1
|
Figueredo KC, Guex CG, Graiczik J, Reginato FZ, Engelmann AM, Andrade CMD, Timmers LFSM, Bauermann LDF. Caffeic acid and ferulic acid can improve toxicological damage caused by iron overload mediated by carbonic anhydrase inhibition. Drug Chem Toxicol 2024; 47:147-155. [PMID: 36444844 DOI: 10.1080/01480545.2022.2152043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/30/2022]
Abstract
The iron ion is an essential element for most forms of life, however, it can damage biological systems when found in free form. Chelation therapy is very important, but it is precarious. Caffeic and ferulic acid are antioxidant compounds with many properties described in research such as anti-inflammatory, antiobesogenic, antithrombotic, vasodilator, and anti-tumor. The aim of the study was to evaluate presenting an in silico approach on the toxicity and bioavailability of caffeic and ferulic acid, subsequently, evaluating them in an iron overload model in vivo and providing a pharmacophoric model through molecular docking. The predictive in silico test did not show relevant toxicity of the compounds, therefore, the in vivo test was performed. The rats received dextran iron and the test groups received caffeic and ferulic acid orally for six weeks. Biochemical, hematological parameters, and tissue oxidative stress marker were analyzed. The experimental model showed increased serum iron levels and changes in several serum parameters such as glucose (215.8 ± 20.3 mg/dL), ALT (512.2 ± 128.7 U/L), creatine kinase (186.8 ± 30.1 U/L), and creatine kinase isoform MB (373.3 ± 69.7 U/L). Caffeic acid and, to a lessed degree, ferullic acid, attenuated the effects of iron overload on the rat serum biochemical parameters. Docking showed a pharmacophoric model where carbonic anhydrase interacted with the test molecules and caffeic acid showed less energy expenditure in this interaction. The results illustrate a new therapeutic action of phenolic compounds on iron overload. The possible interference of carbonic anhydrase in iron metabolism needs to be elucidated.
Collapse
Affiliation(s)
| | - Camille Gaube Guex
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - James Graiczik
- Graduate Program in Pharmacy, University of Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | | | - Liliane De Freitas Bauermann
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
2
|
Alva-Ensastegui J, Bernad-Bernad M, Vega-Morales J, Aparicio-Gutierrez N. Experimental-theoretical study to determine the pKa values of the ocular hypotensive Dorzolamide from UV-Vis spectroscopy. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Güller U, Beydemir Ş, Küfrevioğlu Öİ. In vitro and In silico Interactions of Antiulcer, Glucocorticoids and Urological Drugs on Human Carbonic Anhydrase I and II isozymes. Biopharm Drug Dispos 2022; 43:47-56. [PMID: 35080786 DOI: 10.1002/bdd.2309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) convert carbon dioxide to bicarbonate in metabolism and use Zn2+ ions as a cofactor for their catalytic activity. The activators or inhibitors of CA-I and CA-II, which are the most abundant CA isozymes in erythrocytes, have pharmacological applications in medicine. So, investigation of drug-protein interaction of these isozymes is significant. On this basis, the objective of this study was to clarify the primer effects of widely used drugs on the activity of human CA-I and CA-II enzymes and elucidate the inhibition mechanism through molecular docking studies. For this aim isozymes were purified from human erythrocytes by affinity chromatography technique. Then inhibition profiles of antiulcer, glucocorticoids, and urological drugs were investigated. As a result, while budesonide had the highest inhibitory potency on hydratase activity of hCA-I with the IC50 of 0.08 mM, levofloxacin showed the highest inhibition effect on hCA-II with the IC50 of 0.886 mM. The most effective inhibitor on the esterase activity of isozymes was found as fluticasone propionate with the Ki values of 0.0365±0.016 mM and 0.054±0.018 mM respectively. However, by molecular docking study, it was estimated that budesonide showed maximum inhibition potency for both isozymes with the free binding energy of -7.58 and -6.97 kcal/mol respectively. Consequently, it was observed that some of the drugs studied did not show any inhibitory effect. Drug-enzyme interactions were also estimated by molecular docking. This study could contribute to the discovery of new drug candidates and as well as target proteins. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uğur Güller
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| | | |
Collapse
|
4
|
Mueller SL, Chrysanthopoulos PK, Halili MA, Hepburn C, Nebl T, Supuran CT, Nocentini A, Peat TS, Poulsen SA. The Glitazone Class of Drugs as Carbonic Anhydrase Inhibitors-A Spin-Off Discovery from Fragment Screening. Molecules 2021; 26:3010. [PMID: 34070212 PMCID: PMC8158703 DOI: 10.3390/molecules26103010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The approved drugs that target carbonic anhydrases (CA, EC 4.2.1.1), a family of zinc metalloenzymes, comprise almost exclusively of primary sulfonamides (R-SO2NH2) as the zinc binding chemotype. New clinical applications for CA inhibitors, particularly for hard-to-treat cancers, has driven a growing interest in the development of novel CA inhibitors. We recently discovered that the thiazolidinedione heterocycle, where the ring nitrogen carries no substituent, is a new zinc binding group and an alternate CA inhibitor chemotype. This heterocycle is curiously also a substructure of the glitazone class of drugs used in the treatment options for type 2 diabetes. Herein, we investigate and characterise three glitazone drugs (troglitazone 11, rosiglitazone 12 and pioglitazone 13) for binding to CA using native mass spectrometry, protein X-ray crystallography and hydrogen-deuterium exchange (HDX) mass spectrometry, followed by CA enzyme inhibition studies. The glitazone drugs all displayed appreciable binding to and inhibition of CA isozymes. Given that thiazolidinediones are not credited as a zinc binding group nor known as CA inhibitors, our findings indicate that CA may be an off-target of these compounds when used clinically. Furthermore, thiazolidinediones may represent a new opportunity for the development of novel CA inhibitors as future drugs.
