1
|
Zhang T, Jiang S, Li T, Liu Y, Zhang Y. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. ACS OMEGA 2023; 8:25165-25184. [PMID: 37483233 PMCID: PMC10357434 DOI: 10.1021/acsomega.3c02243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023]
Abstract
Biologically equivalent replacements of key moieties in molecules rationalize scaffold hopping, patent busting, or R-group enumeration. Yet, this information may depend upon the expert-defined space, and might be subjective and biased toward the chemistries they get used to. Most importantly, these practices are often informatively incomplete since they are often compromised by a try-and-error cycle, and although they depict what kind of substructures are suitable for the replacement occurrence, they fail to explain the driving forces to support such interchanges. The protein data bank (PDB) encodes a receptor-ligand interaction pattern and could be an optional source to mine structural surrogates. However, manual decoding of PDB has become almost impossible and redundant to excavate the bioisosteric know-how. Therefore, a text parsing workflow has been developed to automatically extract the local structural replacement of a specific structure from PDB by finding spatial and steric interaction overlaps between the fragments in endogenous ligands and particular ligand fragments. Taking the glycosyl domain for instance, a total of 49 520 replacements that overlap on nucleotide ribose were identified and categorized based on their SMILE codes. A predominately ring system, such as aliphatic and aromatic rings, was observed; yet, amide and sulfonamide replacements also occur. We believe these findings may enlighten medicinal chemists on the structure design and optimization of ligands using the bioisosteric replacement strategy.
Collapse
Affiliation(s)
- Tinghao Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Shenghao Jiang
- School of
Computer Science, Northwestern Polytechnical
University, 127 West
Youyi Road, Xi’an 710072, China
| | - Ting Li
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yan Liu
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yuezhou Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
- Ningbo
Institute of Northwestern Polytechnical University, Frontiers Science
Center for Flexible Electronics (FSCFE), Key laboratory of Flexible
Electronics of Zhejiang Province, Ningbo Institute of Northwestern
Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| |
Collapse
|
2
|
Sargazi S, Shahraki S, Shahraki O, Zargari F, Sheervalilou R, Maghsoudi S, Soltani Rad MN, Saravani R. 8-Alkylmercaptocaffeine derivatives: antioxidant, molecular docking, and in-vitro cytotoxicity studies. Bioorg Chem 2021; 111:104900. [PMID: 33894429 DOI: 10.1016/j.bioorg.2021.104900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Due to their unique pharmacological characteristics, methylxanthines are known as therapeutic agents in a fascinating range of medicinal scopes. In this report, we aimed to examine some biological effects of previously synthesized 8-alkylmercaptocaffeine derivatives. Cytotoxic and antioxidative activity of 8-alkylmercaptocaffeine derivatives were measured in malignant A549, MCF7, and C152 cell lines. Assessment of cGMP levels and caspase-3 activity were carried out using a colorimetric competitive ELISA kit. Computational approaches were employed to discover the inhibitory mechanism of synthesized compounds. Among the twelve synthesized derivatives, three compounds (C1, C5, and C7) bearing propyl, heptyl, and 3-methyl-butyl moieties showed higher and more desirable cytotoxic activity against all the studied cell lines (IC50 < 100 µM). Furthermore, C5 synergistically enhanced cisplatin-induced cytotoxicity in MCF-7 cells (CI < 1). Both C5 and C7 significantly increased caspase-3 activity and intracellular cGMP levels at specific time intervals in all studied cell lines (P < 0.05). However, these derivatives did not elevate LDH leakage (P > 0.05) and exhibited no marked ameliorating effects on oxidative damage (P > 0.05). Computational studies showed that H-bond formation between the nitrogen atom in pyrazolo[4,3-D] pyrimidine moiety with Gln817 and creating a hydrophobic cavity result in the stability of the alkyl group in the PDE5A active site. We found that synthesized 8-alkylmercaptocaffeine derivatives induced cell death in different cancer cells through the cGMP pathway. These findings will help us to get a deeper insight into the role of methylxanthines as useful alternatives to conventional cancer therapeutics.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Farshid Zargari
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Chemistry, Faculty of Science, University of Sistan and balouchestan, Zahedan, Iran
| | | | - Saeid Maghsoudi
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Mohammad Navid Soltani Rad
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
3
|
Chan AM, Fletcher S. Shifting the paradigm in treating multi-factorial diseases: polypharmacological co-inhibitors of HDAC6. RSC Med Chem 2021; 12:178-196. [PMID: 34046608 PMCID: PMC8127619 DOI: 10.1039/d0md00286k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 01/20/2023] Open
Abstract
Multi-factorial diseases are illnesses that exploit multiple cellular processes, or stages within one process, and thus highly targeted therapies often succumb to the disease, losing efficacy as resistance sets in. Combination therapies have become a mainstay to battle these diseases, however these regimens are plagued with caveats. An emerging avenue to treat multi-factorial diseases is polypharmacology, wherein a single drug is rationally designed to bind multiple targets, and is widely touted to be superior to combination therapy by inherently addressing the latter's shortcomings, which include poor patient compliance, narrow therapeutic windows and spiraling healthcare costs. Through its roles in intracellular trafficking, cell motility, mitosis, protein folding and as a back-up to the proteasome pathway, HDAC6 has rapidly become an exciting new target for therapeutics, particularly in the discovery of new drugs to treat Alzheimer's disease and cancer. Herein, we describe recent efforts to marry together HDAC pharmacophores, with a particular emphasis on HDAC6 selectivity, with those of other targets towards the discovery of potent therapeutics to treat these evasive diseases. Such polypharmacological agents may supercede combination therapies through inherent synergism, permitting reduced dosing, wider therapeutic windows and improved compliance.
