1
|
Hue BTB, Nguyet Huong Giang H, Nguyen CQ, Chou FP, La Duc Thanh D, Tran QD, Hieu VT, Hoang Phuong Mai L, Lin HC, Wu TK. Discovery of a novel benzimidazole conjugated quinazolinone derivative as a promising SARS-CoV-2 3CL protease inhibitor. RSC Adv 2024; 14:33820-33829. [PMID: 39450066 PMCID: PMC11500731 DOI: 10.1039/d4ra03267e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024] Open
Abstract
This report presents the design and synthesis of quinazolinone-based derivatives as promising SARS-CoV-2 3CL protease inhibitors. Two novel series, namely, febrifugine analogues 4a-i and quinazolinone conjugated benzimidazoles 9a-c, were successfully synthesized starting from isatoic anhydride. The synthesized quinazolinone derivatives were evaluated for their cytotoxicity against cancer cell lines and SARS-CoV-2 3CL inhibitory activity. The results showed that the synthesized compounds did not have significant toxicity for the non-cancer HEK293 cell line and MCF-7, MDA-MB-231, HEPG2 and HEPG2.2.15 cancer cell lines. Notably, compound 9b exhibited anti-3CL enzymatic activity in a dose-dependent manner, with the calculated IC50 value of 10.73 ± 1.17 μM. Docking results highlighted the interaction between 9b and 3CL protease through hydrogen bonding with key amino acids, including His41, Met49, Cys145, Met165, Arg188, His164, and Glu166, at the active site of the protease. Pharmacokinetic studies and ADME analyses provide valuable insights into the potential of compound 9b as a drug candidate. These findings support the new scaffold as a candidate for 3CLpro inhibition and advanced anti-coronavirus drug research.
Collapse
Affiliation(s)
- Bui Thi Buu Hue
- College of Natural Sciences, Can Tho University Can Tho 94000 Vietnam
| | - Huynh Nguyet Huong Giang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Cuong Quoc Nguyen
- College of Natural Sciences, Can Tho University Can Tho 94000 Vietnam
| | - Feng-Pai Chou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu 30010 Taiwan
| | - Danh La Duc Thanh
- College of Natural Sciences, Can Tho University Can Tho 94000 Vietnam
- Department of Material Science, National Yang Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu 30010 Taiwan
| | - Quang De Tran
- College of Natural Sciences, Can Tho University Can Tho 94000 Vietnam
| | - Vo Trung Hieu
- College of Natural Sciences, Can Tho University Can Tho 94000 Vietnam
| | | | - Hong-Cheu Lin
- Department of Material Science, National Yang Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu 30010 Taiwan
| | - Tung-Kung Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu 30010 Taiwan
| |
Collapse
|
2
|
Masoudinia S, Samadizadeh M, Safavi M, Bijanzadeh HR, Foroumadi A. Novel quinazolines bearing 1,3,4-thiadiazole-aryl urea derivative as anticancer agents: design, synthesis, molecular docking, DFT and bioactivity evaluations. BMC Chem 2024; 18:30. [PMID: 38347613 PMCID: PMC10863284 DOI: 10.1186/s13065-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
A novel series of 1-(5-((6-nitroquinazoline-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-phenylurea derivatives 8 were designed and synthesized to evaluate their cytotoxic potencies. The structures of these obtained compounds were thoroughly characterized by IR, 1H, and 13C NMR, MASS spectroscopy and elemental analysis methods. Additionally, their in vitro anticancer activities were investigated using the MTT assay against A549 (human lung cancer), MDA-MB231 (human triple-negative breast cancer), and MCF7 (human hormone-dependent breast cancer). Etoposide was used as a reference marketed drug for comparison. Among the compounds tested, compounds 8b and 8c demonstrated acceptable antiproliferative activity, particularly against MCF7 cells. Considering the potential VEGFR-2 inhibitor potency of these compounds, a molecular docking study was performed for the most potent compound, 8c, to determine its probable interactions. Furthermore, computational investigations, including molecular dynamics, frontier molecular orbital analysis, Fukui reactivity descriptor, electrostatic potential surface, and in silico ADME evaluation for all compounds were performed to illustrate the structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Sara Masoudinia
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Marjaneh Samadizadeh
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Hamid Reza Bijanzadeh
- Department of Environment, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Xie SC, Griffin MDW, Winzeler EA, Ribas de Pouplana L, Tilley L. Targeting Aminoacyl tRNA Synthetases for Antimalarial Drug Development. Annu Rev Microbiol 2023; 77:111-129. [PMID: 37018842 DOI: 10.1146/annurev-micro-032421-121210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain;
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Leann Tilley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| |
Collapse
|
4
|
Jiang W, Li Y, Liu JQ, Wang XS. Copper-Catalyzed Consecutive Ullmann, Decarboxylation, Oxidation, and Dehydration Reaction for Synthesis of Pyrrolo or Pyrido[1,2- a]imidazo[1,2- c]quinazolines. Org Lett 2023; 25:5123-5127. [PMID: 37382582 DOI: 10.1021/acs.orglett.3c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
A protocol for a copper-catalyzed intermolecular cross-coupling cascade between 2-(2-bromoaryl)-1H-benzo[d]imidazole analogues and proline or pipecolic acid has been developed. The developed protocol allows access to a variety of synthetically useful N-fused pyrrolo or pyrido[1,2-a]imidazo[1,2-c]quinazoline scaffolds with high efficiency and good functional group compatibility. Proline or pipecolic acid plays a dual role in the reaction: as ligand and reactants. A mechanistically consecutive approach for the Ullmann coupling, decarboxylation, oxidation, and dehydration reaction process was presented.