Collapse
Affiliation(s)
- Sarah L. Mueller
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Panagiotis K. Chrysanthopoulos
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Caryn Hepburn
- Waters Australia Pty Ltd., Rydalmere, NSW 2116, Australia;
| | - Tom Nebl
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Thomas S. Peat
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
5
|
Supuran CT. Experimental Carbonic Anhydrase Inhibitors for the Treatment of Hypoxic Tumors. J Exp Pharmacol 2020; 12:603-617. [PMID: 33364855 DOI: 10.2147/jep.s265620] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII are overexpressed in many hypoxic tumors as a consequence of the hypoxia inducible factor (HIF) activation cascade, being present in limited amounts in normal tissues. These enzymes together with many others are involved in the pH regulation and metabolism of hypoxic cancer cells, and were validated as antitumor targets recently. A multitude of targeting strategies against these enzymes have been proposed and are reviewed in this article. The small molecule inhibitors, small molecule drug conjugates (SMDCs), antibody-drug conjugates (ADACs) or cytokine-drug conjugates but not the monoclonal antibodies against CA IX/XII will be discussed. Relevant synthetic chemistry efforts, coupled with a multitude of preclinical studies, demonstrated that CA IX/XII inhibition leads to the inhibition of growth of primary tumors and metastases and depletes cancer stem cell populations, all factors highly relevant in clinical settings. One small molecule inhibitor, sulfonamide SLC-0111, is the most advanced candidate, having completed Phase I and being now in Phase Ib/II clinical trials for the treatment of advanced hypoxic solid tumors.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence 50019, Italy
| |
Collapse
|
6
|
Cuffaro D, Nuti E, Rossello A. An overview of carbohydrate-based carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020; 35:1906-1922. [PMID: 33078634 PMCID: PMC7717713 DOI: 10.1080/14756366.2020.1825409] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Carbonic anhydrases (CAs) are metalloenzymes responsible for the reversible hydration of carbon dioxide to bicarbonate, a fundamental reaction involved in various physiological and pathological processes. In the last decades, CAs have been considered as important drug targets for different pathologies such as glaucoma, epilepsy and cancer. The design of potent and selective inhibitors has been an outstanding goal leading to the discovery of new drugs. Among the different strategies developed to date, the design of carbohydrate-based CA inhibitors (CAIs) has emerged as a versatile tool in order to selectively target CAs. The insertion of a glycosyl moiety as a hydrophilic tail in sulfonamide, sulfenamide, sulfamate or coumarin scaffolds allowed the discovery of many different series of sugar-based CAIs, with relevant inhibitory results. This review will focus on carbohydrate-based CAIs developed so far, classifying them in glycosidic and glycoconjugated inhibitors based on the conjugation chemistry adopted.
Collapse
Affiliation(s)
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
7
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
8
|
Implication of sulfonylurea derivatives as prospective inhibitors of human carbonic anhydrase II. Int J Biol Macromol 2018; 115:961-969. [DOI: 10.1016/j.ijbiomac.2018.04.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023]
|
9
|
Singh S, Lomelino CL, Mboge MY, Frost SC, McKenna R. Cancer Drug Development of Carbonic Anhydrase Inhibitors beyond the Active Site. Molecules 2018; 23:E1045. [PMID: 29710858 PMCID: PMC6099549 DOI: 10.3390/molecules23051045] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/29/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze the reversible hydration of carbon dioxide to produce bicarbonate and a proton. Multiple CA isoforms are implicated in a range of diseases, including cancer. In solid tumors, continuously dividing cells create hypoxic conditions that eventually lead to an acidic microenvironment. Hypoxic tumor cells have different mechanisms in place to regulate and adjust the surrounding microenvironment for survival. These mechanisms include expression of CA isoform IX (CA IX) and XII (CA XII). These enzymes help maintain a physiological intracellular pH while simultaneously contributing to an acidic extracellular pH, leading to tumor cell survival. Expression of CA IX and CA XII has also been shown to promote tumor cell invasion and metastasis. This review discusses the characteristics of CA IX and CA XII, their mechanism of action, and validates their prospective use as anticancer targets. We discuss the current status of small inhibitors that target these isoforms, both classical and non-classical, and their future design in order to obtain isoform-specificity for CA IX and CA XII. Biologics, such as monoclonal antibodies, monoclonal-radionuclide conjugated chimeric antibodies, and antibody-small molecule conjugates are also discussed.
