1
|
Rosa-Gastaldo D, Maria Ara F, Dalla Valle A, Visentin G, Gabrielli L. Recognition-Encoded Molecules: A Minimal Self-Replicator. Chemistry 2024:e202401667. [PMID: 39235971 DOI: 10.1002/chem.202401667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Nucleic acids, with their unique duplex structure, which is key for information replication, have sparked interest in self-replication's role in life's origins. Early template-based replicators, initially built on short oligonucleotides, expanded to include peptides and synthetic molecules. We explore here the potential of a class of synthetic duplex-forming oligoanilines, as self-replicators. We have recently developed oligoanilines equipped with 2-trifluoromethylphenol-phosphine oxide H-bond base pairs and we investigate whether the imine formed between aniline and aldehyde complementary monomers can self-replicate. Despite lacking a clear sigmoidal kinetic profile, control experiments with a methylated donor and a competitive inhibitor support self-replication. Further investigations with the reduced aniline dimer demonstrate templated synthesis, revealing a characteristic parabolic growth. After showing sequence selective duplex formation, templated synthesis and the emergence of catalytic function, the self-replication behaviour further suggests that the unique properties of nucleic acids can be paralleled by synthetic recognition-encoded molecules.
Collapse
Affiliation(s)
- Daniele Rosa-Gastaldo
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova (PD), Italy
| | - Francesco Maria Ara
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova (PD), Italy
| | - Andrea Dalla Valle
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova (PD), Italy
| | - Giulia Visentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova (PD), Italy
| | - Luca Gabrielli
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova (PD), Italy
| |
Collapse
|
2
|
Romano N, McMinn TL, Gagné MR. N-Si Heterolysis by Chiral (BOX)Cu(OTf) 2 Catalysts for the Synthesis of Indole and Carbazole Glycosides. Org Lett 2024; 26:4975-4979. [PMID: 38829188 DOI: 10.1021/acs.orglett.4c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Chiral Cu(II) bisoxazolines have been shown to catalyze the coupling of acetyl-protected carbohydrates with N-silylated indoles to give the corresponding N-glycosides. Preliminary mechanistic experiments indicated that catalysis occurs through formation of a Cu-indolide complex with concomitant formation of TMS-OTf which together activate the sugar and deliver the indole nucleophile.
Collapse
Affiliation(s)
- Neyen Romano
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Tanner L McMinn
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Michel R Gagné
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
3
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
4
|
Rosa-Gastaldo D, Dalla Valle A, Marchetti T, Gabrielli L. Sequence-selective duplex formation and template effect in recognition-encoded oligoanilines. Chem Sci 2023; 14:8878-8888. [PMID: 37621420 PMCID: PMC10445429 DOI: 10.1039/d3sc00880k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
A new family of duplex-forming recognition encoded oligomers, capable of sequence selective duplex formation and template directed synthesis, was developed. Monomers equipped with both amine and aldehyde groups were functionalized with 2-trifluoromethylphenol or phosphine oxide as H-bond recognition units. Duplex formation and assembly properties of homo- and hetero-oligomers were studied by 19F and 1H NMR experiments in chloroform. The designed backbone prevents the undesired 1,2-folding allowing sequence-selective duplex formation, and the stability of the antiparallel duplex is 3-fold higher than the parallel arrangement. Dynamic combinatorial chemistry was exploited for the templated synthesis of complementary oligomers, showing that an aniline dimer can template the formation of the complementary imine. The key role of the H-bond recognition confers to the system the ability to discriminate a mutated donor monomer incapable of H-bonding. Sequence selective duplex formation combined with the template effect makes this system an attractive target for further studies.
Collapse
Affiliation(s)
- Daniele Rosa-Gastaldo
- Dipartimento di Scienze Chimiche, Università degli studi di Padova via Marzolo 1 35131 Padova Italy
| | - Andrea Dalla Valle
- Dipartimento di Scienze Chimiche, Università degli studi di Padova via Marzolo 1 35131 Padova Italy
| | - Tommaso Marchetti
- Dipartimento di Scienze Chimiche, Università degli studi di Padova via Marzolo 1 35131 Padova Italy
| | - Luca Gabrielli
- Dipartimento di Scienze Chimiche, Università degli studi di Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
5
|
Xia L, Fan W, Yuan XA, Yu S. Photoredox-Catalyzed Stereoselective Synthesis of C-Nucleoside Analogues from Glycosyl Bromides and Heteroarenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02088] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liwen Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 China
| | - Wenjing Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 China
| |
Collapse
|
6
|
Liczner C, Duke K, Juneau G, Egli M, Wilds CJ. Beyond ribose and phosphate: Selected nucleic acid modifications for structure-function investigations and therapeutic applications. Beilstein J Org Chem 2021; 17:908-931. [PMID: 33981365 PMCID: PMC8093555 DOI: 10.3762/bjoc.17.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past 25 years, the acceleration of achievements in the development of oligonucleotide-based therapeutics has resulted in numerous new drugs making it to the market for the treatment of various diseases. Oligonucleotides with alterations to their scaffold, prepared with modified nucleosides and solid-phase synthesis, have yielded molecules with interesting biophysical properties that bind to their targets and are tolerated by the cellular machinery to elicit a therapeutic outcome. Structural techniques, such as crystallography, have provided insights to rationalize numerous properties including binding affinity, nuclease stability, and trends observed in the gene silencing. In this review, we discuss the chemistry, biophysical, and structural properties of a number of chemically modified oligonucleotides that have been explored for gene silencing.
Collapse
Affiliation(s)
- Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Kieran Duke
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Gabrielle Juneau
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Martin Egli
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, and Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
7
|
Li F, Qu J. Synthesis of Aryl or Heteroaryl C-Nucleosides by Direct Coupling of a Carbohydrate Moiety with a Preformed Aglycon Unit. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
De Novo Nucleic Acids: A Review of Synthetic Alternatives to DNA and RNA That Could Act as Bio-Information Storage Molecules. Life (Basel) 2020; 10:life10120346. [PMID: 33322642 PMCID: PMC7764398 DOI: 10.3390/life10120346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Modern terran life uses several essential biopolymers like nucleic acids, proteins and polysaccharides. The nucleic acids, DNA and RNA are arguably life’s most important, acting as the stores and translators of genetic information contained in their base sequences, which ultimately manifest themselves in the amino acid sequences of proteins. But just what is it about their structures; an aromatic heterocyclic base appended to a (five-atom ring) sugar-phosphate backbone that enables them to carry out these functions with such high fidelity? In the past three decades, leading chemists have created in their laboratories synthetic analogues of nucleic acids which differ from their natural counterparts in three key areas as follows: (a) replacement of the phosphate moiety with an uncharged analogue, (b) replacement of the pentose sugars ribose and deoxyribose with alternative acyclic, pentose and hexose derivatives and, finally, (c) replacement of the two heterocyclic base pairs adenine/thymine and guanine/cytosine with non-standard analogues that obey the Watson–Crick pairing rules. This manuscript will examine in detail the physical and chemical properties of these synthetic nucleic acid analogues, in particular on their abilities to serve as conveyors of genetic information. If life exists elsewhere in the universe, will it also use DNA and RNA?
