1
|
Hu Z, Liu X, Tian M, Ma Y, Jin B, Gao W, Cui G, Guo J, Huang L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med Res Rev 2021; 41:2971-2997. [PMID: 33938025 DOI: 10.1002/med.21816] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Diterpenoids, including more than 18,000 compounds, represent an important class of metabolites that encompass both phytohormones and some industrially relevant compounds. These molecules with complex, diverse structures and physiological activities, have high value in the pharmaceutical industry. Most medicinal diterpenoids are extracted from plants. Major advances in understanding the biosynthetic pathways of these active compounds are providing unprecedented opportunities for the industrial production of diterpenoids by metabolic engineering and synthetic biology. Here, we summarize recent developments in the field of diterpenoid biosynthesis from medicinal herbs. An overview of the pathways and known biosynthetic enzymes is presented. In particular, we look at the main findings from the past decade and review recent progress in the biosynthesis of different groups of ringed compounds. We also discuss diterpenoid production using synthetic biology and metabolic engineering strategies, and draw on new technologies and discoveries to bring together many components into a useful framework for diterpenoid production.
Collapse
Affiliation(s)
- Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- School of Pharmaceutical, Sciences, Capital Medical University, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Min L, Hu YJ, Fan JH, Zhang W, Li CC. Synthetic applications of type II intramolecular cycloadditions. Chem Soc Rev 2020; 49:7015-7043. [PMID: 32869796 DOI: 10.1039/d0cs00365d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type II intramolecular cycloadditions ([4+2], [4+3], [4+4] and [5+2]) have emerged recently as an efficient and powerful strategy for the construction of bridged ring systems. In general, type II cycloadditions provide access to a wide range of bridged bicyclo[m.n.1] ring systems with high regio- and diastereoselectivity in an easy and straightforward manner. In each section of this review, an overview of the corresponding type II cycloadditions is presented, which is followed by highlights of method development and synthetic applications in natural product synthesis. The goal of this review is to provide a survey of recent advances in the field covering literature up to 2020. The review will serve as a useful reference for organic chemists engaged in the total synthesis of natural products containing bridged bicyclo[m.n.1] ring systems and provide strong stimulus for invention and further advances in this exciting research field.
Collapse
Affiliation(s)
- Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | | | | | | | | |
Collapse
|
3
|
Kanda Y, Ishihara Y, Wilde NC, Baran PS. Two-Phase Total Synthesis of Taxanes: Tactics and Strategies. J Org Chem 2020; 85:10293-10320. [DOI: 10.1021/acs.joc.0c01287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuzuru Kanda
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nathan C. Wilde
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Hu YJ, Fan JH, Li S, Zhao J, Li CC. Synthetic Study toward the Total Synthesis of Taxezopidines A and B. Org Lett 2018; 20:5905-5909. [PMID: 30192554 DOI: 10.1021/acs.orglett.8b02571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A concise synthetic approach to construct the [6,8,6]-tricyclic core of taxezopidines A and B, which contains a synthetically challenging bridged bicyclo[5.3.1]undecane ring system bearing most of the desired functionalized groups and stereocenters, has been established. This approach features a diastereoselective type II intramolecular Diels-Alder furan reaction. The stereochemistry of the acetoxy group at the allylic position of the dienophile alkene group, such as in 6a, was found to be critical for achieving the desired highly diastereoselective outcome.