Collapse
Affiliation(s)
- Weidong Jiang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Ye Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
5
|
A Novel Biaryl Derivative from Hydrangea chinensis. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Shang XF, Morris-Natschke SL, Liu YQ, Li XH, Zhang JY, Lee KH. Biology of quinoline and quinazoline alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 88:1-47. [PMID: 35305754 DOI: 10.1016/bs.alkal.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quinoline and quinazoline alkaloids, two important classes of N-based heterocyclic compounds, have attracted scientific and popular interest worldwide since the 19th century. More than 600 compounds have been isolated from nature to date. To build on our two prior reviews, we reexamined the promising molecules described in previous reports and provided updated literature on novel quinoline and quinazoline alkaloids isolated over the past 5 years. This chapter reviews and discusses 205 molecules with a broad range of bioactivities, including antiparasitic and insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-inflammatory, and other effects. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Beijing You'an Hospital, Capital Medical University, Beijing, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China; School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China.
| | - Xiu-Hui Li
- Beijing You'an Hospital, Capital Medical University, Beijing, PR China.
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Tamilselvi V, Ramesh R, Lalitha A. p-TSA Catalyzed One-Pot Synthesis of 2-(1H-Indol-3-yl)-3-Phenylquinazolin-4(3H)-Ones. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Rathinam Ramesh
- Department of Chemistry, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - Appaswami Lalitha
- Department of Chemistry, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
8
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|
9
|
Yang TL, Kao CL, Kuo CE, Yeh HC, Li HT, Li WJ, Chen CY. Secondary Metabolites of Hydrangea chinensis. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03411-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Camadan Y, Çiçek B, Adem Ş, Çalişir Ü, Akkemik E. Investigation of in vitro and in silico effects of some novel carbazole Schiff bases on human carbonic anhydrase isoforms I and II. J Biomol Struct Dyn 2021; 40:6965-6973. [PMID: 33645441 DOI: 10.1080/07391102.2021.1892527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Carbonic anhydrases (CAs, EC4.2.1.1) are metalloenzymes that catalyse reversible hydration reaction of carbon dioxide to bicarbonate and protons. In recent years, there has been a great interest in inhibitors/activators of carbonic anhydrase isoenzymes. Therefore, we investigated the effects of four different carbazole Schiff base derivatives, which are believed to have a potential to be used as a drug, on human carbonic anhydrase (hCA) isoenzymes I and II under in vitro conditions. The IC50 values of carbazole Schiff base derivatives were found to be in the range of 32.09-151.2 μM for hCA isoenzyme I and 21.82-40.54 μM for hCA isoenzyme II. Among all compounds, (E)-3-(((9-Octyl-9H-carbazole-3-yl)imino)methyl)benzene-1,2-diol (C3) had the strongest inhibitory effect on hCA isoenzyme II. It was determined that 2,3,4-trimethoxy and 4-hydroxy phenyl containing carbazole compounds have selective inhibition against hCA II isoenzyme. Docking studies were performed against hCA I and II receptors using induced-fit docking method. The compounds had affinity scores varying from -7.74 ± 0.27 to -6.27 ± 0.07 kcal/mol for hCA I and from -8.04 ± 0.17 to -7.27 ± 0.18 kcal/mol for hCA II.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yasemin Camadan
- Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Baki Çiçek
- Faculty Arts and Sciences, Chemistry Department, Balıkesir University, Balıkesir, Turkey
| | - Şevki Adem
- Faculty Arts and Sciences, Chemistry Department, Cankiri Karatekin University, Cankiri, Turkey
| | - Ümit Çalişir
- Science and Technology Research and Application Center, Siirt University, Siirt, Turkey
| | - Ebru Akkemik