Collapse
|
9
|
Gabrielli L, Hunter CA. Supramolecular catalysis by recognition-encoded oligomers: discovery of a synthetic imine polymerase. Chem Sci 2020; 11:7408-7414. [PMID: 34123021 PMCID: PMC8159439 DOI: 10.1039/d0sc02234a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
All key chemical transformations in biology are catalysed by linear oligomers. Catalytic properties could be programmed into synthetic oligomers in the same way as they are programmed into proteins, and an example of the discovery of emergent catalytic properties in a synthetic oligomer is reported. Dynamic combinatorial chemistry experiments designed to study the templating of a recognition-encoded oligomer by the complementary sequence have uncovered an unexpected imine polymerase activity. Libraries of equilibrating imines were formed by coupling diamine linkers with monomer building blocks composed of dialdehydes functionalised with either a trifluoromethyl phenol (D) or phosphine oxide (A) H-bond recognition unit. However, addition of the AAA trimer to a mixture of the phenol dialdehyde and the diamine linker did not template the formation of the DDD oligo-imine. Instead, AAA was found to be a catalyst, leading to rapid formation of long oligomers of D. AAA catalysed a number of different imine formation reactions, but a complementary phenol recognition group on the aldehyde reaction partner is an essential requirement. Competitive inhibition by an unreactive phenol confirmed the role of H-bonding in substrate recognition. AAA accelerates the rate of imine formation in toluene by a factor of 20. The kinetic parameters for this enzyme-like catalysis are estimated as 1 × 10-3 s-1 for k cat and the dissociation constant for substrate binding is 300 μM. The corresponding DDD trimer was found to catalyse oligomerisation the phosphine oxide dialdehyde with the diamine linker, suggesting an important role for the backbone in catalysis. This unexpected imine polymerase activity in a duplex-forming synthetic oligomer suggests that there are many interesting processes to be discovered in the chemistry of synthetic recognition-encoded oligomers that will parallel those found in natural biopolymers.
Collapse
Affiliation(s)
- Luca Gabrielli
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK .,Department of Chemistry, University of Padova via F. Marzolo 1 Padova 35131 Italy
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
10
|
Leguizamon SC, Scott TF. Sequence-selective dynamic covalent assembly of information-bearing oligomers. Nat Commun 2020; 11:784. [PMID: 32034159 PMCID: PMC7005811 DOI: 10.1038/s41467-020-14607-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/21/2020] [Indexed: 01/03/2023] Open
Abstract
Relatively robust dynamic covalent interactions have been employed extensively to mediate molecular self-assembly reactions; however, these assembly processes often do not converge to a thermodynamic equilibrium, instead yielding mixtures of kinetically-trapped species. Here, we report a dynamic covalent self-assembly process that mitigates kinetic trapping such that multiple unique oligomers bearing covalently coreactive pendant groups are able to undergo simultaneous, sequence-selective hybridization with their complementary strands to afford biomimetic, in-registry molecular ladders with covalent rungs. Analogous to the thermal cycling commonly employed for nucleic acid melting and annealing, this is achieved by raising and lowering the concentration of a multi-role reagent to effect quantitative dissociation and subsequently catalyze covalent bond rearrangement, affording selective assembly of the oligomeric sequences. The hybridization specificity afforded by this process further enabled information encoded in oligomers to be retrieved through selective hybridization with complementary, mass-labeled sequences. Dynamic covalent interactions have been employed to mediate molecular self-assembly reactions but often do not converge to a thermodynamic equilibrium and yield a mixture of kinetically trapped species. Here, the authors show a sequence-selective, dynamic covalent self-assembly process that mitigates kinetic trapping to afford biomimetic molecular ladders with covalent rungs.
Collapse
Affiliation(s)
- Samuel C Leguizamon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Timothy F Scott
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia. .,Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
11
|
Gabrielli L, Núñez-Villanueva D, Hunter CA. Two-component assembly of recognition-encoded oligomers that form stable H-bonded duplexes. Chem Sci 2019; 11:561-566. [PMID: 32206273 PMCID: PMC7069511 DOI: 10.1039/c9sc04250d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Imine chemistry was used to assemble oligomers displaying phenol and phosphine oxide side chains that selectively base-pair to give duplexes, which are stable in chloroform solution.
A new family of recognition-encoded oligomers that form stable duplexes in chloroform have been prepared. Monomer building blocks composed of dialdehydes functionalised with either a trifluoromethylphenol or phosphine oxide H-bond recognition unit were prepared. The dialdehydes were coupled with diamines by imine formation and then reduction to give homo-oligomers between one and three recognition units in length. Duplex formation was characterised by 19F and 1H NMR titration experiments in toluene and in chloroform. For duplexes formed between length complementary H-bond donor and acceptor homo-oligomers, an order of magnitude increase in stability was observed for every base-pair added to the duplex in chloroform. The effective molarity for the intramolecular H-bonds responsible for zipping up the duplex is 30 mM, which results in the fully assembled duplex in all cases. The uniform increase in duplex stability with oligomer length suggests that the backbone structure and geometry is likely to be compatible with the formation of extended duplexes in longer oligomers.