Collapse
Affiliation(s)
- Ya-Jian Hu
- Institute of Chinese Medical Sciences , University of Macau , Macau 999078 , China.,Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Jian-Hong Fan
- Institute of Chinese Medical Sciences , University of Macau , Macau 999078 , China.,Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Shaoping Li
- Institute of Chinese Medical Sciences , University of Macau , Macau 999078 , China
| | - Jing Zhao
- Institute of Chinese Medical Sciences , University of Macau , Macau 999078 , China
| | - Chuang-Chuang Li
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen 518055 , China
| |
Collapse
|
5
|
Yu C, Luo X, Zhan X, Hao J, Zhang L, L Song YB, Shen C, Dong M. Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas. BMC PLANT BIOLOGY 2018; 18:197. [PMID: 30223770 PMCID: PMC6142684 DOI: 10.1186/s12870-018-1412-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/31/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plants of the genus Taxus have attracted much attention owing to the natural product taxol, a successful anti-cancer drug. T. fuana and T. yunnanensis are two endangered Taxus species mainly distributed in the Himalayas. In our study, an untargeted metabolomics approach integrated with a targeted UPLC-MS/MS method was applied to examine the metabolic variations between these two Taxus species growing in different environments. RESULTS The level of taxol in T. yunnanensis is much higher than that in T. fuana, indicating a higher economic value of T. yunnanensis for taxol production. A series of specific metabolites, including precursors, intermediates, competitors of taxol, were identified. All the identified intermediates are predominantly accumulated in T. yunnanensis than T. fuana, giving a reasonable explanation for the higher accumulation of taxol in T. yunnanensis. Taxusin and its analogues are highly accumulated in T. fuana, which may consume limited intermediates and block the metabolic flow towards taxol. The contents of total flavonoids and a majority of tested individual flavonoids are significantly accumulated in T. fuana than T. yunnanensis, indicating a stronger environmental adaptiveness of T. fuana. CONCLUSIONS Systemic metabolic profiling may provide valuable information for the comprehensive industrial utilization of the germplasm resources of these two endangered Taxus species growing in different environments.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Juan Hao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Yao-Bin L Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Ming Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| |
Collapse
|
6
|
Ojima I, Kamath A, Seitz JD. Taxol, Taxoids, and Related Taxanes. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Abstract
A full account of synthetic efforts toward a lowly oxidized taxane framework is presented. A non-natural taxane, dubbed "taxadienone", was synthesized as our first entry into the taxane family of diterpenes. The final synthetic sequence illustrates a seven-step, gram-scale and enantioselective route to this tricyclic compound in 18% overall yield. This product was then modified further to give (+)-taxadiene, the lowest oxidized member of the taxane family of natural products.
Collapse
Affiliation(s)
- Yoshihiro Ishihara
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
8
|
Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat Prod Rep 2012; 29:683-96. [PMID: 22547034 DOI: 10.1039/c2np20021j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biosynthesis of the anti-cancer drug taxol (paclitaxel) has required the collaborative efforts of several research groups to tackle the synthesis and labeling of putative biosynthetic intermediates, in concert with the identification, cloning and functional expression of the biosynthetic genes responsible for the construction of this complex natural product. Based on a combination of precursor labeling and incorporation experiments, and metabolite isolation from Taxus spp., a picture of the complex matrix of pathway oxygenation reactions following formation of the first committed intermediate, taxa-4(5),11(12)-diene, is beginning to emerge. An overview of the current state of knowledge on the early-stages of taxol biosynthesis is presented.
Collapse
Affiliation(s)
- Jennifer Guerra-Bubb
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
9
|
Wang YF, Shi QW, Dong M, Kiyota H, Gu YC, Cong B. Natural Taxanes: Developments Since 1828. Chem Rev 2011; 111:7652-709. [DOI: 10.1021/cr100147u] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Fang Wang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Qing-Wen Shi
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Mei Dong
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Hiromasa Kiyota
- Department of Bioscience and Biotechnology for Future Bioindustry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiya, Aoba-ku, Sendai 981-8555, Japan
| | - Yu-Cheng Gu
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Syngenta Jealott’s Hill International Research Centre, Berkshire, RG42 6EY, U.K
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei Province, 050017, China
| |
Collapse
|
10
|
Williams RM. Natural products synthesis: enabling tools to penetrate Nature's secrets of biogenesis and biomechanism. J Org Chem 2011; 76:4221-59. [PMID: 21438619 PMCID: PMC3174107 DOI: 10.1021/jo2003693] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Selected examples from our laboratory of how synthetic technology platforms developed for the total synthesis of several disparate families of natural products was harnessed to penetrate biomechanistic and/or biosynthetic queries is discussed. Unexpected discoveries of biomechanistic reactivity and/or penetrating the biogenesis of naturally occurring substances were made possible through access to substances available only through chemical synthesis. Hypothesis-driven total synthesis programs are emerging as very useful conceptual templates for penetrating and exploiting the inherent reactivity of biologically active natural substances. In many instances, new enabling synthetic technologies were required to be developed. The examples demonstrate the often untapped richness of complex molecule synthesis to provide powerful tools to understand, manipulate and exploit Nature's vast and creative palette of secondary metabolites.