- Science and Technology Research and Application Center, Siirt University, Siirt, Turkey.,Faculty of Engineering, Food Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
11
|
Zhou J, Huang Z, Zheng L, Hei Z, Wang Z, Yu B, Jiang L, Wang J, Fang P. Inhibition of Plasmodium falciparum Lysyl-tRNA synthetase via an anaplastic lymphoma kinase inhibitor. Nucleic Acids Res 2021; 48:11566-11576. [PMID: 33053158 PMCID: PMC7672456 DOI: 10.1093/nar/gkaa862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Aminoacyl-tRNA synthetases are attractive targets for the development of antibacterial, antifungal, antiparasitic agents and for the treatment of other human diseases. Lysyl-tRNA synthetase (LysRS) from this family has been validated as a promising target for the development of antimalarial drugs. Here, we developed a high-throughput compatible assay and screened 1215 bioactive compounds to identify Plasmodium falciparum cytoplasmic LysRS (PfLysRS) inhibitor. ASP3026, an anaplastic lymphoma kinase inhibitor that was used in clinical trials for the treatment of B-cell lymphoma and solid tumors, was identified as a novel PfLysRS inhibitor. ASP3026 suppresses the enzymatic activity of PfLysRS at nanomolar potency, which is >380-fold more effective than inhibition of the human counterpart. In addition, the compound suppressed blood-stage P. falciparum growth. To understand the molecular mechanism of inhibition by ASP3026, we further solved the cocrystal structure of PfLysRS-ASP3026 at a resolution of 2.49 Å, providing clues for further optimization of the compound. Finally, primary structure-activity relationship analyses indicated that the inhibition of PfLysRS by ASP3026 is highly structure specific. This work not only provides a new chemical scaffold with good druggability for antimalarial development but also highlights the potential for repurposing kinase-inhibiting drugs to tRNA synthetase inhibitors to treat human diseases.
Collapse
Affiliation(s)
- Jintong Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhenghui Huang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhiyong Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
12
|
Li X, Yang H, Hu Z, Jin X, Zhang W, Guo X. Synthesis of 4(3 H)-Quinazolinones by Visible-Light-Induced 2-Benzylaminobenzamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zhou J, Zheng L, Hei Z, Li W, Wang J, Yu B, Fang P. Atomic Resolution Analyses of Isocoumarin Derivatives for Inhibition of Lysyl-tRNA Synthetase. ACS Chem Biol 2020; 15:1016-1025. [PMID: 32195573 DOI: 10.1021/acschembio.0c00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aminoacyl-tRNA synthetases, the essential enzyme family for protein translation, are attractive targets for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The antimalarial natural product cladosporin was discovered recently as a novel lysyl-tRNA synthetase (LysRS) specific inhibitor. Here, we report a thorough analysis of cladosporin derivatives using chemical synthesis, biophysical, and biochemical experiments. A series of isocoumarin derivatives with only one nonhydrogen atom/bond change per compound was synthesized. These changes include replacements of methyltetrahydropyran moiety by methylcyclohexane or cyclohexane, lactone by lactam, hydroxyl groups by methoxyl groups, and dismission of the chiral center at C3 with a Δ3,4 double bond. We evaluated these compounds by thermal shift assays and enzymatic experiments and further studied their molecular recognition by the Plasmodium falciparum LysRS through total five high-resolution crystal structures. Our results showed that the methyltetrahydropyran moiety of cladosporin could be replaced by a more stable methylcyclohexane without reducing binding ability. Removing the methyl group from the methylcyclohexane moiety slightly decreased the interaction with LysRS. Besides, the replacement with a lactam group or a conjugated Δ3,4 double bond within the scaffold could be two more options to optimize the compound. Lastly, the two phenolic hydroxyl groups were critical for the compounds to bind LysRS. The detailed analyses at atomic resolution in this study provide a foundation for the further development of new antibiotics from cladosporin derivatives.