Collapse
Affiliation(s)
- Luca Gabrielli
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Diego Núñez-Villanueva
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
12
|
Johnson A, Karimi A, Luedtke NW. Enzymatic Incorporation of a Coumarin–Guanine Base Pair. Angew Chem Int Ed Engl 2019; 58:16839-16843. [DOI: 10.1002/anie.201910059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Aaron Johnson
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Ashkan Karimi
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
13
|
Johnson A, Karimi A, Luedtke NW. Enzymatic Incorporation of a Coumarin–Guanine Base Pair. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aaron Johnson
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Ashkan Karimi
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
14
|
Aro-Heinilä A, Lönnberg T, Virta P. 3-Fluoro-2-mercuri-6-methylaniline Nucleotide as a High-Affinity Nucleobase-Specific Hybridization Probe. Bioconjug Chem 2019; 30:2183-2190. [PMID: 31246432 DOI: 10.1021/acs.bioconjchem.9b00405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A 3-fluoro-6-methylaniline nucleoside was synthesized and incorporated into an oligonucleotide, and its ability to form mercury-mediated base pairs was studied. UV melting experiments revealed increased duplex stability with thymine, guanine, and cytosine opposite to the probe and a clear nucleobase-specific binding preference (T > G > C > A). Moreover, the 3-fluoro group was utilized as a spin label that showed distinct 19F NMR resonance shifts depending on the complementary nucleobase, providing more detailed information on Hg(II)-mediated base pairing.
Collapse
Affiliation(s)
- Asmo Aro-Heinilä
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Tuomas Lönnberg
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| |
Collapse
|
15
|
Szczypiński FT, Hunter CA. Building blocks for recognition-encoded oligoesters that form H-bonded duplexes. Chem Sci 2019; 10:2444-2451. [PMID: 30881672 PMCID: PMC6385898 DOI: 10.1039/c8sc04896g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
A long-short base-pairing scheme hinders intramolecular folding and allows the use of flexible backbones in duplex-forming oligomers.
Competition from intramolecular folding is a major challenge in the design of synthetic oligomers that form intermolecular duplexes in a sequence-selective manner. One strategy is to use very rigid backbones that prevent folding, but this design can prejudice duplex formation if the geometry is not exactly right. The alternative approach found in nucleic acids is to use bases (or recognition units) that have different dimensions. A long-short base-pairing scheme makes folding geometrically difficult and is compatible with the flexible backbones that are required to guarantee duplex formation. A monomer building block equipped with a long hydrogen bond donor (phenol, D) recognition unit and a monomer building block equipped with a short hydrogen bond acceptor (phosphine oxide, A) recognition unit were prepared with differentially protected alcohol and carboxylic acid groups. These compounds were used to synthesise the homo and hetero-sequence 2-mers AA, DD and AD. 19F and 31P NMR experiments were used to characterize the assembly properties of these compounds in toluene solution. AA and DD form a stable doubly-hydrogen-bonded duplex with an effective molarity of 20 mM for formation of the second intramolecular hydrogen bond. AD forms a duplex of similar stability. There is no evidence of intramolecular folding in the monomeric state of this compound, which shows that the long-short base-pairing scheme is effective. The ester coupling chemistry used here is an attractive method for the synthesis of long oligomers, and the properties of the 2-mers indicate that this molecular architecture should give longer mixed sequence oligomers that show high fidelity sequence-selective duplex formation.
Collapse
Affiliation(s)
- Filip T Szczypiński
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
16
|
Guo F, Li Q, Zhou C. Synthesis and biological applications of fluoro-modified nucleic acids. Org Biomol Chem 2018; 15:9552-9565. [PMID: 29086791 DOI: 10.1039/c7ob02094e] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, 18F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of 19F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.
Collapse
Affiliation(s)
- Fengmin Guo
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
17
|
Ambrożak A, Steinebach C, Gardner ER, Beedie SL, Schnakenburg G, Figg WD, Gütschow M. Synthesis and Antiangiogenic Properties of Tetrafluorophthalimido and Tetrafluorobenzamido Barbituric Acids. ChemMedChem 2016; 11:2621-2629. [PMID: 27805767 PMCID: PMC6438167 DOI: 10.1002/cmdc.201600496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/18/2016] [Indexed: 01/24/2023]
Abstract
The development of novel thalidomide derivatives as immunomodulatory and anti-angiogenic agents has revived over the last two decades. Herein we report the design and synthesis of three chemotypes of barbituric acids derived from the thalidomide structure: phthalimido-, tetrafluorophthalimido-, and tetrafluorobenzamidobarbituric acids. The latter were obtained by a new tandem reaction, including a ring opening and a decarboxylation of the fluorine-activated phthalamic acid intermediates. Thirty compounds of the three chemotypes were evaluated for their anti-angiogenic properties in an ex vivo assay by measuring the decrease in microvessel outgrowth in rat aortic ring explants. Tetrafluorination of the phthalimide moiety in tetrafluorophthalimidobarbituric acids was essential, as all of the nonfluorinated counterparts lost anti-angiogenic activity. An opening of the five-membered ring and the accompanying increased conformational freedom, in case of the corresponding tetrafluorobenzamidobarbituric acids, was well tolerated. Their activity was retained, although their molecular structures differ in torsional flexibility and possible hydrogen-bond networking, as revealed by comparative X-ray crystallographic analyses.
Collapse
Affiliation(s)
- Agnieszka Ambrożak
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der lmmenburg 4, 53121 Bonn (Germany),
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der lmmenburg 4, 53121 Bonn (Germany),
| | - Erin R. Gardner
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD 20892 (USA)
| | - Shaunna L. Beedie
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD 20892 (USA)
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn (Germany)
| | - William D. Figg
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD 20892 (USA)
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der lmmenburg 4, 53121 Bonn (Germany),
| |
Collapse
|
18
|
Synthesis of Pyridone-based Nucleoside Analogues as Substrates or Inhibitors of DNA Polymerases. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:163-77. [PMID: 26854871 DOI: 10.1080/15257770.2015.1122197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The synthesis and characterization of novel acyclic and cyclic pyridone-based nucleosides and nucleotides is described. In total, seven nucleosides and four nucleotides were synthesized. None of the tested nucleosides showed inhibitory properties against Klenow exo- polymerase and M.MuLV and HIV-1 reverse transcriptases. The nucleotides containing 4-chloro- and 4-bromo-2-pyridone as a nucleobase were accepted by the Klenow fragment, but at the expense of fidelity and extension efficiency.