Collapse
Affiliation(s)
- Srishti Singh
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Mam Y Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Susan C Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
10
|
Supuran CT, Alterio V, Di Fiore A, D' Ambrosio K, Carta F, Monti SM, De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med Res Rev 2018; 38:1799-1836. [PMID: 29635752 DOI: 10.1002/med.21497] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Human carbonic anhydrase (CA) IX is a tumor-associated protein, since it is scarcely present in normal tissues, but highly overexpressed in a large number of solid tumors, where it actively contributes to survival and metastatic spread of tumor cells. Due to these features, the characterization of its biochemical, structural, and functional features for drug design purposes has been extensively carried out, with consequent development of several highly selective small molecule inhibitors and monoclonal antibodies to be used for different purposes. Aim of this review is to provide a comprehensive state-of-the-art of studies performed on this enzyme, regarding structural, functional, and biomedical aspects, as well as the development of molecules with diagnostic and therapeutic applications for cancer treatment. A brief description of additional pharmacologic applications for CA IX inhibition in other diseases, such as arthritis and ischemia, is also provided.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, Naples, Italy
| | | | - Fabrizio Carta
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | | |
Collapse
|
11
|
Enhancement of intrinsic fluorescence of human carbonic anhydrase II upon topiramate binding: Some evidence for drug-induced molecular contraction of the protein. Int J Biol Macromol 2018; 108:240-249. [DOI: 10.1016/j.ijbiomac.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022]
|
12
|
Kopecka J, Rankin GM, Salaroglio IC, Poulsen SA, Riganti C. P-glycoprotein-mediated chemoresistance is reversed by carbonic anhydrase XII inhibitors. Oncotarget 2018; 7:85861-85875. [PMID: 27811376 PMCID: PMC5349880 DOI: 10.18632/oncotarget.13040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/28/2016] [Indexed: 01/26/2023] Open
Abstract
Carbonic anhydrase XII (CAXII) is a membrane enzyme that maintains pH homeostasis and sustains optimum P-glycoprotein (Pgp) efflux activity in cancer cells. Here, we investigated a panel of eight CAXII inhibitors (compounds 1–8), for their potential to reverse Pgp mediated tumor cell chemoresistance. Inhibitors (5 nM) were screened in human and murine cancer cells (colon, lung, breast, bone) with different expression levels of CAXII and Pgp. We identified three CAXII inhibitors (compounds 1, 2 and 4) that significantly (≥ 2 fold) increased the intracellular retention of the Pgp-substrate and chemotherapeutic doxorubicin, and restored its cytotoxic activity. The inhibitors lowered intracellular pH to indirectly impair Pgp activity. Ca12-knockout assays confirmed that the chemosensitizing property of the compounds was dependent on active CAXII. Furthermore, in a preclinical model of drug-resistant breast tumors compound 1 (1900 ng/kg) restored the efficacy of doxorubicin to the same extent as the direct Pgp inhibitor tariquidar. The expression of carbonic anhydrase IX had no effect on the intracellular doxorubicin accumulation. Our work provides strong evidence that CAXII inhibitors are effective chemosensitizer agents in CAXII-positive and Pgp-positive cancer cells. The use of CAXII inhibitors may represent a turning point in combinatorial chemotherapeutic schemes to treat multidrug-resistant tumors.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Gregory M Rankin
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Nathan, Queensland, 4111, Australia
| | | | - Sally-Ann Poulsen
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Nathan, Queensland, 4111, Australia
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy
| |
Collapse
|
13
|
De Simone G, Langella E, Esposito D, Supuran CT, Monti SM, Winum JY, Alterio V. Insights into the binding mode of sulphamates and sulphamides to hCA II: crystallographic studies and binding free energy calculations. J Enzyme Inhib Med Chem 2017; 32:1002-1011. [PMID: 28738704 PMCID: PMC6445192 DOI: 10.1080/14756366.2017.1349764] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.
Collapse
Affiliation(s)
- Giuseppina De Simone
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Emma Langella
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Davide Esposito
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Vincenzo Alterio
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
14
|
Woods LA, Dolezal O, Ren B, Ryan JH, Peat TS, Poulsen SA. Native State Mass Spectrometry, Surface Plasmon Resonance, and X-ray Crystallography Correlate Strongly as a Fragment Screening Combination. J Med Chem 2016; 59:2192-204. [PMID: 26882437 DOI: 10.1021/acs.jmedchem.5b01940] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Collapse
Affiliation(s)
- Lucy A Woods
- Griffith University , Eskitis Institute for Drug Discovery, Brisbane, Queensland Australia
| | - Olan Dolezal
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Bin Ren
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - John H Ryan
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Sally-Ann Poulsen
- Griffith University , Eskitis Institute for Drug Discovery, Brisbane, Queensland Australia
| |
Collapse
|
15
|
Suthagar K, Fairbanks AJ. Synthesis and anti-mycobacterial activity of glycosyl sulfamides of arabinofuranose. Org Biomol Chem 2016; 14:1748-54. [DOI: 10.1039/c5ob02317c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series ofarabino N-glycosyl sulfamides, forced to adopt the furanose form by removal of the 5-hydroxyl group, were synthesised as putative isosteric mimics of decaprenolphosphoarabinose, the donor processed by arabinosyltransferases during mycobacterial cell wall assembly.