Collapse
Affiliation(s)
- Jintong Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
14
|
Hussen AS, Bagchi S, Sharma A. Ammonium Chloride Assisted Microwave Mediated Domino Multicomponent Reaction: An Efficient and Sustainable Synthesis of Quinazolin‐4(3
H
)‐imines under Solvent Free Condition. ChemistrySelect 2019. [DOI: 10.1002/slct.201900923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Sourav Bagchi
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee- 247667
| | - Anuj Sharma
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee- 247667
| |
Collapse
|
15
|
Sunil Kumar A, Kudva J, Lahtinen M, Peuronen A, Sadashiva R, Naral D. Synthesis, characterization, crystal structures and biological screening of 4-amino quinazoline sulfonamide derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Zeng X, Sun J, Liu C, Ji C, Peng Y. Catalytic Asymmetric Cyanation Reactions of Aldehydes and Ketones in Total Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xing‐Ping Zeng
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| | - Jun‐Chao Sun
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| | - Chao Liu
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| | - Cong‐Bin Ji
- Jiangxi Provincial Research of Targeting Pharmaceutical Engineering TechnologyShangrao Normal University Shangrao Jiangxi 334001 People's Republic of China
| | - Yi‐Yuan Peng
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| |
Collapse
|
17
|
Brahmachari G, Nurjamal K, Begam S, Mandal M, Nayek N, Karmakar I, Mandal B. Alum (KAl(SO4)2.12H2O) - An Eco-friendly and Versatile Acid-catalyst in Organic Transformations: A Recent Update. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666190307160332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potassium alum (KAl(SO4)2.12H2O), commonly known as ‘alum’, has recently drawn the attention of synthetic chemists as an efficient, safe and eco-friendly acid catalyst in implementing a large number of organic transformations, thereby generating interesting molecular frameworks. The present review article offers an overview of the potent catalytic applications of this commercially available and low-cost inorganic sulfate salt in organic reactions reported during the period of 2014 to 2018.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Khondekar Nurjamal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Bhagirath Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
18
|
Luo Y, He H, Li J, Yu X, Guan M, Wu Y. Catalyst-controlled selective mono-/dialkylation of 2-aryl-4(3H)-quinazolinones. Org Chem Front 2019. [DOI: 10.1039/c9qo00496c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Catalyst-controlled selective mono-/dialkylation of 2-aryl-4(3H)-quinazolinones with α-diazotized Meldrum's acid has been achieved successfully via a metal carbene migratory insertion process.
Collapse
Affiliation(s)
- Yi Luo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Hua He
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Xinling Yu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Mei Guan
- West China School of Pharmacy and West China Hospital Sichuan University
- Chengdu 610041
- P. R. China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| |
Collapse
|
19
|
Kumar AS, Kudva J, Bharath BR, Rai VM, Kumar SM, Kumar V, Sajankila SP. Synthesis, Characterization, Molecular Docking Studies and Biological Evaluation of Some Conjugated Quinazoline-Sulfonamide Scaffold. ChemistrySelect 2018. [DOI: 10.1002/slct.201802402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A. Sunil Kumar
- Department of Chemistry; St Joseph Engineering College; Mangaluru- 575028 India
| | - Jyothi Kudva
- Department of Chemistry; St Joseph Engineering College; Mangaluru- 575028 India
| | - B. R. Bharath
- Department of Biotechnology; NMAM Institute of Technology; Nitte- 574110 India
| | - Vaishali M Rai
- Department of Biochemistry; Yenepoya University; Mangaluru- 575 018 India
| | - S. Madan Kumar
- DST-PURSE Lab; Mangalagangotri; Mangalore University; Mangaluru- 574199 India
| | - Vasantha Kumar
- Department of Chemistry; Sri Dharmasthala Manjunatheshwara College (Autonomous); Ujire- 574240, India
| | | |
Collapse
|
20
|
Kang H, Wang W, Sun Q, Yang S, Jin J, Zhang X, Ren X, Zhang J, Zhou J. Microwave-assisted synthesis of quinazolin-4(3H)-ones catalyzed by SbCl3. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2018-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Antimony(III) trichloride (SbCl3) is an effective catalyst (1 mol%) for the condensation of anthranilic amide with various aldehydes or ketones to quinazolin-4(3H)-one derivatives in good to excellent yields under microwave irradiation. The process is carried out within several minutes under solvent-free conditions. This general methodology has the advantages of simplicity, mild reaction conditions and high yields of products.
Collapse
|
21
|
Yuan W, Pan Y, Zhang X, Liang P, Zhang J, Jiao W, Shao H. Direct and highly stereoselective synthesis of quinolizidine iminosugars promoted by l-proline-Et 3N. Org Biomol Chem 2018; 16:9230-9236. [PMID: 30483692 DOI: 10.1039/c8ob01953c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and effective method for the synthesis of polyhydroxylated quinolizidine iminosugars is described. The Mannich-type reaction of iminosugar C-glycosides with aldehyde in the presence of l-proline-Et3N provides polyhydroxylated quinolizidine iminosugars, and desired products as the potential glucosidase inhibitors were obtained in good to excellent yields with excellent stereoselectivity.
