline and pyrrolidine-2,5-dioes holds promise for the development of more potent and less toxic anticancer agents.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295, Darmstadt, Germany
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via E. Orabona, 4, 70126, Bari, Italy
| | - Natalia Y Anisimova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Galina B Smirnova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute Department of Chemistry, East Carolina University, 27834, Greenville, North Carolina, USA
| | - Vadim S Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia.,Department of Biochemistry, People's Friendship University, 117198, Moscow, Russia
| | - Antonio Lavecchia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| |
Collapse
|
46
|
Yin Z, Yang D, Wang J, Jiang Y. Structure-based Drug Design Strategies in the Development of Small Molecule Inhibitors Targeting Bcl-2 Family Proteins. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200213114759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteins of B-cell lymphoma (Bcl-2) family are key regulators of apoptosis and are involved
in the pathogenesis of various cancers. Disrupting the interactions between the antiapoptotic
and proapoptotic Bcl-2 members is an attractive strategy to reactivate the apoptosis of cancer cells.
Structure-based drug design (SBDD) has been successfully applied to the discovery of small molecule
inhibitors targeting Bcl-2 proteins in past decades. Up to now, many Bcl-2 inhibitors with different
paralogue selectivity profiles have been developed and some were used in clinical trials. This
review focused on the recent applications of SBDD strategies in the development of small molecule
inhibitors targeting Bcl-2 family proteins.
Collapse
Affiliation(s)
- Zhe Yin
- Thoracic Surgery Department, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Donglin Yang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jun Wang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuequan Jiang
- Thoracic Surgery Department, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
47
|
Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev 2020; 121:3297-3351. [PMID: 32692162 DOI: 10.1021/acs.chemrev.0c00383] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been huge progress in the discovery of targeted cancer therapies in recent years. However, even for the most successful and impactful cancer drugs which have been approved, both innate and acquired mechanisms of resistance are commonplace. These emerging mechanisms of resistance have been studied intensively, which has enabled drug discovery scientists to learn how it may be possible to overcome such resistance in subsequent generations of treatments. In some cases, novel drug candidates have been able to supersede previously approved agents; in other cases they have been used sequentially or in combinations with existing treatments. This review summarizes the current field in terms of the challenges and opportunities that cancer resistance presents to drug discovery scientists, with a focus on small molecule therapeutics. As part of this review, common themes and approaches have been identified which have been utilized to successfully target emerging mechanisms of resistance. This includes the increase in target potency and selectivity, alternative chemical scaffolds, change of mechanism of action (covalents, PROTACs), increases in blood-brain barrier permeability (BBBP), and the targeting of allosteric pockets. Finally, wider approaches are covered such as monoclonal antibodies (mAbs), bispecific antibodies, antibody drug conjugates (ADCs), and combination therapies.
Collapse
Affiliation(s)
- Richard A Ward
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nicolas Floc'h
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
48
|
Valcourt DM, Dang MN, Scully MA, Day ES. Nanoparticle-Mediated Co-Delivery of Notch-1 Antibodies and ABT-737 as a Potent Treatment Strategy for Triple-Negative Breast Cancer. ACS NANO 2020; 14:3378-3388. [PMID: 32083466 PMCID: PMC7098846 DOI: 10.1021/acsnano.9b09263] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Triple-negative breast cancer (TNBC) accounts for nearly one-quarter of all breast cancer cases, but effective targeted therapies for this disease remain elusive because TNBC cells lack expression of the three most common receptors seen on other subtypes of breast cancer. Here, we exploit TNBC cells' overexpression of Notch-1 receptors and Bcl-2 anti-apoptotic proteins to provide an effective targeted therapy. Prior studies have shown that the small molecule drug ABT-737, which inhibits Bcl-2 to reinstate apoptotic signaling, is a promising candidate for TNBC therapy. However, ABT-737 is poorly soluble in aqueous conditions, and its orally bioavailable derivative causes severe thrombocytopenia. To enable targeted delivery of ABT-737 to TNBC and enhance its therapeutic efficacy, we encapsulated the drug in poly(lactic-co-glycolic acid) nanoparticles (NPs) that were functionalized with Notch-1 antibodies to produce N1-ABT-NPs. The antibodies in this NP platform enable both TNBC cell-specific binding