Collapse
Affiliation(s)
- Kajitha Suthagar
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - Antony J. Fairbanks
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
- Biomolecular Interaction Centre
| |
Collapse
|
16
|
Fluorescent sulfonamide carbonic anhydrase inhibitors incorporating 1,2,3-triazole moieties: Kinetic and X-ray crystallographic studies. Bioorg Med Chem 2016; 24:104-12. [DOI: 10.1016/j.bmc.2015.11.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022]
|
17
|
Bozdag M, Alafeefy AM, Vullo D, Carta F, Dedeoglu N, Al-Tamimi AMS, Al-Jaber NA, Scozzafava A, Supuran CT. Benzenesulfonamides incorporating bulky aromatic/heterocyclic tails with potent carbonic anhydrase inhibitory activity. Bioorg Med Chem 2015; 23:7751-64. [PMID: 26639945 DOI: 10.1016/j.bmc.2015.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/08/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
Abstract
Three series of sulfonamides incorporating long, bulky tails were obtained by applying synthetic strategies in which substituted anthranilic acids, quinazolines and aromatic sulfonamides have been used as starting materials. They incorporate long, bulky diamide-, 4-oxoquinazoline-3-yl- or quinazoline-4-yl moieties in their molecules, and were investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides showed excellent inhibitory effects against the four isoforms, with KIs of 7.6-322nM against hCA I, of 0.06-85.4nM against hCA II; of 6.7-152nM against hCA IX and of 0.49-237nM against hCA XII; respectively. However no relevant isoform-selective behavior has been observed for any of them, although hCA II and XII, isoforms involved in glaucoma-genesis were the most inhibited ones. The structure-activity relationship for inhibiting the four CAs with these derivatives is discussed in detail.
Collapse
Affiliation(s)
- Murat Bozdag
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Ahmed M Alafeefy
- Chemistry Department, Kulliyyah of Science, International Islamic University, Kuantan, Malaysia
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Nurcan Dedeoglu
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Abdul-Malek S Al-Tamimi
- Pharmaceutical Chemistry Dept., College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Nabila A Al-Jaber
- Chemistry Department, College of Science, King Saud University, Saudi Arabia
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
18
|
El-Azab AS, Abdel-Aziz AAM, Ayyad RR, Ceruso M, Supuran CT. Inhibition of carbonic anhydrase isoforms I, II, IV, VII and XII with carboxylates and sulfonamides incorporating phthalimide/phthalic anhydride scaffolds. Bioorg Med Chem 2015; 24:20-5. [PMID: 26678172 DOI: 10.1016/j.bmc.2015.11.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023]
Abstract
We report a panel of carboxylates and sulfonamides incorporating phthalic anhydride and phthalimide moieties in their structure and their interaction with the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). They were synthesized from substituted anthranilic acids and trimellitic anhydride chloride, followed by reaction with primary amines and were tested for the inhibition of five physiologically relevant CA isoforms, the human (h) hCA I, II, IV, VII and XII, some of which are involved in serious pathologies (CA II, IV and XII in glaucoma; CA VII in epilepsy; CA XII in some solid tumors). The carboxylic acids were generally poor inhibitors of isoforms hCA I, II and IV but were highly effective, low nanomolar inhibitors of hCA VII and XII. The sulfonamides inhibited all isoforms significantly, and some of them were sub-nanomolar hCA VII inhibitors, although their isoform selectivity was lower compared to the carboxylates. This study proves that carboxylic acids incorporating a phthalic anhydride/phthalimide based scaffold may lead to isoform-selective inhibitors by applying the tail approach, mostly used up until now for obtaining sulfonamide, sulfamide and sulfamate CA inhibitors.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Rezk R Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mariangela Ceruso
- Università degli Studi di Firenze, Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
19
|
Click-tailed coumarins with potent and selective inhibitory action against the tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem 2015; 23:6955-66. [DOI: 10.1016/j.bmc.2015.09.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/19/2023]
|
20
|
Pinard MA, Aggarwal M, Mahon BP, Tu C, McKenna R. A sucrose-binding site provides a lead towards an isoform-specific inhibitor of the cancer-associated enzyme carbonic anhydrase IX. Acta Crystallogr F Struct Biol Commun 2015; 71:1352-8. [PMID: 26457530 PMCID: PMC4601603 DOI: 10.1107/s2053230x1501239x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/27/2015] [Indexed: 11/10/2022] Open
Abstract
Human carbonic anhydrase (CA; EC 4.2.1.1) isoform IX (CA IX) is an extracellular zinc metalloenzyme that catalyzes the reversible hydration of CO2 to HCO3(-), thereby playing a role in pH regulation. The majority of normal functioning cells exhibit low-level expression of CA IX. However, in cancer cells CA IX is upregulated as a consequence of a metabolic transition known as the Warburg effect. The upregulation of CA IX for cancer progression has drawn interest in it being a potential therapeutic target. CA IX is a transmembrane protein, and its purification, yield and crystallization have proven challenging to structure-based drug design, whereas the closely related cytosolic soluble isoform CA II can be expressed and crystallized with ease. Therefore, we have utilized structural alignments and site-directed mutagenesis to engineer a CA II that mimics the active site of CA IX. In this paper, the X-ray crystal structure of this CA IX mimic in complex with sucrose is presented and has been refined to a resolution of 1.5 Å, an Rcryst of 18.0% and an Rfree of 21.2%. The binding of sucrose at the entrance to the active site of the CA IX mimic, and not CA II, in a non-inhibitory mechanism provides a novel carbohydrate moiety binding site that could be further exploited to design isoform-specific inhibitors of CA IX.