Collapse
Affiliation(s)
- Wen Yuan
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The bismuth-catalyzed oxidative condensation of aldehydes with 2-aminobenzamide under aerobic conditions is reported using ethanol as the solvent. Good to excellent isolated yields (68-95%) of the corresponding 2-substituted quinazolinones were obtained under mild reaction conditions with excellent functional group tolerance. The quinazolinones were further functionalized to afford N-allylated quinazolinones, 2-aminopyridine derivatives, and annulated polyheterocyclic compounds via transition-metal catalyzed reactions.
Collapse
Affiliation(s)
- Sandeep R. Vemula
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Gregory R. Cook
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
23
|
Synthesis, characterization, crystal structure, Hirshfeld interaction and bio-evaluation studies of 4-amino quinazoline sulfonamide derivatives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Shang XF, Morris-Natschke SL, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Yang GZ, Lee KH. Biologically active quinoline and quinazoline alkaloids part I. Med Res Rev 2018; 38:775-828. [PMID: 28902434 PMCID: PMC6421866 DOI: 10.1002/med.21466] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 01/11/2023]
Abstract
Quinoline and quinazoline alkaloids, two important classes of N-based heterocyclic compounds, have attracted tremendous attention from researchers worldwide since the 19th century. Over the past 200 years, many compounds from these two classes were isolated from natural sources, and most of them and their modified analogs possess significant bioactivities. Quinine and camptothecin are two of the most famous and important quinoline alkaloids, and their discoveries opened new areas in antimalarial and anticancer drug development, respectively. In this review, we survey the literature on bioactive alkaloids from these two classes and highlight research achievements prior to the year 2008 (Part I). Over 200 molecules with a broad range of bioactivities, including antitumor, antimalarial, antibacterial and antifungal, antiparasitic and insecticidal, antiviral, antiplatelet, anti-inflammatory, herbicidal, antioxidant and other activities, were reviewed. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Xiao Guo
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Xiao-Shan Xu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Smullen S, McLaughlin NP, Evans P. Chemical synthesis of febrifugine and analogues. Bioorg Med Chem 2018; 26:2199-2220. [PMID: 29681487 DOI: 10.1016/j.bmc.2018.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
The quinazolinone-containing 2,3-disubstituted piperidines febrifugine and isofebrifugine have been the subject of significant research efforts since their occurrence in Dichroa febrifuga and their anti-malarial actions were first described in the late 1940s. Subsequently they have also been shown to be present in other plants belonging to the hydrangea family and various analogues of febrifugine have been prepared in attempts to tune biological properties. The most notable analogue is termed halofuginone and a substantial body of work now demonstrates that this compound possesses potent human disease relevant activities. This review focuses on the literature associated with efforts dedicated towards uncovering the structures of febrifugine and isofebrifugine, the development of practical methods for their synthesis and the syntheses of structural analogues.
Collapse
Affiliation(s)
- Shaun Smullen
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Noel P McLaughlin
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Paul Evans
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
26
|
Zhang X, Wang S, Liu Y, Xi C. Triflates-Triggered Intermolecular Cyclization of Carbodiimides Leading to 2-Aminoquinazolinone and 2,4-Diaminoquinazoline Derivatives. Org Lett 2018; 20:2148-2151. [DOI: 10.1021/acs.orglett.8b00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaowei Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sheng Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Smullen S, Evans P. Asymmetric synthesis of (−)- and (+)-neodichroine/hydrachine A from (+)- and (−)-febrifugine. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Lu CJ, Chen DK, Chen H, Wang H, Jin H, Huang X, Gao J. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes. Org Biomol Chem 2017; 15:5756-5763. [PMID: 28654125 DOI: 10.1039/c7ob01119a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.
