1
|
Brash DE, Goncalves LCP. Chemiexcitation: Mammalian Photochemistry in the Dark †. Photochem Photobiol 2023; 99:251-276. [PMID: 36681894 PMCID: PMC10065968 DOI: 10.1111/php.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/18/2023] [Indexed: 01/23/2023]
Abstract
Light is one way to excite an electron in biology. Another is chemiexcitation, birthing a reaction product in an electronically excited state rather than exciting from the ground state. Chemiexcited molecules, as in bioluminescence, can release more energy than ATP. Excited states also allow bond rearrangements forbidden in ground states. Molecules with low-lying unoccupied orbitals, abundant in biology, are particularly susceptible. In mammals, chemiexcitation was discovered to transfer energy from excited melanin, neurotransmitters, or hormones to DNA, creating the lethal and carcinogenic cyclobutane pyrimidine dimer. That process was initiated by nitric oxide and superoxide, radicals triggered by ultraviolet light or inflammation. Several poorly understood chronic diseases share two properties: inflammation generates those radicals across the tissue, and cells that die are those containing melanin or neuromelanin. Chemiexcitation may therefore be a pathogenic event in noise- and drug-induced deafness, Parkinson's disease, and Alzheimer's; it may prevent macular degeneration early in life but turn pathogenic later. Beneficial evolutionary selection for excitable biomolecules may thus have conferred an Achilles heel. This review of recent findings on chemiexcitation in mammalian cells also describes the underlying physics, biochemistry, and potential pathogenesis, with the goal of making this interdisciplinary phenomenon accessible to researchers within each field.
Collapse
Affiliation(s)
- Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
| | - Leticia C. P. Goncalves
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| |
Collapse
|
2
|
Ramos LD, Prado FM, Stevani CV, Di Mascio P, Bechara EJH. l-Tryptophan Interactions with the Horseradish Peroxidase-Catalyzed Generation of Triplet Acetone. Photochem Photobiol 2021; 97:327-334. [PMID: 33296511 DOI: 10.1111/php.13363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023]
Abstract
Triplet carbonyls generated by chemiexcitation are involved in typical photobiochemical processes in the absence of light. Due to their biradical nature, ultraweak light emission and long lifetime, electronically excited triplet species display typical radical reactions such as isomerization, fragmentation, cycloaddition and hydrogen abstraction. In this paper, we report chemical reactions in a set of amino acid residues induced by the isobutanal/horseradish peroxidase (IBAL/HRP) system, a well-known source of excited triplet acetone (Ac3* ). Accordingly, quenching of Ac3* by tryptophan (Trp) unveiled parallel enzyme damage and inactivation, likely explained by scavenging of IBAL tertiary radical reaction intermediate and Ac3* -derived 2-hydroxy-i-propyl radical. Quenching constants were calculated from Stern-Volmer plots, and the structure of radical adducts was revealed by mass spectrometry. As expected, a concurrent Schiff-type adduct was found to be one of the reaction by-products. These findings draw attention to potential structural and functional changes in enzymes involved in the electronic chemiexcitation of their products.