Collapse
|
19
|
Bag SS, Talukdar S, Das SK, Pradhan MK, Mukherjee S. Donor/acceptor chromophores-decorated triazolyl unnatural nucleosides: synthesis, photophysical properties and study of interaction with BSA. Org Biomol Chem 2016; 14:5088-108. [DOI: 10.1039/c6ob00500d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the syntheses and photophysical properties of some triazolyl donor/acceptor unnatural nucleosides and studies on the interaction of one of the fluorescent nucleosides with BSA.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Sangita Talukdar
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Suman Kalyan Das
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Manoj Kumar Pradhan
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Soumen Mukherjee
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| |
Collapse
|
20
|
Abstract
Two new C-nucleoside analogues, BCX4430, an imino-C-nucleoside, and GS-6620, a phosphoramidate derivative of 1'-cyano-2'-C-methyl-4-aza-7,9-dideazaadenosine C-nucleoside, have been recently described as effective against filovirus infections (Marburg) and hepatitis C virus (HCV), respectively. The first C-nucleoside analogues were described about half a century ago. The C-nucleoside pseudouridine is a natural component of RNA, and various other C-nucleoside analogues have been reported previously for their antiviral and/or anticancer potential, the most prominent being pyrazofurin, tiazofurin, and selenazofurin. In the meantime, showdomycin, formycin, and various triazole, pyrazine, pyridine, dihydroxyphenyl, thienopyrimidine, pyrazolotriazine, and porphyrin C-nucleoside analogues have been described. It would be worth revisiting these C-nucleosides and derivatives thereof, including their phosphoramidates, for their therapeutic potential in the treatment of virus infections and, where appropriate, cancer as well.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
21
|
Plöger TA, von Kiedrowski G. A self-replicating peptide nucleic acid. Org Biomol Chem 2015; 12:6908-14. [PMID: 25065957 DOI: 10.1039/c4ob01168f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While the non-enzymatic ligation and template-directed synthesis of peptide nucleic acids (PNA) have been reported since 1995, a case of self-replication of PNA has not been achieved yet. Here, we present evidence for autocatalytic feedback in a template directed synthesis of a self-complementary hexa-PNA from two trimeric building blocks. The course of the reaction was monitored in the presence of increasing initial concentrations of the product by RP-HPLC. Kinetic modeling with the SimFit program revealed parabolic growth characteristics. The observed template effect, as well as the rate of ligation, was significantly influenced by nucleophilic catalysts, pH value, and uncharged co-solvents. Systematic optimization of the reaction conditions allowed us to increase the autocatalytic efficiency of the system by two orders of magnitude. Our findings contribute to the hypothesis that PNA may have served as a primordial genetic molecule and was involved in a potential precursor of a RNA world.
Collapse
Affiliation(s)
- Tobias A Plöger
- Ruhr-Universität Bochum, Chair of Organic Chemistry I - Bioorganic Chemistry, 44780 Bochum, Germany.
| | | |
Collapse
|
22
|
Hatano A, Okada M, Dezaki K, Hirai S. Improved synthesis of mercapto C-nucleoside possessing p-phenyl thiol as base using a lithiated coupling reaction. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Abstract
![]()
This review will summarize our structural
and kinetic studies of
RB69 DNA polymerase (RB69pol) as well as selected variants of the
wild-type enzyme that were undertaken to obtain a deeper understanding
of the exquisitely high fidelity of B family replicative DNA polymerases.
We discuss how the structures of the various RB69pol ternary complexes
can be used to rationalize the results obtained from pre-steady-state
kinetic assays. Our main findings can be summarized as follows. (i)
Interbase hydrogen bond interactions can increase catalytic efficiency
by 5000-fold; meanwhile, base selectivity is not solely determined
by the number of hydrogen bonds between the incoming dNTP and the
templating base. (ii) Minor-groove hydrogen bond interactions at positions n – 1 and n – 2 of the primer
strand and position n – 1 of the template
strand in RB69pol ternary complexes are essential for efficient primer
extension and base selectivity. (iii) Partial charge interactions
among the incoming dNTP, the penultimate base pair, and the hydration
shell surrounding the incoming dNTP modulate nucleotide insertion
efficiency and base selectivity. (iv) Steric clashes between mismatched
incoming dNTPs and templating bases with amino acid side chains in
the nascent base pair binding pocket (NBP) as well as weak interactions
and large gaps between the incoming dNTPs and the templating base
are some of the reasons that incorrect dNTPs are incorporated so inefficiently
by wild-type RB69pol. In addition, we developed a tC°–tCnitro Förster resonance energy transfer assay to monitor
partitioning of the primer terminus between the polymerase and exonuclease
subdomains.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8024, United States
| | | |
Collapse
|
24
|
Ikkanda BA, Samuel SA, Iverson BL. NDI and DAN DNA: nucleic acid-directed assembly of NDI and DAN. J Org Chem 2014; 79:2029-37. [PMID: 24502543 PMCID: PMC4272063 DOI: 10.1021/jo402704z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two novel DNA base surrogate phosphoramidites 1 and 2, based upon relatively electron-rich 1,5-dialkoxynaphthalene (DAN) and relatively electron-deficient 1,4,5,8-naphthalenetetracarboxylic diimide (NDI), respectively, were designed, synthesized, and incorporated into DNA oligonucleotide strands. The DAN and NDI artificial DNA bases were inserted within a three-base-pair region within the interior of a 12-mer oligonucleotide duplex in various sequential arrangements and investigated with CD spectroscopy and UV melting curve analysis. The CD spectra of the modified duplexes indicated B-form DNA topology. Melting curve analyses revealed trends in DNA duplex stability that correlate with the known association of DAN and NDI moieties in aqueous solution as well as the known favorable interactions between NDI and natural DNA base pairs. This demonstrates that DNA duplex stability and specificity can be driven by the electrostatic complementarity between DAN and NDI. In the most favorable case, an NDI-DAN-NDI arrangement in the middle of the DNA duplex was found to be approximately as stabilizing as three A-T base pairs.
Collapse
Affiliation(s)
- Brian A Ikkanda
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | |
Collapse
|
25
|
Abstract
While the Watson-Crick base pairs are known to stabilize the DNA double helix and play a vital role in storage/replication of genetic information, their replacement with non-Watson-Crick base pairs has recently been shown to have interesting practical applications. Nowadays, theoretical calculations are routinely performed on very complex systems to gain a better understanding of how molecules interact with each other. We not only bring together some of the basic concepts of how mispaired or unnatural nucleobases interact with each other but also look at how such an understanding influences the prediction of novel properties and development of new materials. We highlight the recent developments in this field of research. In this Perspective, we discuss the success of DFT methods, particularly, dispersion-corrected DFT, for applications such as pH-controlled molecular switching, electric-field-induced stacking of disk-like molecules with guanine quartets, and optical birefringence of alkali-metal-coordinated guanine quartets. The synergy between theoretical models and real applications is highlighted.