Collapse
Affiliation(s)
- Melissa A. Pinard
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mayank Aggarwal
- Division of Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brian P. Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Pharmacology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Rankin GM, Vullo D, Supuran CT, Poulsen SA. Phosphate Chemical Probes Designed for Location Specific Inhibition of Intracellular Carbonic Anhydrases. J Med Chem 2015; 58:7580-90. [DOI: 10.1021/acs.jmedchem.5b01228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gregory M. Rankin
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Daniela Vullo
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica,Università degli Studi di Firenze, Via della Lastruccia 3, Rm. 188, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica,Università degli Studi di Firenze, Via della Lastruccia 3, Rm. 188, 50019 Sesto Fiorentino, Florence, Italy
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
22
|
Probing the surface of human carbonic anhydrase for clues towards the design of isoform specific inhibitors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:453543. [PMID: 25811028 PMCID: PMC4355338 DOI: 10.1155/2015/453543] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022]
Abstract
The alpha carbonic anhydrases (α-CAs) are a group of structurally related zinc metalloenzymes that catalyze the reversible hydration of CO2 to HCO3−. Humans have 15 different α-CAs with numerous physiological roles and expression patterns. Of these, 12 are catalytically active, and abnormal expression and activities are linked with various diseases, including glaucoma and cancer. Hence there is a need for CA isoform specific inhibitors to avoid off-target CA inhibition, but due to the high amino acid conservation of the active site and surrounding regions between each enzyme, this has proven difficult. However, residues towards the exit of the active site are variable and can be exploited to design isoform selective inhibitors. Here we discuss and characterize this region of “selective drug targetability” and how these observations can be utilized to develop isoform selective CA inhibitors.
Collapse
|
23
|
Suthagar K, Polson MIJ, Fairbanks AJ. Unexpected furanose/pyranose equilibration of N-glycosyl sulfonamides, sulfamides and sulfamates. Org Biomol Chem 2015; 13:6573-9. [DOI: 10.1039/c5ob00851d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arabino N-glycosyl sulfamides, sulfonamides and sulfamates convert from the furanose to the thermodynamically preferred pyranose form in aqueous solution.
Collapse
Affiliation(s)
- Kajitha Suthagar
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
| | | | - Antony J. Fairbanks
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
- Biomolecular Interaction Centre
| |
Collapse
|
24
|
Mboge MY, McKenna R, Frost SC. Advances in Anti-Cancer Drug Development Targeting Carbonic Anhydrase IX and XII. TOPICS IN ANTI-CANCER RESEARCH 2015; 5:3-42. [PMID: 30272043 PMCID: PMC6162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microenvironment within a solid tumor is heterogeneous with regions being both acidic and hypoxic. As a result of this, cancer cells upregulate genes that allow survival in such environments. Some of these genes are pH regulatory factors, including carbonic anhydrase IX (CA IX) and in some cases XII (CA XII). CA IX helps to maintain normal cytoplasmic pH (pHi) while simultaneously contributing to the extracellular pH (pHe). CA XII is also thought to be responsible for stabilizing pHe at physiological conditions. Extracellular acidification of the tumor microenvironment promotes local invasion and metastasis while decreasing the effectiveness of adjuvant therapies, thus contributing to poor cancer clinical outcomes. In this review, we describe the properties of CA IX and CA XII that substantiate their potential use as anticancer targets. We also discuss the current status of CA isoform-selective inhibitor development and patents of CA IX/XII targeted inhibitors that show potential for treating aggressive tumors. Some of the recently published patents discussed include sulfonamide-based small molecule inhibitors including derivatives of boron cluster compounds; metal complexes of poly(carboxyl)amine-containing ligands; nitroi-midazole-, ureidosulfonamide-, and coumarin-based compounds; as well as G250 and A610 monoclonal antibodies for cancer treatment.
