2
|
Pastorino S, Baldassari S, Ailuno G, Zuccari G, Drava G, Petretto A, Cossu V, Marini C, Alfei S, Florio T, Sambuceti G, Caviglioli G. Two Novel PET Radiopharmaceuticals for Endothelial Vascular Cell Adhesion Molecule-1 (VCAM-1) Targeting. Pharmaceutics 2021; 13:1025. [PMID: 34371717 PMCID: PMC8309178 DOI: 10.3390/pharmaceutics13071025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 01/17/2023] Open
Abstract
Atherosclerosis is a chronic progressive disease involving inflammatory events, such as the overexpression of adhesion molecules including the endothelial Vascular Cell Adhesion Molecule-1 (VCAM-1). VCAM-1 is rapidly overexpressed in the first stages of atherosclerosis, thus representing a promising target for early atheroma detection. Two novel Positron Emission Tomography (PET) radiopharmaceuticals (MacroP and NAMP), based on the VCAM-1-binding peptide having sequence VHPKQHRGGSKGC, were synthesized and characterized. MacroP is derived from the direct conjugation of a DOTA derivative with the peptide, while NAMP is a biotin derivative conceived to be employed in a three-step pretargeting system, involving the use of a double-chelating derivative of DOTA. The identity of the newly synthesized radiopharmaceuticals was confirmed by mass spectrometry and, after radiolabeling with 68Ga, both showed high radiochemical purity; in vitro tests on human umbilical vein endothelial cells evidenced their VCAM-1 binding ability, with higher radioactive uptake in the case of NAMP. Moreover, NAMP might also be employed in a theranostic approach in association with functionalized biotinylated nanoparticles.
Collapse
Affiliation(s)
- Sara Pastorino
- Nuclear Medicine Unit, S. Andrea Hospital, via Vittorio Veneto 197, 19124 La Spezia, Italy;
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, viale Cembrano 4, 16148 Genova, Italy; (S.B.); (G.A.); (G.Z.); (G.D.); (S.A.)
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, viale Cembrano 4, 16148 Genova, Italy; (S.B.); (G.A.); (G.Z.); (G.D.); (S.A.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genova, viale Cembrano 4, 16148 Genova, Italy; (S.B.); (G.A.); (G.Z.); (G.D.); (S.A.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, viale Cembrano 4, 16148 Genova, Italy; (S.B.); (G.A.); (G.Z.); (G.D.); (S.A.)
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Vanessa Cossu
- Department of Health Science, University of Genova—Nuclear Medicine Unit, via A. Pastore 1, 16132 Genova, Italy; (V.C.); (C.M.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Cecilia Marini
- Department of Health Science, University of Genova—Nuclear Medicine Unit, via A. Pastore 1, 16132 Genova, Italy; (V.C.); (C.M.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy;
- CNR Institute of Bioimages and Molecular Physiology, via Fratelli Cervi 93, 20090 Segrate, Italy
| | - Silvana Alfei
- Department of Pharmacy, University of Genova, viale Cembrano 4, 16148 Genova, Italy; (S.B.); (G.A.); (G.Z.); (G.D.); (S.A.)
| | - Tullio Florio
- IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy;
- Department of Internal Medicine, University of Genova, viale Benedetto XV 2, 16136 Genova, Italy
| | - Gianmario Sambuceti
- Department of Health Science, University of Genova—Nuclear Medicine Unit, via A. Pastore 1, 16132 Genova, Italy; (V.C.); (C.M.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, viale Cembrano 4, 16148 Genova, Italy; (S.B.); (G.A.); (G.Z.); (G.D.); (S.A.)
| |
Collapse
|
3
|
Pratesi A, Ginanneschi M, Melani F, Chinol M, Carollo A, Paganelli G, Lumini M, Bartoli M, Frediani M, Rosi L, Petrucci G, Messori L, Papini AM. Design and solid phase synthesis of new DOTA conjugated (+)-biotin dimers planned to develop molecular weight-tuned avidin oligomers. Org Biomol Chem 2015; 13:3988-4001. [DOI: 10.1039/c4ob02685c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligomeric architectures of avidin generated by a new class of bis-biotins.
Collapse
|
4
|
Germeroth AI, Hanna JR, Karim R, Kundel F, Lowther J, Neate PGN, Blackburn EA, Wear MA, Campopiano DJ, Hulme AN. Triazole biotin: a tight-binding biotinidase-resistant conjugate. Org Biomol Chem 2013; 11:7700-4. [PMID: 24108311 DOI: 10.1039/c3ob41837e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The natural amide bond found in all biotinylated proteins has been replaced with a triazole through CuAAC reaction of an alkynyl biotin derivative. The resultant triazole-linked adducts are shown to be highly resistant to the ubiquitous hydrolytic enzyme biotinidase and to bind avidin with dissociation constants in the low pM range. Application of this strategy to the production of a series of biotinidase-resistant biotin-Gd-DOTA contrast agents is demonstrated.
Collapse
Affiliation(s)
- Anne I Germeroth
- EaStCHEM School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
18F-PEG-biotin: Precursor (boroaryl-PEG-biotin) synthesis, 18F-labelling and an in-vitro assessment of its binding with Neutravidin™–trastuzumab pre-treated cells. Appl Radiat Isot 2011; 69:1395-400. [DOI: 10.1016/j.apradiso.2011.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/11/2011] [Accepted: 05/03/2011] [Indexed: 11/23/2022]
|
8
|
Martinelli J, Balali-Mood B, Panizzo R, Lythgoe MF, White AJP, Ferretti P, Steinke JHG, Vilar R. Coordination chemistry of amide-functionalised tetraazamacrocycles: structural, relaxometric and cytotoxicity studies. Dalton Trans 2010; 39:10056-67. [PMID: 20877892 DOI: 10.1039/c0dt00815j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three different tetraazamacrocyclic ligands containing four amide substituents that feature groups (namely allyl, styryl and propargyl groups) suitable for polymerisation have been synthesised. Gadolinium(III) complexes of these three ligands have been prepared as potential monomers for the synthesis of polymeric MRI contrast agents. To assess the potential of these monomers as MRI contrast agents, their relaxation enhancement properties and cytotoxicity have been determined. A europium(III) complex of one of these ligands (with propargyl substituents) is also presented together with its PARACEST properties. In addition, to gain further insight into the coordination chemistry of the tetra-propargyl substituted ligand, the corresponding zinc(II) and cadmium(II) complexes have been prepared. The X-ray crystal structures of the tetra-propargyl ligand and its corresponding gadolinium(III), zinc(II) and cadmium(II) complexes are also presented.
Collapse
|