Collapse
Affiliation(s)
- Luiz D Ramos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Tayade SN, Tawade AK, Talele P, Chavhan SS, Sharma KKK. Swollen liquid crystalline mesophase assisted synthesis of GO-PANI nanocomposite as a fluorescent probe for purines. Methods Appl Fluoresc 2019; 7:045002. [PMID: 31553968 DOI: 10.1088/2050-6120/ab47e7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article focuses on the use of graphene oxide-polyaniline (GO-PANI) nanocomposite as fluorescent probe for sensing of adenine (A) and guanine (G). Swollen liquid crystalline mesophase were used for the synthesis of graphene oxide-polyaniline nanocomposite. GO-PANI nanocomposite showed enhanced fluorescent at 441 nm (ƛ excitation = 361 nm) on interaction of purines viz A and G solutions in dimethyl sulfoxide, GO exhibited quenching at 540 nm (ƛ excitation = 261 nm). The fluorescence emission spectra of GO-PANI nanocomposite and GO were recorded in the the pressence of A and G concentrations upto 1.2 × 10-4 M. The limits of detection (LOD) calculated from the concentration dependence study for GO-PANI nanocomposite and GO are 7.5 × 10-6 M and 13.4 × 10-6 M respectively. The LOD in the case of GO is identical for both A (13.0 × 10-6) and G (13.6 × 10-6 M). The binding constant (Kb) determined for GO-PANI with purines are in the range of 0.05-0.08 × 103 M-1 which is higher in the case of GO (2.42-7.52 × 103 M-1). The lifetime measurement demonstrates, an excited state interaction of GO-PANI nanocomposite and GO with purines. This is evident from the increasing lifetime from 4.3 ns to 29.2 ns for GO-PANI nanocomposite, while 17.5 ns to 37.2 ns for GO respectively. The relatively short lifetime of the GO-PANI nanocomposite in comparison with GO suggest an electronic charge dissipation of the excited state between polyaniline and graphene oxide possibly due to the alignment of polyaniline on the graphene oxide sheet. The photopysical properties of GO-PANI nanocomposite and GO observed in this study is new and has potential for application as fluorescent probe for the detection of purines.
Collapse
Affiliation(s)
- Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur, 416004, Maharashtra, India
| | | | | | | | | |
Collapse
|
4
|
Bastos EL, Farahani P, Bechara EJ, Baader WJ. Four-membered cyclic peroxides: Carriers of chemical energy. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3725] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erick Leite Bastos
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Pooria Farahani
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Etelvino J.H. Bechara
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Wilhelm Josef Baader
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
5
|
Stinson CA, Xia Y. A method of coupling the Paternò–Büchi reaction with direct infusion ESI-MS/MS for locating the CC bond in glycerophospholipids. Analyst 2016; 141:3696-704. [PMID: 26892746 DOI: 10.1039/c6an00015k] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conducting the Paternò–Büchi reaction in a microflow photo-reactor enables its coupling with ESI-MS/MS and CC location determination for shotgun lipid analysis.
Collapse
Affiliation(s)
| | - Yu Xia
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
6
|
Bartusik D, Aebisher D, Ghosh G, Minnis M, Greer A. Fluorine end-capped optical fibers for photosensitizer release and singlet oxygen production. J Org Chem 2012; 77:4557-65. [PMID: 22546013 DOI: 10.1021/jo3006107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The usefulness of a fiber optic technique for generating singlet oxygen and releasing the pheophorbide photosensitizer has been increased by the fluorination of the porous Vycor glass tip. Singlet oxygen emerges through the fiber tip with 669-nm light and oxygen, releasing the sensitizer molecules upon a [2 + 2] addition of singlet oxygen with the ethene spacer and scission of a dioxetane intermediate. Switching from a nonfluorinated to a fluorinated glass tip led to a clear reduction of the adsorbtive affinity of the departing sensitizer with improved release into homogeneous toluene solution and bovine tissue, but no difference was found in water since the sensitizer was insoluble. High surface coverage of the nonafluorohexylsilane enhanced the cleavage efficiency by 15% at the ethene site. The fluorosilane groups also caused crowding and seemed to reduce access of (1)O(2) to the ethene site, which attenuated the total quenching rate constant k(T), although there was less wasted (1)O(2) (from surface physical quenching) at the fluorosilane-coated than the native SiOH silica. The observations support a quenching mechanism that the replacement of the SiOH groups for the fluorosilane C-H and C-F groups enhanced the (1)O(2) lifetime at the fiber tip interface due to less efficient electronic-to-vibronic energy transfer.