Collapse
Affiliation(s)
- A K Jissy
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur 700032 West Bengal, India
| | - Ayan Datta
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur 700032 West Bengal, India
| |
Collapse
|
26
|
Nicolas L, Angibaud P, Stansfield I, Meerpoel L, Reymond S, Cossy J. Triphenylphosphine: a catalyst for the synthesis of C-aryl furanosides from furanosyl halides. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Nicolas L, Izquierdo E, Angibaud P, Stansfield I, Meerpoel L, Reymond S, Cossy J. Cobalt-Catalyzed Diastereoselective Synthesis of C-Furanosides. Total Synthesis of (−)-Isoaltholactone. J Org Chem 2013; 78:11807-14. [DOI: 10.1021/jo401845q] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lionel Nicolas
- Laboratoire
de Chimie Organique, ESPCI ParisTech, UMR CNRS 7084, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Eva Izquierdo
- Laboratoire
de Chimie Organique, ESPCI ParisTech, UMR CNRS 7084, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Patrick Angibaud
- Janssen Research & Development, a Division of Janssen-Cilag, BP615, Chaussée du Vexin, 27106 Val de Reuil, France
| | - Ian Stansfield
- Janssen Research & Development, a Division of Janssen-Cilag, BP615, Chaussée du Vexin, 27106 Val de Reuil, France
| | - Lieven Meerpoel
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V., Turnhoutsweg 30, 2340 Beerse, Belgium
| | - Sébastien Reymond
- Laboratoire
de Chimie Organique, ESPCI ParisTech, UMR CNRS 7084, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Janine Cossy
- Laboratoire
de Chimie Organique, ESPCI ParisTech, UMR CNRS 7084, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| |
Collapse
|
28
|
Hatano A, Okada M, Kawai G. Solution structure of S-DNA formed by covalent base pairing involving a disulfide bond. Org Biomol Chem 2013; 10:7327-33. [PMID: 22875009 DOI: 10.1039/c2ob25346a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here, we present the solution structure of a DNA duplex containing a disulfide base pair (S-DNA). The unnatural nucleoside "S" possessing a thiophenyl group as base was incorporated into a self-complementary singled-stranded oligonucleotide. Crosslinking of the disulfide base pair was analyzed by non-denaturing polyacrylamide gel electrophoresis. Under oxidizing conditions a high molecular weight band as 18 mer, corresponding to the double-stranded molecule (5'-GCGASTCGC: 3'-CGCTSAGCG), was found, whereas single-stranded self-complementary 9 mer oligonucleotide GCGASTCGC was detected in the presence of a reducing agent. These results suggest that the oligonucleotide is covalently linked by disulfide bonding under oxidizing conditions, which can be reversibly reduced to two thiol groups under reducing conditions. CD spectrum of S-DNA (CGASTCG) under oxidizing conditions suggested that the duplex had a right-handed double-stranded structure similar to that of natural DNA (B-form, CGATCG). NMR studies confirmed that this CGASTCG resembled natural B-DNA and that the two phenyl rings derived from the disulfide base pairing intercalated into the duplex. However, these two phenyl rings were not positioned in the same plane as the other base pairs. Specifically, NOEs suggest that although CGASTCG adopts a structure similar to B-type DNA, the S-DNA duplex is bent at the point of disulfide base pairing to face the major groove.
Collapse
Affiliation(s)
- Akihiko Hatano
- Department of Chemistry, Shibaura Institute of Technology, 307 Fukasaku, Saitama, 337-8570, Japan.
| | | | | |
Collapse
|
29
|
|
30
|
Affiliation(s)
- Robert E. Rosenberg
- Department of Chemistry, Transylvania University, 300 North Broadway, Lexington, Kentucky
40508, United States
| |
Collapse
|
31
|
Liu D, Zhou Y, Pu J, Li L. Expanding the horizon of the thymine isostere biochemistry: unique cyclobutane dimers formed by photoreaction between a thymine and a toluene residue in the dinucleotide framework. Chemistry 2012; 18:7823-33. [PMID: 22588824 PMCID: PMC3374913 DOI: 10.1002/chem.201200816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Indexed: 11/07/2022]
Abstract
Substituted toluenyl groups are considered as close isosteres of the thymine residue. They can be recognized by DNA polymerases as if they were thymine. These toluene derivatives are generally inert toward radical additions, including the [2+2] photo-cycloadditions, due to the stable structure of the aromatic ring and are usually used as solvents for radical reactions. Surprisingly, after incorporating toluene into the dinucleotide framework, we found that the UV excited thymine residue readily dimerizes with the toluenyl moiety through a [2+2] photo-addition reaction. Furthermore, the reaction site on the toluenyl moiety is not the C5=C6 bond, as commonly observed in cyclobutane pyrimidine dimers, but the C4=C5 or C3=C4 instead. Such a reaction pattern suggests that in the stacked structure, it is one of these bonds, not the C5=C6, that is close to the thymine C5=C6 bond. A similar structural feature is found in DNA duplex with a thymine replaced by a 2,4-difluorotoluene. Our results argue that although the substituted toluenyl moieties closely mimic the size and shape of the thymine residue, their more hydrophobic nature determines that they stack on DNA bases differently from the natural thymine residue and likely cause local conformational changes in duplex DNA.