Collapse
Affiliation(s)
- Chuan-Jun Lu
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Dong-Kai Chen
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Hong Chen
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Hong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | | | - Jianrong Gao
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| |
Collapse
|
29
|
Abdi M, Rostamizadeh S, Zekri N. An Efficient and Green Synthesis of 1′Hspiro[isoindoline-1,2′-quinazoline]-3,4′(3′H)-dione Derivatives in the Presence of Nano Fe3O4–GO–SO3H. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1340313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahdieh Abdi
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, Tehran, I. R. Iran
| | - Shahnaz Rostamizadeh
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, Tehran, I. R. Iran
| | - Negar Zekri
- Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran, I. R. Iran
| |
Collapse
|
30
|
Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives. Fitoterapia 2017; 119:136-149. [PMID: 28495308 DOI: 10.1016/j.fitote.2017.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/06/2017] [Indexed: 12/18/2022]
Abstract
Quinazolinones belong to a family of heterocyclic nitrogen compounds that have attracted increasing interest because of their broad spectrum of biological functions. This review describes three types of natural quinazolinones and their synthesized derivatives and summarizes their various pharmacological activities, including antifungal, anti-tumor, anti-malaria, anticonvulsant, anti-microbial, anti-inflammatory and antihyperlipidemic activities. In addition, structure-activity relationships of quinazolinone derivatives are also reviewed.
Collapse
|
31
|
Antioxidant, anticancer and electrochemical redox properties of new bis(2,3-dihydroquinazolin-4(1H)-one) derivatives. Mol Divers 2017; 21:611-620. [PMID: 28477101 DOI: 10.1007/s11030-017-9748-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
In this paper, a series of bis(2,3-dihydroquinazolin-4(1H)-one) derivatives (4a-i, 10a-k) were synthesized by the one-pot pseudo-five-component reaction of isatoic anhydride with aromatic aldehydes and aromatic amines under reflux in glacial acetic acid. The synthesized compounds were screened for their antioxidant properties using the DPPH radical scavenging method. Compounds 4i and 10h showed potent radical scavenging activities at 20 [Formula: see text] compared to BHA and ascorbic acid. The anticancer activity of compound 4f was evaluated against human breast cancer cell line (MCF 7), and the observed [Formula: see text] was found to be 11.4 [Formula: see text]. The redox behaviour of some analogues was evaluated by cyclic voltammetric methods, and it is found that compound 7d possesses the maximum redox potential.
Collapse
|
32
|
Mohammadi AA, Ahdenov R, Abolhasani Sooki A. Design, synthesis and antibacterial evaluation of 2-alkyl- and 2-aryl-3-(phenylamino)quinazolin-4(3H)-one derivatives. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract2-Alkyl and 2-aryl-3-(phenylamino)quinazolin-4(3H)-ones 4a–h were synthesized in a one-pot three-component condensation of an isatoic anhydride 1a–h, ethyl or methyl ortho ester and phenylhydrazine in the presence of KAl(SO4)2·12H2O (alum) as a nontoxic, reusable, inexpensive and easily available catalyst. The synthesis was conducted under microwave irradiation or classical heating. Products 4a and 4b show good antimicrobial activities.
Collapse
Affiliation(s)
- Ali Asghar Mohammadi
- 1Department of Chemistry, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Reza Ahdenov
- 1Department of Chemistry, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Ali Abolhasani Sooki
- 2Shaheed Beheshti University, Academic Center for Education, Culture, and Research, Research Institute of Applied Sciences, Tehran, Iran
| |
Collapse
|
33
|
Choi J, Yadav NN, Ha HJ. Preparation of a Stable Bicyclic Aziridinium Ion and Its Ring Expansion toward Piperidines and Azepanes. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jieun Choi
- Department of Chemistry; Hankuk University of Foreign Studies; Yongin 17035 Korea
| | - Nagendra Nath Yadav
- Department of Chemistry; North Eastern Regional Institute of Science and Technology, Nirjuli; Arunachal Pradesh 791109 India
| | - Hyun-Joon Ha
- Department of Chemistry; Hankuk University of Foreign Studies; Yongin 17035 Korea
| |
Collapse
|
34
|
Kundu P, Mondal A, Chowdhury C. A Palladium-Catalyzed Method for the Synthesis of 2-(α-Styryl)-2,3-dihydroquinazolin-4-ones and 3-(α-Styryl)-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide: Access to 2-(α-Styryl)quinazolin-4(3H)-ones and 3-(α-Styryl)-1,2,4-benzothiadiazine-1,1-dioxides. J Org Chem 2016; 81:6596-608. [DOI: 10.1021/acs.joc.6b01242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Priyanka Kundu
- Organic & Medicinal Chemisty Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700032, India
| | - Amrita Mondal
- Organic & Medicinal Chemisty Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemisty Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700032, India
| |
Collapse
|
35
|
Driowya M, Saber A, Marzag H, Demange L, Benhida R, Bougrin K. Microwave-Assisted Synthesis of Bioactive Six-Membered Heterocycles and Their Fused Analogues. Molecules 2016; 21:492. [PMID: 27089315 PMCID: PMC6273482 DOI: 10.3390/molecules21040492] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 11/16/2022] Open
Abstract
This review describes the formation of six-membered heterocyclic compounds and their fused analogues under microwave activation using modern organic transformations including cyclocondensation, cycloaddition, multicomponents and other modular reactions. The review is divided according to the main heterocycle types in order of increasing complexity, starting with heterocyclic systems containing one, two and three heteroatoms and their fused analogues. Recent microwave applications are reviewed, with special focus on the chemistry of bioactive compounds. Selected examples from the 2006 to 2015 literature are discussed.