Collapse
Affiliation(s)
- Robert M Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
| |
Collapse
|
11
|
Park JH, Chang KM, Chung YK. Catalytic Pauson–Khand-type reactions and related carbonylative cycloaddition reactions. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.08.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
|
13
|
Su C, Huang X, Liu Q. CAN-Mediated Highly Regio- and Stereoselective Oxidation of Vinylidenecyclopropanes: A Novel Method for the Synthesis of Unsymmetrical Divinyl Ketone and Functional Enone Derivatives. J Org Chem 2008; 73:6421-4. [DOI: 10.1021/jo800829a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenliang Su
- Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028, People’s Republic of China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Xian Huang
- Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028, People’s Republic of China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Qingyang Liu
- Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028, People’s Republic of China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
14
|
Studies on Taxol Biosynthesis: Preparation of Taxadiene-diol- and triol-Derivatives by Deoxygenation of Taxusin. Tetrahedron 2008; 64:6561-6567. [PMID: 19122848 DOI: 10.1016/j.tet.2008.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The putative taxol biosynthesis metabolites, taxa-4(20),11(12)-diene-5α, 13α -diol (7), taxa-4(20),11(12)-diene-5α, 9α, 13α-triol (9), and taxa-4(20),11(12)-diene-5α, 10β, 13α-triol (10), have been prepared by Barton deoxygenation of the C-9 and C10-hydroxyl groups of protected derivatives of taxusin, a major taxoid metabolite isolated from Yew heart wood. The synthetic protocol devised, is amenable for the preparation of isotopically labeled congeners that will be useful to probe further intermediate steps in the biosynthesis of taxol.
Collapse
|
15
|
|
16
|
|
17
|
Kawasaki J, Kosuge H, Habaki H, Morita Y. SEPARATION OF TAXANE COMPOUNDS BY LIQUID-LIQUID EXTRACTION. CHEM ENG COMMUN 2008. [DOI: 10.1080/00986440701555456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Utsugi M, Kamada Y, Miyamoto H, Nakada M. Construction of the taxane skeleton via the stereoselective conjugate addition of cyanide and the intramolecular B-alkyl Suzuki–Miyaura coupling reaction. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.07.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Yokoe H, Sasaki H, Yoshimura T, Shindo M, Yoshida M, Shishido K. Total Synthesis of (+)-Sundiversifolide. Org Lett 2007; 9:969-71. [PMID: 17295494 DOI: 10.1021/ol062960h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first, enantiocontrolled total synthesis of (+)-sundiversifolide has been accomplished using the sequential ring-closing metathesis, [3,3]-sigmatropic rearrangement, and iodolactonization for the key assembly of the cis-fused oxabicyclo[5.3.0]decene framework of the natural product. [structure: see text]
Collapse
Affiliation(s)
- Hiromasa Yokoe
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Shi QW, Cao CM, Gu JS, Kiyota H. Four new epoxy taxanes from needles of Taxus cuspidata (Taxaceae). Nat Prod Res 2006; 20:173-9. [PMID: 16439348 DOI: 10.1080/14786410500049426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Four new epoxy taxoids were isolated from the needles of Taxus cuspidata. Their structures were established as 2a,9a-diacetoxy-5a-cinnamoyloxy-11,12-epoxy-10ss-hydroxytax-4(20)-en-13-one (1), 2a,10ss-diacetoxy-5a-cinnamoyloxy-11,12-epoxy-9a-hydroxytax-4(20)-en-13-one (2), 2a,9a-diacetoxy-11,12-epoxy-10ss,20-dihydroxytax-4-en-13-one (3) and 2a,10ss-diacetoxy-11,12-epoxy-9a,20-dihydroxytax-4-en-13-one (4) on the basis of spectral analysis including 1H-NMR, 13C-NMR, 1H-1H-COSY, HSQC, HMBC and HRFABMS. Compounds 3 and 4 are the first example of 11,12-epoxy taxoids with C-4 double bond found in T. cuspidata.
