1
|
Chisholm TS, Hunter CA. A closer look at amyloid ligands, and what they tell us about protein aggregates. Chem Soc Rev 2024; 53:1354-1374. [PMID: 38116736 DOI: 10.1039/d3cs00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The accumulation of amyloid fibrils is characteristic of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Detecting these fibrils with fluorescent or radiolabelled ligands is one strategy for diagnosing and better understanding these diseases. A vast number of amyloid-binding ligands have been reported in the literature as a result. To obtain a better understanding of how amyloid ligands bind, we have compiled a database of 3457 experimental dissociation constants for 2076 unique amyloid-binding ligands. These ligands target Aβ, tau, or αSyn fibrils, as well as relevant biological samples including AD brain homogenates. From this database significant variation in the reported dissociation constants of ligands was found, possibly due to differences in the morphology of the fibrils being studied. Ligands were also found to bind to Aβ(1-40) and Aβ(1-42) fibrils with similar affinities, whereas a greater difference was found for binding to Aβ and tau or αSyn fibrils. Next, the binding of ligands to fibrils was shown to be largely limited by the hydrophobic effect. Some Aβ ligands do not fit into this hydrophobicity-limited model, suggesting that polar interactions can play an important role when binding to this target. Finally several binding site models were outlined for amyloid fibrils that describe what ligands target what binding sites. These models provide a foundation for interpreting and designing site-specific binding assays.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| |
Collapse
|
2
|
Kallinen A, Kassiou M. Tracer development for PET imaging of proteinopathies. Nucl Med Biol 2022; 114-115:108-120. [PMID: 35487833 DOI: 10.1016/j.nucmedbio.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022]
Abstract
This review outlines small molecule radiotracers developed for positron emission tomography (PET) imaging of proteinopathies, neurodegenerative diseases characterised by accumulation of malformed proteins, over the last two decades with the focus on radioligands that have progressed to clinical studies. Introduction provides a short summary of proteinopathy targets used for PET imaging, including vastly studied proteins Aβ and tau and emerging α-synuclein. In the main section, clinically relevant Aβ and tau radioligand classes and their properties are discussed, including an overview of lead compounds and radioligand candidates studied as α-synuclein imaging agents in the early discovery and preclinical development phase. Lastly, the specific challenges and future directions in proteinopathy radioligand development are summarized.
Collapse
Affiliation(s)
- Annukka Kallinen
- Garvan Institute of Medical Research, 384 Victoria St, NSW 2010, Australia.
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Osuský P, Smolíček M, Nociarová J, Rakovský E, Hrobárik P. One-Pot Reductive Methylation of Nitro- and Amino-Substituted (Hetero)Aromatics with DMSO/HCOOH: Concise Synthesis of Fluorescent Dimethylamino-Functionalized Bibenzothiazole Ligands with Tunable Emission Color upon Complexation. J Org Chem 2022; 87:10613-10629. [PMID: 35917477 DOI: 10.1021/acs.joc.2c00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One-pot reductive N,N-dimethylation of suitable nitro- and amino-substituted (hetero)arenes can be achieved using a DMSO/HCOOH/Et3N system acting as a low-cost but efficient reducing and methylating agent. The transformation of heteroaryl-amines can be accelerated by using dimethyl sulfoxide/oxalyl chloride or chloromethyl methyl sulfide as the source of active CH3SCH2+ species, while the exclusion of HCOOH in the initial stage of the reaction allows avoiding N-formamides as resting intermediates. The developed procedures are applicable in multigram-scale synthesis, and because of the lower electrophilicity of CH3SCH2+, they also work in pathological cases, where common methylating agents provide N,N-dimethylated products in no yield or inferior yields due to concomitant side reactions. The method is particularly useful in one-pot reductive transformation of 2-H-nitrobenzazoles to corresponding N,N-dimethylamino-substituted heteroarenes. These, upon Cu(II)-catalyzed oxidative homocoupling, afford 2,2'-bibenzazoles substituted with dimethylamino groups as charge-transfer N^N ligands with intensive absorption/emission in the visible region. The fluorescence of NMe2-functionalized bibenzothiazoles remains intensive even upon complexation with ZnCl2, while emission maxima are bathochromically shifted from the green/yellow to orange/red spectral region, making these small-molecule fluorophores, exhibiting large emission quantum yields and Stokes shifts, an attractive platform for the construction of various functional dyes and light-harvesting materials with tunable emission color upon complexation.