Collapse
Affiliation(s)
- Dorota Bartusik
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210, United States
| | | | | | | | | |
Collapse
|
7
|
Khot MS, Desai NK, Kolekar GB, Patil SR. Fluorescence enhancement effect for the determination of adenosine 5'-monophosphate with 9-anthracene carboxylic acid-cetyl trimethyl ammonium bromide system. J Fluoresc 2011; 21:1997-2003. [PMID: 21710147 DOI: 10.1007/s10895-011-0900-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
A fluorimetric method based on fluorescence enhancement effect was developed for the determination of adenosine 5'-monophosphate (AMP) with 9-anthracene carboxylic acid (9-ANCA)-cetyl trimethyl ammonium bromide (CTAB) system. Fluorescence intensity of 9-ANCA was decreased by the addition of CTAB but addition of AMP again rose the intensity of 9-ANCA gradually. The observed fluorescence enhancement is attributed to the competitive binding reaction of 9-ANCA and adenosine to CTAB. The enhancement in the fluorescence intensity was found proportional to the concentration of AMP over the range 2.0 × 10(-4) to 1.2 × 10(-3) mol dm(-3). The ion pair complex is formed spontaneously between 9-ANCA and CTAB. Since the binding interaction is larger for the adenosine-CTAB pair, the fluorophore 9-ANCA will be released. The quantum yield of free 9-ANCA is higher therefore its fluorescence observed at 417 nm wavelength is enhanced. This mechanism of competitive molecular interaction is further confirmed by conductometric measurements. The method was applied successfully for the determination of AMP from pharmaceutical sample. The method is more selective, sensitive and relatively free from interferences.
Collapse
Affiliation(s)
- Mahadev S Khot
- Ch. Sambhaji Raje Sainik School, Jamge (Khed), Ratnagiri, 415709 Maharashtra, India.
| | | | | | | |
Collapse
|
8
|
Bucher G, Lu C, Sander W. The Photochemistry of Lipoic Acid: Photoionization and Observation of a Triplet Excited State of a Disulfide. Chemphyschem 2005; 6:2607-18. [PMID: 16331730 DOI: 10.1002/cphc.200500211] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Under short-wavelength UV irradiation, lipoic acid (LipSS) and its reduced form, dihydrolipoic acid (DHLA), undergo photoionization processes through a bi- or monophotonic pathway. After ionization, the LipSS radical cation (LipSS*+) and radical anion (LipSS*-) are generated. LipSS*- can be converted to equimolar amounts of LipSS and DHLA through second-order decay. Triplet acetone can be quenched by LipSS and DHLA with a rate close to the diffusion-controlled limit. The mechanism was further confirmed by continuous irradiation experiments. When LipSS is directly irradiated with UVA light, the first excited triplet state of LipSS is observed, with a lifetime tau=75 ns. Characteristic reactions include triplet energy transfer to oxygen and beta-carotene and addition to isoprene. The lifetime of triplet LipSS is also shortened by addition of water and methanol.
Collapse
Affiliation(s)
- Götz Bucher
- Lehrstuhl für Organische Chemie II, Ruhr-Universität, 44780 Bochum, Germany.
| | | | | |
Collapse
|
9
|
Marquez C, Pischel U, Nau WM. Selective fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by nucleotides. Org Lett 2004; 5:3911-4. [PMID: 14535741 DOI: 10.1021/ol035454q] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by nucleotides has been studied. The quenching mechanism was analyzed on the basis of deuterium isotope effects, tendencies for exciplex formation, and the quenching efficiency in the presence of a molecular container (cucurbit[7]uril). Exciplex-induced quenching appears to prevail for adenosine, cytidine, and uridine, while hydrogen abstraction becomes competitive for thymidine and guanosine. Compared to other fluorescent probes, DBO responds very selectively to the type of nucleotide.