Collapse
Affiliation(s)
- Mohsine Driowya
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Aziza Saber
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Hamid Marzag
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Luc Demange
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
- Department of Chemistry, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 rue des Saints Pères, Paris Fr-75006, France.
| | - Rachid Benhida
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| |
Collapse
|
36
|
Pandey RK, Kumbhar BV, Srivastava S, Malik R, Sundar S, Kunwar A, Prajapati VK. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. J Biomol Struct Dyn 2016; 35:141-158. [DOI: 10.1080/07391102.2015.1135298] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| |
Collapse
|
37
|
Mechanistic insights into a catalyst-free method to construct quinazolinones through multiple oxidative cyclization. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Wu L, Chen P, Liu G. Pd(II)-Catalyzed Aminofluorination of Alkenes in Total Synthesis 6-(R)-Fluoroswainsonine and 5-(R)-Fluorofebrifugine. Org Lett 2016; 18:960-3. [DOI: 10.1021/acs.orglett.6b00030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Liang Wu
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Pinhong Chen
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Guosheng Liu
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| |
Collapse
|
39
|
Fang P, Guo M. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Life (Basel) 2015; 5:1703-25. [PMID: 26670257 PMCID: PMC4695845 DOI: 10.3390/life5041703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.
Collapse
Affiliation(s)
- Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
40
|
Nikpassand M, Zare Fekri L, Sina KF, Abed SZ, Marvi O. 3,3′-(butane-1,4-diyl)bis(1,2-dimethyl-1H-imidazol-3-ium) dibromide [BDBIm] Br-An efficient reusable ionic liquid for the microwave-assisted synthesis of quinazolinones. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215080265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Das Gupta A, Samanta S, Mallik AK. One-pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones under Catalyst- and Solvent-free Conditions. ORG PREP PROCED INT 2015. [DOI: 10.1080/00304948.2015.1066644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Abstract
Halofuginone is an analog of febrifugine-an alkaloid originally isolated from the plant Dichroa febrifuga. During recent years, halofuginone has attracted much attention because of its wide range of beneficial biological activities, which encompass malaria, cancer, and fibrosis-related and autoimmune diseases. At present two modes of halofuginone actions have been described: (1) Inhibition of Smad3 phosphorylation downstream of the TGFβ signaling pathway results in inhibition of fibroblasts-to-myofibroblasts transition and fibrosis. (2) Inhibition of prolyl-tRNA synthetase (ProRS) activity in the blood stage of malaria and inhibition of Th17 cell differentiation thereby inhibiting inflammation and the autoimmune reaction by activation of the amino acid starvation and integrated stress responses. This review deals with the history and origin of this natural product, its synthesis, its known modes of action, and it's various biological activities in pre-clinical animal models and in humans.