Collapse
Affiliation(s)
- Mam Y. Mboge
- Corresponding authors Mam Y. Mboge and Susan C. Frost: University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, Box 100245, Gainesville, FL 32610, USA; Tel +1 352 294-8386, Fax +1 352 392-2953, ,
| | | | - Susan C. Frost
- Corresponding authors Mam Y. Mboge and Susan C. Frost: University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, Box 100245, Gainesville, FL 32610, USA; Tel +1 352 294-8386, Fax +1 352 392-2953, ,
| |
Collapse
|
25
|
Abstract
The chemical diversity, binding specificity and propensity to interact with biological targets has inspired many researchers to utilize natural products as molecular probes. Almost all reported carbonic anhydrase inhibitors comprise a zinc binding group in their structure of which the primary sulfonamide moiety (-SO2NH2) is the foremost example and to a lesser extent the primary sulfamate (-O-SO2NH2) and sulfamide (-NH-SO2NH2) groups. Natural products that comprise these zinc binding groups in their structure are however rare and relatively few natural products have been explored as a source for novel carbonic anhydrase inhibitors. This chapter will highlight the recent and growing interest in carbonic anhydrase inhibitors sourced from nature, demonstrating that natural product chemical space presents a rich source of potential alternate chemotypes for the discovery of novel drug-like carbonic anhydrase inhibitors.
Collapse
|
26
|
Aggarwal M, Kondeti B, McKenna R. Insights towards sulfonamide drug specificity in α-carbonic anhydrases. Bioorg Med Chem 2013; 21:1526-33. [PMID: 22985956 PMCID: PMC3593968 DOI: 10.1016/j.bmc.2012.08.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 02/08/2023]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are a group of metalloenzymes that play important roles in carbon metabolism, pH regulation, CO2 fixation in plants, ion transport etc., and are found in all eukaryotic and many microbial organisms. This family of enzymes catalyzes the interconversion of CO2 and HCO3(-). There are at least 16 different CA isoforms in the alpha structural class (α-CAs) that have been isolated in higher vertebrates, with CA isoform II (CA II) being ubiquitously abundant in all human cell types. CA inhibition has been exploited clinically for decades for various classes of diuretics and anti-glaucoma treatment. The characterization of the overexpression of CA isoform IX (CA IX) in certain tumors has raised interest in CA IX as a diagnostic marker and drug target for aggressive cancers and therefore the development of CA IX specific inhibitors. An important goal in the field of CA is to identify, rationalize, and design potential compounds that will preferentially inhibit CA IX over all other isoforms of CA. The variations in the active sites between isoforms of CA are subtle and this causes non-specific CA inhibition which leads to various side effects. In the case of CA IX inhibition, CA II along with other isoforms of CA provide off-target binding sites which is undesirable for cancer treatment. The focus of this article is on CA IX inhibition and two different structural approaches to CA isoform specific drug designing: tail approach and fragment addition approach.
Collapse
Affiliation(s)
- Mayank Aggarwal
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida 1600 SW Archer Rd, PO Box 100245 Gainesville, FL 32610 United States of America
| | - Bhargav Kondeti
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida 1600 SW Archer Rd, PO Box 100245 Gainesville, FL 32610 United States of America
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida 1600 SW Archer Rd, PO Box 100245 Gainesville, FL 32610 United States of America
| |
Collapse
|
27
|
Saada MC, Ombouma J, Montero JL, Supuran CT, Winum JY. Thiol–ene click chemistry for the synthesis of highly effective glycosyl sulfonamide carbonic anhydrase inhibitors. Chem Commun (Camb) 2013; 49:5699-701. [DOI: 10.1039/c3cc42541j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
From In Situ to In Vivo: An In Situ Click-Chemistry-Derived Carbonic Anhydrase II Imaging Agent for Positron Emission Tomography. ChemMedChem 2012. [DOI: 10.1002/cmdc.201200466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Winum JY, Colinas PA, Supuran CT. Glycosidic carbonic anhydrase IX inhibitors: a sweet approach against cancer. Bioorg Med Chem 2012. [PMID: 23199483 DOI: 10.1016/j.bmc.2012.10.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeting tumour associated carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII is now considered as a pertinent approach for the development of new cancer therapeutics against hypoxic tumours. In the last period, with the help of X-ray crystallography, much progress has been achieved for the drug-design of selective CA IX inhibitors, by considering the three main structural elements that govern both potency and selectivity, that is, a zinc binding group (ZBG), an organic scaffold, and one or more side chains substituting the scaffold. The use of sugar moiety in the structure of sulfonamide-based CA inhibitors (CAIs), has allowed the discovery of very potent CA IX inhibitors able to impair the growth of both primary tumors and metastases. The search for specific CA IX inhibitors by using the sugar approach has become an important research field, leading to sulfonamides, sulfamates, sulfamides and coumarins with excellent in vitro activity and relevant potency in vivo, in animal models of cancer. This paper will review the latest development in this hot topic.