Collapse
Affiliation(s)
- Patrik Osuský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Maroš Smolíček
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Jela Nociarová
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Erik Rakovský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| |
Collapse
|
4
|
Studentsov EP, Golovina AA, Krasikova RN, Orlovskaja VV, Vaulina DD, Krutikov VI, Ramsh SM. 2-Arylbenzothiazoles: Advances in Anti-Cancer and Diagnostic
Pharmaceuticals Discovery. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Wang L, Niu M, He Y, Tian C, Peng Z, Jia J. Synthesis and evaluation of Al18F-NODA complex conjugated 2-(4-aminophenyl)benzothiazole as a potential tumor imaging agent. Bioorg Med Chem Lett 2020; 30:127160. [DOI: 10.1016/j.bmcl.2020.127160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022]
|
6
|
Yang Y, Cui M. Radiolabeled bioactive benzoheterocycles for imaging β-amyloid plaques in Alzheimer's disease. Eur J Med Chem 2014; 87:703-21. [DOI: 10.1016/j.ejmech.2014.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 01/30/2023]
|
7
|
Huang W, Wei W, Shen Z. Drug-like chelating agents: a potential lead for Alzheimer's disease. RSC Adv 2014. [DOI: 10.1039/c4ra09193k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
8
|
Okumura S, Lin CH, Takeda Y, Minakata S. Oxidative dimerization of (hetero)aromatic amines utilizing t-BuOI leading to (hetero)aromatic azo compounds: scope and mechanistic studies. J Org Chem 2013; 78:12090-105. [PMID: 24175677 DOI: 10.1021/jo402120w] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A straightforward synthetic method of both symmetric and unsymmetric aromatic azo compounds through an efficient and cross-selective oxidative dimerization of aromatic amines using tert-butyl hypoiodite (t-BuOI) under metal-free and mild conditions has been developed. This method was also found applicable to the synthesis of heteroaromatic azo compounds. The spectroscopic study indicates the involvement of N,N-diiodoanilines in the oxidative reaction as the key intermediate.
Collapse
Affiliation(s)
- Sota Okumura
- Department of Applied Chemistry and ‡Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University , Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
9
|
Nunes A, Marques SM, Quintanova C, Silva DF, Cardoso SM, Chaves S, Santos MA. Multifunctional iron-chelators with protective roles against neurodegenerative diseases. Dalton Trans 2013; 42:6058-73. [PMID: 23487286 DOI: 10.1039/c3dt50406a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The multifactorial nature of Alzheimer's disease (AD), and the absence of a disease modifying drug, makes the development of new multifunctional drugs an attractive therapeutic strategy. Taking into account the hallmarks of AD patient brains, such as low levels of acetylcholine, misfolding of proteins and associated beta-amyloid (Aβ) aggregation, oxidative stress and metal dyshomeostasis, we have developed a series of compounds that merge three different approaches: metal attenuation, anti-Aβ aggregation and anti-acetylcholinesterase activity. Therefore, 3-hydroxy-4-pyridinone (3,4-HP) and benzothiazole molecular moieties were selected as starting frameworks due to their well known affinity for iron and Aβ peptides, respectively. The linkers between these two main functional groups were selected on the basis of virtual screening, so that the final molecule could further inhibit the acetylcholinesterase, responsible for the cholinergic losses. We describe herein the design and synthesis of the new hybrid compounds, followed by the assessment of solution properties, namely iron chelation and anti-oxidant capacity. The compounds were bioassayed for their capacity to inhibit AChE, as well as self- and Zn mediated-Aβ(1-42) aggregation. Finally, we assessed their effects on the viability of neuronal cells stressed with Aβ(42).