Collapse
Affiliation(s)
- Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N Pine St Baltimore MD 21201 USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N Pine St Baltimore MD 21201 USA
- University of Maryland Greenebaum Cancer Center 22 S Greene St Baltimore MD 21201 USA
| |
Collapse
|
4
|
Nadur NF, de Azevedo LL, Caruso L, Graebin CS, Lacerda RB, Kümmerle AE. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur J Med Chem 2020; 212:113123. [PMID: 33412421 DOI: 10.1016/j.ejmech.2020.113123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.
Collapse
Affiliation(s)
- Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Luciana Luiz de Azevedo
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.
| |
Collapse
|
5
|
Hsieh CM, Chen CY, Chern JW, Chan NL. Structure of Human Phosphodiesterase 5A1 Complexed with Avanafil Reveals Molecular Basis of Isoform Selectivity and Guidelines for Targeting α-Helix Backbone Oxygen by Halogen Bonding. J Med Chem 2020; 63:8485-8494. [DOI: 10.1021/acs.jmedchem.0c00853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chao-Ming Hsieh
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Yi Chen
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
6
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Tan H, Wu W, Xu M, Pineda-Lucena A, Garcia-Osta A, Oyarzabal J. Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chem Neurosci 2019; 10:4076-4101. [PMID: 31441641 DOI: 10.1021/acschemneuro.9b00303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).
Collapse
Affiliation(s)
| | | | - Mar Cuadrado-Tejedor
- Pathology, Anatomy and Physiology Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | | | | | | | | | | | | - Maria Espelosin
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Susana Ursua
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Haizhong Tan
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Wei Wu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Musheng Xu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | | | - Ana Garcia-Osta
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | |
Collapse
|
7
|
Tajima T, Shinoda T, Urakawa N, Shimizu K, Kaneda T. Phosphodiesterase 9 (PDE9) regulates bovine tracheal smooth muscle relaxation. J Vet Med Sci 2018; 80:499-502. [PMID: 29386424 PMCID: PMC5880833 DOI: 10.1292/jvms.18-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The present study was designed to clarify phosphodiesterase 9 (PDE9) expression in bovine tracheal smooth muscle tissue, and to elucidate that PDE9 may contribute to the regulation of airway relaxation. PDE9 mRNA expression was detected in bovine tracheal smooth muscle. Sodium nitroprusside (an NO donor) and BAY 73-6691 (a selective PDE9 inhibitor) reduced high K+- and carbachol-induced contraction. BAY 73-6691 relaxed tracheal tissue on the same level with vardenafil (a selective PDE5 inhibitor). These results support our hypothesis that PDE9 plays functional role in the tracheal smooth muscle relaxation. PDE9 inhibitors are expected to be a novel target of the add-on treatment of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Tsuyoshi Tajima
- Laboratory of Veterinary Pharmacology, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Tamami Shinoda
- Laboratory of Veterinary Pharmacology, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Norimoto Urakawa
- Laboratory of Veterinary Pharmacology, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Kazumasa Shimizu
- Laboratory of Veterinary Pharmacology, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Takeharu Kaneda
- Laboratory of Veterinary Pharmacology, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-cho, Musashino-shi, Tokyo 180-8602, Japan
| |
Collapse
|
8
|
Jansen C, Kooistra AJ, Kanev GK, Leurs R, de Esch IJP, de Graaf C. PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. J Med Chem 2016; 59:7029-65. [DOI: 10.1021/acs.jmedchem.5b01813] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chimed Jansen
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Albert J. Kooistra
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Georgi K. Kanev