Collapse
Affiliation(s)
- Mark Pines
- The Volcani Center, Institute of Animal Science, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Itai Spector
- The Volcani Center, Institute of Animal Science, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|
43
|
Kumar D, Jadhavar PS, Nautiyal M, Sharma H, Meena PK, Adane L, Pancholia S, Chakraborti AK. Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl-3-substituted quinazolin-4(3H)-ones: applications towards the synthesis of drugs. RSC Adv 2015. [DOI: 10.1039/c5ra03888j] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simple, convenient, and green synthetic protocols have been developed for the one pot synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl-3-substituted quinazolin-4(3H)-ones under catalyst and solvent free conditions.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Pradeep S. Jadhavar
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Manesh Nautiyal
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Himanshu Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Prahlad K. Meena
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Legesse Adane
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Sahaj Pancholia
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| |
Collapse
|
44
|
Kondo T, Yoshimura T, Yuanjun D, Kimura Y, Yamada H, Toshimitsu A. Simple, Selective, and Practical Synthesis of 2-Substituted 4(3H)-Quinazolinones by Yb(OTf)3-Catalyzed Condensation of 2-Aminobenzamide with Carboxamides. HETEROCYCLES 2015. [DOI: 10.3987/com-14-s(k)79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Pines M. Halofuginone for fibrosis, regeneration and cancer in the gastrointestinal tract. World J Gastroenterol 2014; 20:14778-14786. [PMID: 25356039 PMCID: PMC4209542 DOI: 10.3748/wjg.v20.i40.14778] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/01/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Organ fibrosis and architectural remodeling can severely disrupt tissue function, often with fatal consequences. Fibrosis is the end result of chronic inflammatory reactions induced by a variety of stimuli, and the key cellular mediator of fibrosis comprises the myofibroblasts which, when activated, serve as the primary collagen-producing cells. Complex links exist between fibrosis, regeneration and carcinogenesis, and the concept that all organs contain common tissue fibrosis pathways that could be potential therapeutic targets is an attractive one. Because of the major impact of fibrosis on human health there is an unmet need for safe and effective therapies that directly target fibrosis. Halofuginone inhibits tissue fibrosis and regeneration, and thereby affects the development of tumors in various tissues along the gastrointestinal tract. The high efficacy of halofuginone in reducing the fibrosis that affects tumor growth and tissue regeneration is probably due to its dual role in inhibiting the signaling pathway of transforming growth factor β, on the one hand, and inhibiting the development of Th17 cells, on the other hand. At present halofuginone is being evaluated in a clinical trial for other fibrotic indication, and any clinical success in that trial would allow the use of halofuginone, also for all other fibrotic indications, including those of the gastrointestinal tract.
Collapse
|
46
|
Halimehjani AZ, Namboothiri INN, Hooshmand SE. Part II: nitroalkenes in the synthesis of heterocyclic compounds. RSC Adv 2014. [DOI: 10.1039/c4ra08830a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
48
|
Heidary M, Khoobi M, Ghasemi S, Habibi Z, Faramarzi MA. Synthesis of Quinazolinones from AlcoholsviaLaccase-Mediated Tandem Oxidation. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400103] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Caruso A, Lancelot JC, El-Kashef H, Panno A, Sinicropi MS, Legay R, Lesnard A, Lepailleur A, Rault S. Four Partners, Three-Step, One-Pot Reaction for a Library of New 2-Alkyl(dialkyl)aminoquinazolin-4(3H)-ones. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna Caruso
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M; Bd Becquerel 14032 Caen Cedex France
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione; Università della Calabria; 87036 Arcavacata di Rende Cosenza Italy
| | - Jean-Charles Lancelot
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M; Bd Becquerel 14032 Caen Cedex France
| | - Hussein El-Kashef
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M; Bd Becquerel 14032 Caen Cedex France
- Chemistry Department, Faculty of Science; Assiut University; 71516 Assiut Egypt
| | - Antonella Panno
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M; Bd Becquerel 14032 Caen Cedex France
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione; Università della Calabria; 87036 Arcavacata di Rende Cosenza Italy
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione; Università della Calabria; 87036 Arcavacata di Rende Cosenza Italy
| | - Rémi Legay
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M; Bd Becquerel 14032 Caen Cedex France
| | - Aurélien Lesnard
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M; Bd Becquerel 14032 Caen Cedex France
| | - Alban Lepailleur
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M; Bd Becquerel 14032 Caen Cedex France
| | - Sylvain Rault
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M; Bd Becquerel 14032 Caen Cedex France
| |
Collapse
|
50
|
McLaughlin NP, Evans P, Pines M. The chemistry and biology of febrifugine and halofuginone. Bioorg Med Chem 2014; 22:1993-2004. [PMID: 24650700 DOI: 10.1016/j.bmc.2014.02.040] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/11/2022]
Abstract
The trans-2,3-disubstituted piperidine, quinazolinone-containing natural product febrifugine (also known as dichroine B) and its synthetic analogue, halofuginone, possess antimalarial activity. More recently studies have also shown that halofuginone acts as an agent capable of reducing fibrosis, an indication with clinical relevance for several disease states. This review summarizes historical isolation studies and the chemistry performed which culminated in the correct structural elucidation of naturally occurring febrifugine and its isomer isofebrifugine. It also includes the range of febrifugine analogues prepared for antimalarial evaluation, including halofuginone. Finally, a section detailing current opinion in the field of halofuginone's human biology is included.
Collapse
Affiliation(s)
- Noel P McLaughlin
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - Paul Evans
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland.
| | - Mark Pines
- Agricultural Research Organization, The Volcani Center, Institute of Animal Science, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|