Collapse
Affiliation(s)
- Degang Liu
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA), Fax: (+1)317-274-4701
| | - Yan Zhou
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA), Fax: (+1)317-274-4701
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA), Fax: (+1)317-274-4701
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA), Fax: (+1)317-274-4701
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 (USA)
| |
Collapse
|
32
|
Xia S, Christian TD, Wang J, Konigsberg WH. Probing minor groove hydrogen bonding interactions between RB69 DNA polymerase and DNA. Biochemistry 2012; 51:4343-53. [PMID: 22571765 DOI: 10.1021/bi300416z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minor groove hydrogen bonding (HB) interactions between DNA polymerases (pols) and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer extension. Because there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2'-deoxyadenosine (3DA), an analogue of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom. We then determined pre-steady-state kinetic parameters for the insertion of dAMP opposite dT using primer/templates (P/T)-containing 3DA. We also determined three structures of ternary complexes with 3DA at various positions in the duplex DNA substrate. We found that the incorporation efficiency of dAMP opposite dT decreased 10(2)-10(3)-fold even when only one minor groove HB interaction was missing. Our structures show that the HB pattern and base pair geometry of 3DA/dT is exactly the same as those of dA/dT, which makes 3DA an optimal analogue for probing minor groove HB interactions between a DNA polymerase and a nucleobase. In addition, our structures provide a rationale for the observed 10(2)-10(3)-fold decrease in the rate of nucleotide incorporation. The minor groove HB interactions between position n - 2 of the primer strand and RB69pol fix the rotomer conformations of the K706 and D621 side chains, as well as the position of metal ion A and its coordinating ligands, so that they are in the optinal orientation for DNA synthesis.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|
33
|
Berndt F, Ioffe I, Granovsky AA, Mahrwald R, Tannert S, Kovalenko SA, Ernsting NP. 7-Amino-dibenzofuran-3-carboxylate: A new probe for femtosecond dynamic microsolvation studies of biomolecules. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Coppock MB, Williams ME. Nucleic Acid Mimetics. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Khakshoor O, Wheeler SE, Houk KN, Kool ET. Measurement and theory of hydrogen bonding contribution to isosteric DNA base pairs. J Am Chem Soc 2012; 134:3154-63. [PMID: 22300089 DOI: 10.1021/ja210475a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We address the recent debate surrounding the ability of 2,4-difluorotoluene (F), a low-polarity mimic of thymine (T), to form a hydrogen-bonded complex with adenine in DNA. The hydrogen bonding ability of F has been characterized as small to zero in various experimental studies, and moderate to small in computational studies. However, recent X-ray crystallographic studies of difluorotoluene in DNA/RNA have indicated, based on interatomic distances, possible hydrogen bonding interactions between F and natural bases in nucleic acid duplexes and in a DNA polymerase active site. Since F is widely used to measure electrostatic contributions to pairing and replication, it is important to quantify the impact of this isostere on DNA stability. Here, we studied the pairing stability and selectivity of this compound and a closely related variant, dichlorotoluene deoxyriboside (L), in DNA, using both experimental and computational approaches. We measured the thermodynamics of duplex formation in three sequence contexts and with all possible pairing partners by thermal melting studies using the van't Hoff approach, and for selected cases by isothermal titration calorimetry (ITC). Experimental results showed that internal F-A pairing in DNA is destabilizing by 3.8 kcal/mol (van't Hoff, 37 °C) as compared with T-A pairing. At the end of a duplex, base-base interactions are considerably smaller; however, the net F-A interaction remains repulsive while T-A pairing is attractive. As for selectivity, F is found to be slightly selective for adenine over C, G, T by 0.5 kcal mol, as compared with thymine's selectivity of 2.4 kcal/mol. Interestingly, dichlorotoluene in DNA is slightly less destabilizing and slightly more selective than F, despite the lack of strongly electronegative fluorine atoms. Experimental data were complemented by computational results, evaluated at the M06-2X/6-31+G(d) and MP2/cc-pVTZ levels of theory. These computations suggest that the pairing energy of F to A is ~28% of that of T-A, and most of this interaction does not arise from the F···HN interaction, but rather from the CH···N interaction. The nucleobase analogue shows no inherent selectivity for adenine over other bases, and L-A pairing energies are slightly weaker than for F-A. Overall, the results are consistent with a small favorable noncovalent interaction of F with A offset by a large desolvation cost for the polar partner. We discuss the findings in light of recent structural studies and of DNA replication experiments involving these analogues.
Collapse
Affiliation(s)
- Omid Khakshoor
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
36
|
Plöger TA, von Kiedrowski G. Improved Large-Scale Liquid-Phase Synthesis and High-Temperature NMR Characterization of Short (F-)PNAs. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201100243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Kumar S, Kaul I, Biswas P, Das A. Structure of 7-Azaindole···2-Fluoropyridine Dimer in a Supersonic Jet: Competition between N–H···N and N–H···F Interactions. J Phys Chem A 2011; 115:10299-308. [DOI: 10.1021/jp205894q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Indian Institute of Science Education & Research (IISER), 900 NCL Innovation Park, Dr. Homi Bhabha Road, Pune-411008 Maharashtra, India
| | - Indu Kaul
- Department of Chemistry, Indian Institute of Science Education & Research (IISER), 900 NCL Innovation Park, Dr. Homi Bhabha Road, Pune-411008 Maharashtra, India
| | - Partha Biswas
- Department of Chemistry, Indian Institute of Science Education & Research (IISER), 900 NCL Innovation Park, Dr. Homi Bhabha Road, Pune-411008 Maharashtra, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education & Research (IISER), 900 NCL Innovation Park, Dr. Homi Bhabha Road, Pune-411008 Maharashtra, India
| |
Collapse
|
38
|
Xia S, Konigsberg WH, Wang J. Hydrogen-bonding capability of a templating difluorotoluene nucleotide residue in an RB69 DNA polymerase ternary complex. J Am Chem Soc 2011; 133:10003-5. [PMID: 21667997 DOI: 10.1021/ja2021735] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Results obtained using 2,4-difluorotoluene nucleobase (dF) as a nonpolar thymine isostere by Kool and colleagues challenged the Watson-Crick dogma that hydrogen bonds between complementary bases are an absolute requirement for accurate DNA replication. Here, we report crystal structure of an RB69 DNA polymerase L561A/S565G/Y567A triple mutant ternary complex with a templating dF opposite dTTP at 1.8 Å-resolution. In this structure, direct hydrogen bonds were observed between: (i) dF and the incoming dTTP, (ii) dF and residue G568 of the polymerase, and (iii) dF and ordered water molecules surrounding the nascent base pair. Therefore, this structure provides evidence that a templating dF can form novel hydrogen bonds with the incoming dTTP and with the enzyme that differ from those formed with a templating dT.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
39
|
SiC nanoparticles-modified glassy carbon electrodes for simultaneous determination of purine and pyrimidine DNA bases. Biosens Bioelectron 2011; 26:3864-9. [PMID: 21458254 DOI: 10.1016/j.bios.2011.02.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 11/24/2022]
Abstract
For the first time a novel and simple electrochemical method was used for simultaneous detection of DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment or separation process. Glassy carbon electrode modified with silicon carbide nanoparticles (SiCNP/GC), have been used for electrocatalytic oxidation of purine (guanine and adenine) and pyrimidine bases (thymine and cytosine) nucleotides. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques were used to examine the structure of the SiCNP/GC modified electrode. The modified electrode shows excellent electrocatalytic activity toward guanine, adenine, thymine and cytosine. Differential pulse voltammetry (DPV) was proposed for simultaneous determination of four DNA bases. The effects of different parameters such as the thickness of SiC layer, pulse amplitude, scan rate, supporting electrolyte composition and pH were optimized to obtain the best peak potential separation and higher sensitivity. Detection limit, sensitivity and linear concentration range of the modified electrode toward proposed analytes were calculated for, guanine, adenine, thymine and cytosine, respectively. As shown this sensor can be used for nanomolar or micromolar detection of different DNA bases simultaneously or individually. This sensor also exhibits good stability, reproducibility and long lifetime.