Collapse
Affiliation(s)
- Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex, France.
| | | | | |
Collapse
|
30
|
Alterio V, Di Fiore A, D'Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012; 112:4421-68. [PMID: 22607219 DOI: 10.1021/cr200176r] [Citation(s) in RCA: 961] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | |
Collapse
|
31
|
Reuillon T, Bertoli A, Griffin RJ, Miller DC, Golding BT. Efficacious N-protection of O-aryl sulfamates with 2,4-dimethoxybenzyl groups. Org Biomol Chem 2012; 10:7610-7. [DOI: 10.1039/c2ob26057c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Lopez M, Vu H, Wang CK, Wolf MG, Groenhof G, Innocenti A, Supuran CT, Poulsen SA. Promiscuity of carbonic anhydrase II. Unexpected ester hydrolysis of carbohydrate-based sulfamate inhibitors. J Am Chem Soc 2011; 133:18452-62. [PMID: 21958118 DOI: 10.1021/ja207855c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbonic anhydrases (CAs) are enzymes whose endogenous reaction is the reversible hydration of CO(2) to give HCO(3)(-) and a proton. CA are also known to exhibit weak and promiscuous esterase activity toward activated esters. Here, we report a series of findings obtained with a set of CA inhibitors that showed quite unexpectedly that the compounds were both inhibitors of CO(2) hydration and substrates for the esterase activity of CA. The compounds comprised a monosaccharide core with the C-6 primary hydroxyl group derivatized as a sulfamate (for CA recognition). The remaining four sugar hydroxyl groups were acylated. Using protein X-ray crystallography, the crystal structures of human CA II in complex with four of the sulfamate inhibitors were obtained. As expected, the four structures displayed the canonical CA protein-sulfamate interactions. Unexpectedly, a free hydroxyl group was observed at the anomeric center (C-1) rather than the parent C-1 acyl group. In addition, this hydroxyl group is observed axial to the carbohydrate ring while in the parent structure it is equatorial. A mechanism is proposed that accounts for this inversion of stereochemistry. For three of the inhibitors, the acyl groups at C-2 or at C-2 and C-3 were also absent with hydroxyl groups observed in their place and retention of stereochemistry. With the use of electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry (ESI-FTICR-MS), we observed directly the sequential loss of all four acyl groups from one of the carbohydrate-based sulfamates. For this compound, the inhibitor and substrate binding mode were further analyzed using free energy calculations. These calculations suggested that the parent compound binds almost exclusively as a substrate. To conclude, we have demonstrated that acylated carbohydrate-based sulfamates are simultaneously inhibitor and substrate of human CA II. Our results suggest that, initially, the substrate binding mode dominates, but following hydrolysis, the ligand can also bind as a pure inhibitor thereby competing with the substrate binding mode.
Collapse
Affiliation(s)
- Marie Lopez
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland 4111, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Morris JC, Chiche J, Grellier C, Lopez M, Bornaghi LF, Maresca A, Supuran CT, Pouysségur J, Poulsen SA. Targeting hypoxic tumor cell viability with carbohydrate-based carbonic anhydrase IX and XII inhibitors. J Med Chem 2011; 54:6905-18. [PMID: 21851094 DOI: 10.1021/jm200892s] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbonic anhydrase (CA) enzymes, specifically membrane-bound isozymes CA IX and CA XII, underpin a pH-regulating system that enables hypoxic tumor cell survival and proliferation. CA IX and XII are implicated as potential targets for the development of new hypoxic cancer therapies. To date, only a few small molecules have been characterized in CA-relevant cell and animal model systems. In this paper, we describe the development of a new class of carbohydrate-based small molecule CA inhibitors, many of which inhibit CA IX and XII within a narrow range of low nanomolar K(i) values (5.3-11.2 nM). We evaluate for the first time carbohydrate-based CA inhibitors in cell-based models that emulate the protective role of CA IX in an acidic tumor microenvironment. Our findings identified two inhibitors (compounds 5 and 17) that block CA IX-induced survival and have potential for development as in vivo cancer cell selective inhibitors.