and suppression of Notch signaling within TNBC cells by locking the Notch-1 receptors in a ligand unresponsive state. This Notch inhibition potentiates the effect of ABT-737 by up-regulating Noxa, resulting in effective killing of TNBC cells. We present the results of in vitro studies that demonstrate N1-ABT-NPs can preferentially bind TNBC cells versus noncancerous breast epithelial cells to effectively regulate Bcl-2 and Notch signaling to induce cell death. Further, we show that N1-ABT-NPs can accumulate in subcutaneous TNBC xenograft tumors in mice following systemic administration to reduce tumor burden and extend animal survival. Together, these findings demonstrate that NP-mediated co-delivery of Notch-1 antibodies and ABT-737 is a potent treatment strategy for TNBC that may improve patient outcomes with further development and implementation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Biphenyl Compounds/chemistry
- Biphenyl Compounds/metabolism
- Biphenyl Compounds/pharmacology
- Cell Death/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Female
- Humans
- Mammary Neoplasms, Experimental/diagnostic imaging
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Mice, Nude
- Nanoparticles/chemistry
- Nanoparticles/metabolism
- Nitrophenols/chemistry
- Nitrophenols/metabolism
- Nitrophenols/pharmacology
- Optical Imaging
- Piperazines/chemistry
- Piperazines/metabolism
- Piperazines/pharmacology
- Receptor, Notch1/chemistry
- Receptor, Notch1/metabolism
- Sulfonamides/chemistry
- Sulfonamides/metabolism
- Sulfonamides/pharmacology
- Triple Negative Breast Neoplasms/diagnostic imaging
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/metabolism
Collapse
Affiliation(s)
- Danielle M Valcourt
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Mackenzie A Scully
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown Stanton Road, Newark, Delaware 19713, United States
| |
Collapse
|
49
|
Discovery of PROTAC BCL-X L degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem 2020; 192:112186. [PMID: 32145645 DOI: 10.1016/j.ejmech.2020.112186] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
Anti-apoptotic protein BCL-XL plays a key role in tumorigenesis and cancer chemotherapy resistance, rendering it an attractive target for cancer treatment. However, BCL-XL inhibitors such as ABT-263 cannot be safely used in the clinic because platelets solely depend on BCL-XL to maintain their viability. To reduce the on-target platelet toxicity associated with the inhibition of BCL-XL, we designed and synthesized PROTAC BCL-XL degraders that recruit CRBN or VHL E3 ligase because both of these enzymes are poorly expressed in human platelets compared to various cancer cell lines. We confirmed that platelet-toxic BCL-XL/2 dual inhibitor ABT-263 can be converted into platelet-sparing CRBN/VHL-based BCL-XL specific degraders. A number of BCL-XL degraders are more potent in killing cancer cells than their parent compound ABT-263. Specifically, XZ739, a CRBN-dependent BCL-XL degrader, is 20-fold more potent than ABT-263 against MOLT-4 T-ALL cells and has >100-fold selectivity for MOLT-4 cells over human platelets. Our findings further demonstrated the utility of PROTAC technology to achieve tissue selectivity through recruiting differentially expressed E3 ligases.
Collapse
|
50
|
Liu X, Ding C, Tan W, Zhang A. Medulloblastoma: Molecular understanding, treatment evolution, and new developments. Pharmacol Ther 2020; 210:107516. [PMID: 32105673 DOI: 10.1016/j.pharmthera.2020.107516] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Medulloblastoma (MB) is the most common childhood malignant brain tumor, accounting for approximately 20% of all pediatric central nervous system tumors. Current standard treatments involving surgical interventions followed by craniospinal irradiation and adjuvant chemotherapy have severe motor and cognitive defects. Therefore, individualized treatment regimens with reduced toxicity designed according to the presence of specific oncogenic 'driver' genes are urgently demanded. To this end, recent genetic and epigenetic findings have advanced the classification of MB into the international consensus of four distinct MB molecular subgroups (WNT, SHH, Group 3, and Group 4) based on their respective molecular and histopathological characteristics. More recent studies have indicated that up to seven molecular subgroups exist in childhood MB. Moreover, studies on the inter- and intra-tumoral features of the four subgroups revealed that each subgroup contains variant subtypes. These results have greatly helped risk stratification of MB patients at diagnosis and significantly improved clinical treatment options. Herein, we highlight the recent advances and challenges associated with MB classification, and the development of therapeutic treatments targeting novel subgroup-specific molecular and epigenetic factors, especially those in the SHH-driven MB tumors.
Collapse
Affiliation(s)
- Xiaohua Liu
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyong Ding
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Ao Zhang
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|