Collapse
|
40
|
Wojciechowski F, Leumann CJ. Alternative DNA base-pairs: from efforts to expand the genetic code to potential material applications. Chem Soc Rev 2011; 40:5669-79. [DOI: 10.1039/c1cs15027h] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Anzahaee MY, Watts JK, Alla NR, Nicholson AW, Damha MJ. Energetically important C-H···F-C pseudohydrogen bonding in water: evidence and application to rational design of oligonucleotides with high binding affinity. J Am Chem Soc 2010; 133:728-31. [PMID: 21171597 DOI: 10.1021/ja109817p] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is controversial whether organic fluorine can form energetically important hydrogen bonds in aqueous environments. We previously showed by NMR and molecular modeling that the unexpectedly high binding affinity of 2'F-ANA is largely due to a C-H···F-C pseudohydrogen bond at pyrimidine-purine steps. Comparisons of the melting of duplexes with identical sequence composition but a rearranged sequence confirm that energetically important fluorine-mediated pseudohydrogen bonding is in operation in these sequences. The effect is of particular importance when the H-bond donor (purine H8) is activated by the presence of fluorine at its own 2'-position. These results provide a rational method to increase the binding affinity of antisense oligonucleotides by placement of 2'F-ANA modifications at pyrimidine-purine steps.
Collapse
Affiliation(s)
- Maryam Yahyaee Anzahaee
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
| | | | | | | | | |
Collapse
|
42
|
Cravens SL, Navapanich AC, Geierstanger BH, Tahmassebi DC, Dwyer TJ. NMR Solution Structure of a DNA−Actinomycin D Complex Containing a Non-Hydrogen-Bonding Pair in the Binding Site. J Am Chem Soc 2010; 132:17588-98. [DOI: 10.1021/ja107575f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shannen L. Cravens
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States, and Genomics Institute of the Novartis Research Institute, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Alyssa C. Navapanich
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States, and Genomics Institute of the Novartis Research Institute, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bernhard H. Geierstanger
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States, and Genomics Institute of the Novartis Research Institute, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Deborah C. Tahmassebi
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States, and Genomics Institute of the Novartis Research Institute, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tammy J. Dwyer
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States, and Genomics Institute of the Novartis Research Institute, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
43
|
Motea EA, Lee I, Berdis AJ. Quantifying the energetic contributions of desolvation and π-electron density during translesion DNA synthesis. Nucleic Acids Res 2010; 39:1623-37. [PMID: 20952399 PMCID: PMC3045600 DOI: 10.1093/nar/gkq925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This report examines the molecular mechanism by which high-fidelity DNA polymerases select nucleotides during the replication of an abasic site, a non-instructional DNA lesion. This was accomplished by synthesizing several unique 5-substituted indolyl 2′-deoxyribose triphosphates and defining their kinetic parameters for incorporation opposite an abasic site to interrogate the contributions of π-electron density and solvation energies. In general, the Kd, app values for hydrophobic non-natural nucleotides are ∼10-fold lower than those measured for isosteric hydrophilic analogs. In addition, kpol values for nucleotides that contain less π-electron densities are slower than isosteric analogs possessing higher degrees of π-electron density. The differences in kinetic parameters were used to quantify the energetic contributions of desolvation and π-electron density on nucleotide binding and polymerization rate constant. We demonstrate that analogs lacking hydrogen-bonding capabilities act as chain terminators of translesion DNA replication while analogs with hydrogen bonding functional groups are extended when paired opposite an abasic site. Collectively, the data indicate that the efficiency of nucleotide incorporation opposite an abasic site is controlled by energies associated with nucleobase desolvation and π-electron stacking interactions whereas elongation beyond the lesion is achieved through a combination of base-stacking and hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Edward A Motea
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
44
|
Killelea T, Ghosh S, Tan SS, Heslop P, Firbank SJ, Kool ET, Connolly BA. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues. Biochemistry 2010; 49:5772-81. [PMID: 20527806 DOI: 10.1021/bi100421r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describe uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at position 2 explains the stimulation of the polymerase 3'-5' proofreading exonuclease, observed with deaminated bases at this location. A beta-hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double-stranded DNA. This denatures the two complementary primer bases and directs the resulting 3' single-stranded extension toward the exonuclease active site. Finally, the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using nonpolar isosteres. Affinity for both 2,4-difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine, respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4-difluorobenzene is seen, confirming a role for shape recognition.
Collapse
Affiliation(s)
- Tom Killelea
- Institute of Cell and Molecular Biosciences (ICaMB), The University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Stahlschmidt A, Khalili P, Sun W, Machulla HJ, Knaus EE, Wiebe LI. Biodistribution and imaging of 1-(2-deoxy-beta-d-ribofuranosyl)-2,4-difluoro-5-[123/125I]iodobenzene (dRF[(123/125)I]IB), a nonpolar thymidine-mimetic nucleoside, in rats and tumor-bearing mice. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:379-93. [PMID: 20183590 DOI: 10.1080/15257770903051072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1-(2-Deoxy-beta-D-ribofuranosyl)-2,4-difluoro-5-iodobenzene (dRFIB) is a putative bioisostere of iododeoxyuridine (IUdR). The advantages of dRFIB over IUdR for in vivo studies include resistance to both phosphorolytic cleavage of the nucleoside bond and de-iodination. dRFIB was radioiodinated (dRF(123/125)IB) by copper-catalyzed exchange using commercial sodium [(123/125)I]iodide. The in vivo biodistribution of dRF[(125)I]IB in BALBc mice and imaging of dRF[(123)I]IB in Sprague-Dawley rats are reported. In vivo data for rats show rapid clearance of radioactivity from blood (>95%ID in 15 minutes), extensive excretion in urine (56%ID/24 hours), concentration in the hepatobiliary-small intestine system and very little fecal excretion (approximately 3%ID/24 hours). Pharmacokinetic data for dRF[(125)I]IB (i.v. 48.7 ug/kg) in rats (t(1/2)[h] = 0.51 +/- 0.14, AUC(inf)[microg.min/mL] = 3.7 +/- 0.4, Cl[L/kg/h] = 0.75 +/- 0.12, Vss[L/kg] = 0.96 +/- 0.18) confirm previously reported dose-dependent pharmacokinetics. Scintigraphic images of rats dosed with dRF[(123)I]I were compatible with rapid soft-tissue clearance and extensive accumulation of radioactivity in bladder/urine and liver/small intestine. In tumor-bearing mice, thyroid and stomach radioactivity was indicative of moderate deiodination. An unidentified polar radioactive metabolite was detected in serum.