Collapse
Affiliation(s)
- Cesar Marquez
- School of Engineering and Science, International University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | | | | |
Collapse
|
10
|
Ricci A, Fasani E, Mella M, Albini A. General patterns in the photochemistry of pregna-1,4-dien-3,20-diones. J Org Chem 2003; 68:4361-6. [PMID: 12762737 DOI: 10.1021/jo034070a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photochemistry of six pregna-1,4-dien-3,20-diones has been compared and found to involve both the cyclohexadienone moiety in ring A and the isolated ketone at C-20. The two reactions take place proportionally to the fraction of light absorbed by each chromophore. The cross-conjugated ketone absorbs predominantly or exclusively at both 254 and 366 nm and undergoes the "lumi" rearrangement to bicyclo[3.1.0]hex-3-en-2-one. The quantum yield of the reaction diminished somewhat with increasing lambda(exc), e.g., for prednisolone Phi(254) (nm) = 0.42, Phi(366) (nm) = 0.3. A much stronger lowering is caused by halogen substitution in position 9 (by a factor of 3 for F, >50 for Cl), apparently due to a shortened triplet lifetime caused by heavy atom effect. At 310 nm, both chromophores absorb to a comparable degree and both may react. The reaction at C(20) ketone involves either quite efficient alpha-cleavage (C(17)-C(20)) for compounds bearing an acetal or hydroxyl function at C(17) or less effective (by a factor of ca. 10) hydrogen abstraction from the 18-methyl group in the other cases (finally resulting in Norrish II fragmentation or Yang cyclization). The results allow generalizing how the substitution pattern surrounding each chromophore affects the photoreactivity at that site and the competition between the two modes, allowing predicting the photochemistry of this family of antiinflammatory drugs.
Collapse
Affiliation(s)
- Andrea Ricci
- Dep. Organic Chemistry, University of Pavia, Via Taramelli 10, Italy
| | | | | | | |
Collapse
|
11
|
Adam W, Arnold MA, Grüne M, Nau WM, Pischel U, Saha-Möller CR. Spiroiminodihydantoin is a major product in the photooxidation of 2'-deoxyguanosine by the triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis. Org Lett 2002; 4:537-40. [PMID: 11843585 DOI: 10.1021/ol017138m] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] Photolysis of hydroxyacetophenone and thermolysis of the corresponding dioxetane afford spiroiminodihydantoin rather than 4,8-dihydro-4-hydroxy-8-oxo-2'-deoxyguanosine (4-HO-8-oxodG) through the oxidation of 2'-deoxyguanosine (dG) by triplet-excited hydroxyacetophenone and the peroxyl radicals derived thereof by alpha cleavage and subsequent oxygen trapping. The structure of the spiroiminodihydantoin is assigned by the SELINQUATE NMR technique, which unequivocally establishes the spirocyclic connectivity.
Collapse
Affiliation(s)
- Waldemar Adam
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Adam W, Arnold MA, Nau WM, Pischel U, Saha-Möller CR. Structure-dependent reactivity of oxyfunctionalized acetophenones in the photooxidation of DNA: base oxidation and strand breaks through photolytic radical formation (spin trapping, EPR spectroscopy, transient kinetics) versus photosensitization (electron transfer, hydrogen-atom abstraction). Nucleic Acids Res 2001; 29:4955-62. [PMID: 11812825 PMCID: PMC97623 DOI: 10.1093/nar/29.24.4955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The photooxidative damage of DNA, specifically guanine oxidation and strand-break formation, by sidechain-oxyfunctionalized acetophenones (hydroxy, methoxy, tert-butoxy and acetoxy derivatives), has been examined. The involvement of triplet-excited ketones and their reactivity towards DNA has been determined by time-resolved laser-flash spectroscopy. The generation of carbon-centered radical species upon Norrish-type I cleavage has been assessed by spin-trapping experiments with 5,5-dimethyl-1-pyrroline N-oxide, coupled with electron paramagnetic resonance spectroscopy. The observed DNA-base oxidation and strand-break formation is discussed in terms of the peroxyl radicals derived from the triplet-excited ketones by alpha cleavage and molecular oxygen trapping, as well as direct interaction of the excited states by electron transfer and hydrogen-atom abstraction. It is concluded that acetophenone derivatives, which produce radicals upon photolysis, in particular the hydroxy (AP-OH) and tert-butoxy (AP-O(t)Bu) derivatives, are more effective in oxidizing DNA.
Collapse
Affiliation(s)
- W Adam
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|