Collapse
Affiliation(s)
- Andreia Nunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | | | | | | | | | | | | |
Collapse
|
10
|
Svedberg MM, Rahman O, Hall H. Preclinical studies of potential amyloid binding PET/SPECT ligands in Alzheimer's disease. Nucl Med Biol 2012; 39:484-501. [PMID: 22226025 DOI: 10.1016/j.nucmedbio.2011.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/23/2011] [Accepted: 10/02/2011] [Indexed: 01/13/2023]
Abstract
Visualizing the neuropathological hallmarks amyloid plaques and neurofibrillary tangles of Alzheimer's disease in vivo using positron emission tomography (PET) or single photon emission computed tomography will be of great value in diagnosing the individual patient and will also help in our understanding of the disease. The successful introduction of [(11)C]PIB as a PET tracer for the amyloid plaques less than 10 years ago started an intensive research, and numerous new compounds for use in molecular imaging of the amyloid plaques have been developed. The candidates are based on dyes like thioflavin T, Congo red and chrysamine G, but also on other types such as benzoxazoles, curcumin and stilbenes. In the present review, we present methods of the radiochemistry and preclinical evaluation as well as the main properties of some of these compounds.
Collapse
Affiliation(s)
- Marie M Svedberg
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
11
|
Ribeiro Morais G, Paulo A, Santos I. A Synthetic Overview of Radiolabeled Compounds for β‐Amyloid Targeting. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Goreti Ribeiro Morais
- Group of Radiopharmaceutical Sciences, Institute Tecnologic and Nuclear, Estrada Nacional 10, 2686‐953 Sacavém, Portugal
| | - António Paulo
- Group of Radiopharmaceutical Sciences, Institute Tecnologic and Nuclear, Estrada Nacional 10, 2686‐953 Sacavém, Portugal
| | - Isabel Santos
- Group of Radiopharmaceutical Sciences, Institute Tecnologic and Nuclear, Estrada Nacional 10, 2686‐953 Sacavém, Portugal
| |
Collapse
|
12
|
Teipel SJ, Buchert R, Thome J, Hampel H, Pahnke J. Development of Alzheimer-disease neuroimaging-biomarkers using mouse models with amyloid-precursor protein-transgene expression. Prog Neurobiol 2011; 95:547-56. [DOI: 10.1016/j.pneurobio.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 11/16/2022]
|
13
|
Abstract
The progressive nature of neurodegeneration suggests an age-dependent process that ultimately leads to synaptic failure and neuronal damage in cortical areas of the brain critical for memory and higher mental functions. The increasing age of the population in developed countries suggests that, if unchecked, these disorders will become increasingly prevalent. In the absence of specific biologic markers, direct pathologic examination of brain tissue still is the only definitive method for establishing a diagnosis of Alzheimer disease (AD) and other types of dementia. Pathologic hallmarks of AD are intracellular neurofibrillary tangles (NFT) and extracellular amyloid plaques. NFT are intraneuronal bundles of paired helical filaments mainly composed of the aggregates of an abnormally phosphorylated form of tau protein; neuritic plaques consist of dense extracellular aggregates of β-amyloid (Aβ), surrounded by reactive gliosis and dystrophic neurites. To date, all available evidence strongly supports the notion that an imbalance between the production and removal of Aβ leading to its progressive accumulation is central to the pathogenesis of AD. A growing understanding of the molecular mechanisms of Aβ formation, degradation, and neurotoxicity is being translated into new therapeutic approaches. Whereas AD is the most common cause of dementia in the elderly, postmortem studies have found dementia with Lewy Bodies and frontotemporal lobe degeneration each to account for about 20% of cases. Molecular neuroimaging techniques such as PET have been used for the in vivo assessment of molecular processes at their sites of action, permitting detection of subtle pathophysiological changes in the brain at asymptomatic stages The development of molecular imaging methods for noninvasively assessing disease-specific traits such as Aβ burden in AD is allowing early diagnosis at presymptomatic stages, more accurate differential diagnosis and, when available, the evaluation and monitoring of disease-modifying therapy.
Collapse
Affiliation(s)
- Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, 145 Studley Road, Heidelberg, Victoria 3084, Australia; The Mental Health Research Institute of Victoria, 135 Oak Street, Parkville, Victoria 3052, Australia; Department of Medicine, Austin Health, Victoria 3084, Australia.
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, 145 Studley Road, Heidelberg, Victoria 3084, Australia; Department of Medicine, Austin Health, Victoria 3084, Australia
| |
Collapse
|