Collapse
Affiliation(s)
- Anke Stahlschmidt
- PET Center, Radiopharmacy, Eberhardt-Karls Universitat Tubingen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Koller AN, Bozilovic J, Engels JW, Gohlke H. Aromatic N versus aromatic F: bioisosterism discovered in RNA base pairing interactions leads to a novel class of universal base analogs. Nucleic Acids Res 2010; 38:3133-46. [PMID: 20081201 PMCID: PMC2875010 DOI: 10.1093/nar/gkp1237] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The thermodynamics of base pairing is of fundamental importance. Fluorinated base analogs are valuable tools for investigating pairing interactions. To understand the influence of direct base-base interactions in relation to the role of water, pairing free energies between natural nucleobases and fluorinated analogs are estimated by potential of mean force calculations. Compared to pairing of AU and GC, pairing involving fluorinated analogs is unfavorable by 0.5-1.0 kcal mol(-1). Decomposing the pairing free energies into enthalpic and entropic contributions reveals fundamental differences for Watson-Crick pairs compared to pairs involving fluorinated analogs. These differences originate from direct base-base interactions and contributions of water. Pairing free energies of fluorinated base analogs with natural bases are less unfavorable by 0.5-1.0 kcal mol(-1) compared to non-fluorinated analogs. This is attributed to stabilizing C-F(...)H-N dipolar interactions and stronger N(...)H-C hydrogen bonds, demonstrating direct and indirect influences of fluorine. 7-methyl-7H-purine and its 9-deaza analog (Z) have been suggested as members of a new class of non-fluorinated base analogs. Z is found to be the least destabilizing universal base in the context of RNA known to date. This is the first experimental evidence for nitrogen-containing heterocylces as bioisosteres of aromatic rings bearing fluorine atoms.
Collapse
Affiliation(s)
- Alrun N Koller
- Department of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
47
|
Pallan PS, Egli M. Pairing geometry of the hydrophobic thymine analogue 2,4-difluorotoluene in duplex DNA as analyzed by X-ray crystallography. J Am Chem Soc 2009; 131:12548-9. [PMID: 19685868 DOI: 10.1021/ja905739j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Certain DNA polymerases (pols) were found to efficiently insert A opposite the hydrophobic T isostere 2,4-difluorotoluene (F) and vice versa, resulting in the widely held belief that some pols rely on shape rather than H-bonding for accurate replication. Using X-ray crystallography we have analyzed the geometry of F:A pairs in duplex DNA and observed a distance between fluorine and the exocyclic amino group of A that is consistent with a H-bond, thus challenging the assumption that the F analogue is unable to engage in H-bonding as well as the steric hypothesis of DNA replication. Therefore, shape and H-bonding are inherently related, and steric constraints at a pol active site, or conferred by stacking or the DNA backbone conformation, may enable H-bonding by F.
Collapse
Affiliation(s)
- Pradeep S Pallan
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
48
|
Heemstra JM, Liu DR. Templated synthesis of peptide nucleic acids via sequence-selective base-filling reactions. J Am Chem Soc 2009; 131:11347-9. [PMID: 19722647 PMCID: PMC2726731 DOI: 10.1021/ja904712t] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling.
Collapse
Affiliation(s)
- Jennifer M Heemstra
- Howard Hughes Medical Institute and the Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
49
|
Lu H, Lynch SR, Lee AHF, Kool ET. Structure and replication of yDNA: a novel genetic set widened by benzo-homologation. Chembiochem 2009; 10:2530-8. [PMID: 19780073 PMCID: PMC2982676 DOI: 10.1002/cbic.200900434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Indexed: 11/12/2022]
Abstract
In a functioning genetic system, the information-encoding molecule must form a regular self-complementary complex (for example, the base-paired double helix of DNA) and it must be able to encode information and pass it on to new generations. Here we study a benzo-widened DNA-like molecule (yDNA) as a candidate for an alternative genetic set, and we explicitly test these two structural and functional requirements. The solution structure of a 10 bp yDNA duplex is measured by using 2D-NMR methods for a simple sequence composed of T-yA/yA-T pairs. The data confirm an antiparallel, right-handed, hydrogen-bonded helix resembling B-DNA but with a wider diameter and enlarged base-pair size. In addition to this, the abilities of two different polymerase enzymes (Klenow fragment of DNA pol I (Kf) and the repair enzyme Dpo4) to synthesize and extend the yDNA pairs T-yA, A-yT, and G-yC are measured by steady-state kinetics studies. Not surprisingly, insertion of complementary bases opposite yDNA bases is inefficient due to the larger base-pair size. We find that correct pairing occurs in several cases by both enzymes, but that common and relatively efficient mispairing involving T-yT and T-yC pairs interferes with fully correct formation and extension of pairs by these polymerases. Interestingly, the data show that extension of the large pairs is considerably more efficient with the flexible repair enzyme (Dpo4) than with the more rigid Kf enzyme. The results shed light on the properties of yDNA as a candidate for an alternative genetic information-encoding molecule and as a tool for application in basic science and biomedicine.
Collapse
Affiliation(s)
- Haige Lu
- Department of Chemistry, Stanford University Stanford, CA 94305-5080 (USA), Fax: (+1)650-725-0259,
| | - Stephen R. Lynch
- Department of Chemistry, Stanford University Stanford, CA 94305-5080 (USA), Fax: (+1)650-725-0259,
| | - Alex H. F. Lee
- Department of Chemistry, Stanford University Stanford, CA 94305-5080 (USA), Fax: (+1)650-725-0259,
| | - Eric T. Kool
- Department of Chemistry, Stanford University Stanford, CA 94305-5080 (USA), Fax: (+1)650-725-0259,
| |
Collapse
|
50
|
Affiliation(s)
- Michal Hocek
- Department of Chemistry, WestChem, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|