Collapse
Affiliation(s)
- Qing-Wen Shi
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Hebei Medicinal University, 336 Zhongshan East Road, 050017, Shijiazhuang, Hebei Province, People's Republic of China
| | | | | | | |
Collapse
|
21
|
|
22
|
Kaliappan KP, Ravikumar V, Pujari SA. Synthesis of a bicyclo[5.3.1]undecene by a facile domino enyne cross-metathesis/IMDA. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2005.11.144] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Shi QW, Li LG, Li ZP, Cao CM, Kiyota H. A novel 3,8-seco-taxane metabolite from the seeds of the Chinese yew, Taxus mairei. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.07.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Studies on taxol biosynthesis. Preparation of 5α-acetoxytaxa-4(20),11-dien-2α,10β-diol derivatives by deoxygenation of a taxadiene tetra-acetate obtained from Japanese yew. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(02)01450-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Wheeler AL, Long RM, Ketchum RE, Rithner CD, Williams RM, Croteau R. Taxol biosynthesis: differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells. Arch Biochem Biophys 2001; 390:265-78. [PMID: 11396929 DOI: 10.1006/abbi.2001.2377] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biosynthesis of the diterpenoid antineoplastic drug Taxol in Taxus species involves the cyclization of the ubiquitous isoprenoid intermediate geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation (with allylic rearrangement) of this olefin precursor to taxa-4(20),11(12)-dien-5 alpha-ol, and further oxygenation and acylation reactions. Based on the abundances of naturally occurring taxoids, the subsequent order of oxygenation of the taxane core is considered to occur at C10, then C2 and C9, followed by C13, and finally C7 and C1. Circumstantial evidence suggests that the acetylation of taxadien-5 alpha-ol may constitute the third specific step of Taxol biosynthesis. To determine whether taxadienol or the corresponding acetate ester serves as the direct precursor of subsequent oxygenation reactions, microsomal preparations isolated from induced Taxus cells and optimized for cytochrome P450 catalysis were incubated with each potential substrate. Both taxadienol and taxadienyl acetate were oxygenated to the level of a diol and to higher polyols at comparable rates by cytochrome P450 enzymes of the microsomal preparation. Preparative-scale incubation allowed the isolation of sufficient quantities of the diol derived from taxadienol to permit the NMR-based structural elucidation of this metabolite as taxa-4(20),11(12)-dien-5 alpha,13 alpha-diol, which may represent an alternate route of taxoid metabolism in induced cells. GC-MS-based structural definition of the diol monoacetate derived in microsomes from taxadienyl acetate confirmed this metabolite as taxa-4(20),11(12)-dien-5 alpha-acetoxy-10 beta-ol, thereby indicating that acetylation at C5 of taxadienol precedes the cytochrome P450-mediated insertion of the C10-beta-hydroxyl group of Taxol.
Collapse
Affiliation(s)
- A L Wheeler
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bear BR, Sparks SM, Shea KJ. The Type 2 Intramolecular Diels-Alder Reaction: Synthesis and Chemistry of Bridgehead Alkenes. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3773(20010302)40:5<820::aid-anie820>3.0.co;2-f] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Bear BR, Sparks SM, Shea KJ. Intramolekulare Diels-Alder-Reaktion vom Typ 2: Synthese und Chemie von Brückenkopf-Alkenen. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010302)113:5<864::aid-ange864>3.0.co;2-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|