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Anion-/cation-directed reaction routes to polymorphic forms of a pyrazole-type ligand and its coordination compounds with zinc. Key structural differences between polymorphs’. Struct Chem 2016. [DOI: 10.1007/s11224-015-0734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Huang M, Shao Y, Hou J, Cui W, Liang B, Huang Y, Li Z, Wu Y, Zhu X, Liu P, Wan Y, Ke H, Luo HB. Structural Asymmetry of Phosphodiesterase-9A and a Unique Pocket for Selective Binding of a Potent Enantiomeric Inhibitor. Mol Pharmacol 2015; 88:836-45. [PMID: 26316540 DOI: 10.1124/mol.115.099747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/24/2015] [Indexed: 01/21/2023] Open
Abstract
Phosphodiesterase-9 (PDE9) inhibitors have been studied as potential therapeutics for treatment of central nervous system diseases and diabetes. Here, we report the discovery of a new category of PDE9 inhibitors by rational design on the basis of the crystal structures. The best compound, (S)-6-((1-(4-chlorophenyl)ethyl)amino)-1-cyclopentyl-1,5,6,7-tetrahydro-4H-pyrazolo[3,4-day]pyrimidin-4-one [(S)-C33], has an IC50 value of 11 nM against PDE9 and the racemic C33 has bioavailability of 56.5% in the rat pharmacokinetic model. The crystal structures of PDE9 in the complex with racemic C33, (R)-C33, and (S)-C33 reveal subtle conformational asymmetry of two M-loops in the PDE9 dimer and different conformations of two C33 enantiomers. The structures also identified a small hydrophobic pocket that interacts with the tyrosyl tail of (S)-C33 but not with (R)-C33, and is thus possibly useful for improvement of selectivity of PDE9 inhibitors. The asymmetry of the M-loop and the different interactions of the C33 enantiomers imply the necessity to consider the whole PDE9 dimer in the design of inhibitors.
Collapse
Affiliation(s)
- Manna Huang
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yongxian Shao
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Jianying Hou
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Wenjun Cui
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Beibei Liang
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yingchun Huang
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Zhe Li
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yinuo Wu
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Xinhai Zhu
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Peiqing Liu
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Yiqian Wan
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Hengming Ke
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| | - Hai-Bin Luo
- School of Chemistry and Chemical Engineering (M.H., J.H., X.Z. Yiq.W.), School of Pharmaceutical Sciences (Y.S., Z.L., Yin.W., P.L., H.-B.L.), Sun Yat-Sen University, Guangzhou, PR China; and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (W.C., B.L., Y.H., H.K.)
| |
Collapse
|
11
|
Shao YX, Huang M, Cui W, Feng LJ, Wu Y, Cai Y, Li Z, Zhu X, Liu P, Wan Y, Ke H, Luo HB. Discovery of a phosphodiesterase 9A inhibitor as a potential hypoglycemic agent. J Med Chem 2014; 57:10304-13. [PMID: 25432025 PMCID: PMC4281101 DOI: 10.1021/jm500836h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Phosphodiesterase 9 (PDE9) inhibitors
have been studied as potential therapeutics for treatment of diabetes
and Alzheimer’s disease. Here we report a potent PDE9 inhibitor 3r that has an IC50 of 0.6 nM and >150-fold
selectivity over other PDEs. The HepG2 cell-based assay shows that 3r inhibits the mRNA expression of phosphoenolpyruvate carboxykinase
and glucose 6-phosphatase. These activities of 3r, together
with the reasonable pharmacokinetic properties and no acute toxicity
at 1200 mg/kg dosage, suggest its potential as a hypoglycemic agent.
The crystal structure of PDE9-3r reveals significantly
different conformation and hydrogen bonding pattern of 3r from those of previously published 28s. Both 3r and 28s form a hydrogen bond with Tyr424,
a unique PDE9 residue (except for PDE8), but 3r shows
an additional hydrogen bond with Ala452. This structure information
might be useful for design of PDE9 inhibitors.