Collapse
Affiliation(s)
- Jason C Morris
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland 4111, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Supuran CT. Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med Chem 2011; 3:1165-1180. [DOI: 10.4155/fmc.11.69] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Carbonic anhydrases (CAs, Enzyme Commission number 4.2.1.1) catalyze a simple but fundamental reaction, CO2 hydration to yield bicarbonate and protons. CAs belonging to the α-, β-, γ-, δ- and ζ-families are found in many organisms all over the phylogenetic tree and their inhibition/activation have been studied in detail, leading to various therapeutic applications. Inhibition of mammalian α-CAs is exploited by some diuretics, whereas antiglaucoma, anticonvulsant, anti-obesity, altitude sickness and anti-tumor drugs/diagnostic agents target various of the 15 isoforms described so far in these organisms. Activation of some CAs may also have applications in therapy. Bacterial and fungal β-CA inhibitors or nematode α-CA inhibitors have been described that may lead to novel classes of anti-infectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Room 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
35
|
Davis RA, Hofmann A, Osman A, Hall RA, Mühlschlegel FA, Vullo D, Innocenti A, Supuran CT, Poulsen SA. Natural Product-Based Phenols as Novel Probes for Mycobacterial and Fungal Carbonic Anhydrases. J Med Chem 2011; 54:1682-92. [DOI: 10.1021/jm1013242] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rohan A. Davis
- Eskitis Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Andreas Hofmann
- Eskitis Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Asiah Osman
- Eskitis Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Rebecca A. Hall
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Fritz A. Mühlschlegel
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
- Clinical Microbiology Service, East Kent Hospitals University NHS Foundation Trust, Ashford, Kent, TN24 0LZ, United Kingdom
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Innocenti
- Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sally-Ann Poulsen
- Eskitis Institute, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
36
|
Lopez M, Trajkovic J, Bornaghi LF, Innocenti A, Vullo D, Supuran CT, Poulsen SA. Design, Synthesis, and Biological Evaluation of Novel Carbohydrate-Based Sulfamates as Carbonic Anhydrase Inhibitors. J Med Chem 2011; 54:1481-9. [DOI: 10.1021/jm101525j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Marie Lopez
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland 4111, Australia
| | - Jonathan Trajkovic
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland 4111, Australia
| | - Laurent F. Bornaghi
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland 4111, Australia
| | - Alessio Innocenti
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sally-Ann Poulsen
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
37
|
|
38
|
Poulsen SA. Carbonic anhydrase inhibition as a cancer therapy: a review of patent literature, 2007 - 2009. Expert Opin Ther Pat 2010; 20:795-806. [PMID: 20476848 DOI: 10.1517/13543776.2010.484803] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The functional contribution of membrane-bound extracellular carbonic anhydrases (CAs) to hypoxic tumor growth and progression has long been hypothesized; however, recent convergent evidence from a number of groups strongly implicates these CAs as key prosurvival enzymes during tumor hypoxia. From this perspective targeting the inhibition of cancer-associated CA enzymes, most notably CA IX and XII, has recently been identified as a mechanistically novel scientific opportunity with great potential as a new cancer drug target. AREAS COVERED IN THIS REVIEW This review covers world patent applications filed during the 2007 - 2009 period for small molecule approaches; non-small molecule approaches are not within the scope of this review. WHAT THE READER WILL GAIN The reader will be provided with a background of the biology of CAs as well as the recent research findings that have validated the crucial prosurvival role of CAs in hypoxic tumors. The review will highlight small molecule molecular methods that modulate CAs as an anti-cancer therapeutic strategy. TAKE HOME MESSAGE Much of what has been reported in the patent literature during the period 2007 - 2009 is based on alleged therapeutic benefits of CA inhibitors in cancer. Recently appropriate CA-relevant cell and animal models of tumor hypoxia for the evaluation of compounds have become available and the verification of the ability of small molecules to modulate CA activity as a cancer therapy or as a diagnostic and/or prognostic tool is now possible and probable. The CA field will thus provide for a scientifically exciting and possibly rewarding next few years, accelerated by the growing interest in the potential clinical applications of this enzyme class in oncology.
Collapse
Affiliation(s)
- Sally-Ann Poulsen
- Griffith University, Eskitis Institute for Cell and Molecular Therapies, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| |
Collapse
|
39
|
Alterio V, Monti SM, Truppo E, Pedone C, Supuran CT, De Simone G. The first example of a significant active site conformational rearrangement in a carbonic anhydrase-inhibitor adduct: the carbonic anhydrase I-topiramate complex. Org Biomol Chem 2010; 8:3528-33. [PMID: 20505865 DOI: 10.1039/b926832d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Topiramate is a widely used antiepileptic drug, which has been demonstrated to act as an efficient weight loss agent. Since several studies have pointed out that is a potent in vitro inhibitor of several Carbonic anhydrase (CA) isozymes, it has been hypothesized that its anti-obesity properties could be ascribed to the inhibition of the CAs involved in de novo lipogenesis. Consequently, the study of the interactions of with all human CA isoforms represents an important step for the rational drug design of selective CA inhibitors to be used as anti-obesity drugs. In this paper we report the crystallographic structure of the adduct that forms with hCA I, showing for the first time a profound reorganization of the CA active site upon binding of the inhibitor. Moreover, a structural comparison with hCA II- and hCA VA- adducts, previously investigated, has been performed showing that a different H-bond network together with the movement of some amino acid residues in the active site may account for the different inhibition constants of toward these three CA isozymes.
Collapse
Affiliation(s)
- Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Innocenti A, Beyza Öztürk Sarıkaya S, Gülçin İ, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I–XIV with a series of natural product polyphenols and phenolic acids. Bioorg Med Chem 2010; 18:2159-2164. [DOI: 10.1016/j.bmc.2010.01.076] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 01/31/2010] [Indexed: 01/02/2023]
|