Collapse
Affiliation(s)
- Yong-xian Shao
- School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou 510006, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li Z, Lu X, Feng LJ, Gu Y, Li X, Wu Y, Luo HB. Molecular dynamics-based discovery of novel phosphodiesterase-9A inhibitors with non-pyrazolopyrimidinone scaffolds. MOLECULAR BIOSYSTEMS 2014; 11:115-25. [PMID: 25328054 DOI: 10.1039/c4mb00389f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phosphodiesterase-9A (PDE9A) is a promising therapeutic target for the treatment of diabetes and Alzheimer's disease (AD). The Pfizer PDE9A inhibitor PF-04447943 has completed Phase II clinical trials in subjects with mild to moderate AD in 2013. However, most of the reported PDE9A inhibitors share the same scaffold as pyrazolopyrimidinone, which lacks structural diversity and is unfavorable for the development of novel PDE9A inhibitors. In the present study, a combinatorial method including pharmacophores, molecular docking, molecular dynamics simulations, binding free energy calculations, and bioassay was used to discover novel PDE9A inhibitors with new scaffolds rather than pyrazolopyrimidinones from the SPECS database containing about 200,000 compounds. As a result, 15 hits out of 29 molecules (a hit rate of 52%) with five novel scaffolds were identified to be PDE9A inhibitors with inhibitory affinities no more than 50 μM to enrich the structural diversity, different from the pyrazolopyrimidinone-derived family. The high hit ratio of 52% for this virtual screening method indicated that the combinatorial method is a good compromise between computational cost and accuracy. Binding pattern analyses indicate that those hits with non-pyrazolopyrimidinone scaffolds can bind the same active site pocket of PDE9A as classical PDE9A inhibitors. In addition, structural modification of compound AG-690/40135604 (IC50=8.0 μM) led to a new one, 16, with an improved inhibitory affinity of 2.1 μM as expected. The five novel scaffolds discovered in the present study can be used for the rational design of PDE9A inhibitors with higher affinities.
Collapse
Affiliation(s)
- Zhe Li
- School of Pharmaceutical Sciences, SunYat-Sen University, Guangzhou 510006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Claffey MM, Helal CJ, Hou X. PDEs as CNS Targets: PDE9 Inhibitors for Cognitive Deficit Diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/9783527682348.ch08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Phosphodiesterase 9: Insights from protein structure and role in therapeutics. Life Sci 2014; 106:1-11. [DOI: 10.1016/j.lfs.2014.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 01/17/2023]
|
15
|
Meng F, Hou J, Shao YX, Wu PY, Huang M, Zhu X, Cai Y, Li Z, Xu J, Liu P, Luo HB, Wan Y, Ke H. Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design. J Med Chem 2012; 55:8549-58. [PMID: 22985069 PMCID: PMC3469756 DOI: 10.1021/jm301189c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new series of phosphodiesterase-9 (PDE9) inhibitors that contain a scaffold of 6-amino-pyrazolopyrimidinone have been discovered by a combination of structure-based design and computational docking. This procedure significantly saved the load of chemical synthesis and is an effective method for the discovery of inhibitors. The best compound 28 has an IC(50) of 21 nM and 3.3 μM, respectively, for PDE9 and PDE5 and about 3 orders of magnitude of selectivity against other PDE families. The crystal structure of the PDE9 catalytic domain in complex with 28 has been determined and shows a hydrogen bond between 28 and Tyr424. This hydrogen bond may account for the 860-fold selectivity of 28 against PDE1B, in comparison with about 30-fold selectivity of BAY73-6691. Thus, our studies suggest that Tyr424, a unique residue of PDE8 and PDE9, is a potential target for improvement of selectivity of PDE9 inhibitors.
Collapse
Affiliation(s)
- Fei Meng
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jing Hou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yong-Xian Shao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Pei-Ying Wu
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Manna Huang
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xinhai Zhu
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yonghong Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jie Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yiqian Wan
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hengming Ke
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
16
|
Hou J, Xu J, Liu M, Zhao R, Luo HB, Ke H. Structural asymmetry of phosphodiesterase-9, potential protonation of a glutamic acid, and role of the invariant glutamine. PLoS One 2011; 6:e18092. [PMID: 21483814 PMCID: PMC3069055 DOI: 10.1371/journal.pone.0018092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/21/2011] [Indexed: 11/18/2022] Open
Abstract
PDE9 inhibitors show potential for treatment of diseases such as diabetes. To help with discovery of PDE9 inhibitors, we performed mutagenesis, kinetic, crystallographic, and molecular dynamics analyses on the active site residues of Gln453 and its stabilizing partner Glu406. The crystal structures of the PDE9 Q453E mutant (PDE9Q453E) in complex with inhibitors IBMX and (S)-BAY73-6691 showed asymmetric binding of the inhibitors in two subunits of the PDE9Q453E dimer and also the significant positional change of the M-loop at the active site. The kinetic analysis of the Q453E and E406A mutants suggested that the invariant glutamine is critical for binding of substrates and inhibitors, but is unlikely to play a key role in the differentiation between substrates of cGMP and cAMP. The molecular dynamics simulations suggest that residue Glu406 may be protonated and may thus explain the hydrogen bond distance between two side chain oxygens of Glu453 and Glu406 in the crystal structure of the PDE9Q453E mutant. The information from these studies may be useful for design of PDE9 inhibitors.
Collapse
Affiliation(s)
- Jing Hou
- Structural Biology Lab, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jie Xu
- Structural Biology Lab, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ming Liu
- Structural Biology Lab, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruizhi Zhao
- Structural Biology Lab, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hai-Bin Luo
- Structural Biology Lab, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hengming Ke
- Structural Biology Lab, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|