1
|
Sager E, Tzvetkova P, Lingel A, Gossert AD, Luy B. Hydrogen bond formation may enhance RDC-based discrimination of enantiomers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:639-647. [PMID: 38785031 DOI: 10.1002/mrc.5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
The distinction of enantiomers based on residual anisotropic parameters obtained by alignment in chiral poly-γ-benzyl-L-glutamate (PBLG) is among the strongest in high-resolution NMR spectroscopy. However, large variations in enantiodifferentiation among different solutes are frequently observed. One hypothesis is that the formation of hydrogen bonds between solute and PBLG is important for the distinction of enantiomers. With a small set of three almost spherical enantiomeric pairs, for which 1DCH residual dipolar couplings are measured, we address this issue in a systematic way: borneol contains a single functional group that can act as a hydrogen bond donor, camphor has a single group that may act as a hydrogen bond acceptor, and quinuclidinol can act as both hydrogen bond donor and acceptor. The results are unambiguous: although camphor shows low enantiodifferentiation with PBLG and alignment that can be predicted well by the purely steric TRAMITE approach, the distinction of enantiomers for the other enantiomeric pairs is significantly higher with alignment properties that must involve a specific interaction in addition to steric alignment.
Collapse
Affiliation(s)
- Emine Sager
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Novartis Biomedical Research, Basel, Switzerland
| | - Pavleta Tzvetkova
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | | | | | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Anklin C, Gil RR. Full configurational and conformational analysis of artemisinin by one-bond carbon-carbon residual dipolar couplings at natural abundance. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:599-604. [PMID: 38558418 DOI: 10.1002/mrc.5443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Configurational and conformational analysis of the biologically relevant natural product artemisinin was conducted using carbon-carbon residual dipolar couplings (1DCC RDCs) at natural abundance. These RDCs were measured through the 2D-INADEQUATE NMR experiment using a sample aligned in a compressed poly (methyl methacrylate) (PMMA) gel swollen in CDCl3. Singular value decomposition (SVD) fitting analysis of all carbon-carbon bonds, 1DCC RDCs, in relation to the full configuration/conformational space (32 diastereoisomers) of artemisinin, unambiguously identified the correct configuration of artemisinin.
Collapse
Affiliation(s)
- Clemens Anklin
- Bruker BioSpin Corporation, Billerica, Massachusetts, USA
| | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Silva Elipe MV, Ndukwe IE, Navarro-Vázquez A. Anisotropic NMR data acquisition with a prototype 400 MHz cryogen-free NMR spectrometer. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:530-543. [PMID: 37530063 DOI: 10.1002/mrc.5380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
High-temperature superconducting (HTS) materials have recently been incorporated into the construction of HTS cryogen-free magnets for nuclear magnetic resonance (NMR) spectroscopy. These HTS NMR spectrometers do not require liquid cryogens, thereby providing significant cost savings and facilitating easy integration into chemistry laboratories. However, the optimal performance of these HTS magnets against standard cryogen NMR magnets must be evaluated, especially with demanding modern NMR applications such as NMR in anisotropic media. The stability of the HTS magnets over time and their performance with complex pulse sequence experiments are the main unknown factors of this new technology. In this study, we evaluate the utility of our prototype 400 MHz cryogen-free power-driven HTS NMR spectrometer, installed in the fumehood of a chemistry laboratory, for stereochemical analysis of three commercial natural products (artemisinin, artemether, and dihydroartemisinin) via measurement of anisotropic NMR data, in particular, residual dipolar couplings. The accuracy of measurement of the anisotropic NMR data with the HTS magnet spectrometer is evaluated through the CASE-3D fitting protocol, as implemented in the Mestrenova-StereoFitter software program.
Collapse
Affiliation(s)
| | | | - Armando Navarro-Vázquez
- Departmento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
4
|
Carvalho DS, da Silva DGB, Hallwass F, Navarro-Vázquez A. An Acrylonitrile-Based Copolymer Gel as an NMR Alignment Medium for Extraction of Residual Dipolar Couplings of Small Molecules in Aqueous Solution. Chempluschem 2023; 88:e202200446. [PMID: 36782376 DOI: 10.1002/cplu.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An NMR weakly-aligning polymer gel has been prepared by copolymerization of acrylonitrile and 2-acrylamide-2-methyl-1-propanesulfonic acid in the presence of 1,4-butanediol diacrylate as a cross-linker. The polymer readily swells in water in a large range of temperatures, although the swelling ratio is decreased in saline solutions. The swollen gel can be mechanically compressed, in a reversible way, generating anisotropy, as easily shown in 2 H NMR experiments, and allowing measurement of 1 DCH residual dipolar couplings (RDCs) through F1-coupled HSQC experiments. The performance of this gel as a NMR alignment medium was evaluated in several water-soluble organic molecules and, while it provided RDCs of proper size for sucrose and even such as small molecule as 5-norbornen-2-ol, in the case of azidothymidine and cefuroxime sodium salt the strong interaction of these molecules with the gel prevented successful extraction of the RDCs.
Collapse
Affiliation(s)
- Daiane S Carvalho
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitria, CEP, 50.740-540, Recife, PE, Brazil
| | - Danilo G B da Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitria, CEP, 50.740-540, Recife, PE, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitria, CEP, 50.740-540, Recife, PE, Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitria, CEP, 50.740-540, Recife, PE, Brazil
| |
Collapse
|
5
|
Knoll K, Herold D, Hirschmann M, Thiele CM. A supramolecular and liquid crystalline water-based alignment medium based on azobenzene-substituted 1,3,5-benzenetricarboxamides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:563-571. [PMID: 35266585 DOI: 10.1002/mrc.5266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
A supramolecular, lyotropic liquid crystalline alignment medium based on an azobenzene-containing 1,3,5-benzenetricarboxamide (BTA) building block is described and investigated. As we demonstrate, this water-based system is suitable for the investigation of various water-soluble analytes and allows for a scaling of alignment strength through variation of temperature. Additionally, alignment is shown to reversibly collapse above a certain temperature, yielding an isotropic solution. This collapse allows for isotropic reference measurements, which are typically needed in addition to those in an anisotropic environment, to be performed using the same sample just by varying the temperature. The medium described thus provides easy access to anisotropic NMR observables and simplifies structure elucidation techniques based thereon.
Collapse
Affiliation(s)
- Kevin Knoll
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dominik Herold
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Max Hirschmann
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
6
|
Yang HY, Chen YX, Luo S, He YL, Feng WJ, Sun Y, Chen JJ, Gao K. Cardiac glycosides from Digitalis lanata and their cytotoxic activities. RSC Adv 2022; 12:23240-23251. [PMID: 36090389 PMCID: PMC9380703 DOI: 10.1039/d2ra04464a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiac glycosides (CGs) are good candidates as drug leads in the treatment of cancer because of their structural diversities and potent biological activities. In this study, fifteen CGs including three new ones (1–3) were isolated from Digitalis lanata Ehrh. Their structures were elucidated by HRESIMS, NMR spectroscopic methods, including homonuclear and heteronuclear coupling constant analysis, and acid-catalyzed hydrolysis and derivatization analysis of the sugar chain. The cytotoxic activities of these CGs were evaluated against three human cancer cell lines (A549, HeLa and MCF-7 cell lines), and all of them showed strong activities at nanomolar scale. The flow cytometric analysis indicated that compound 1 induced cell cycle arrest in the G2/M phase. Transcriptome analysis revealed a panel of possible targets for compound 1. RT-PCR and western blot experiments showed that 1 significantly inhibited the expression of vasohibin-2 (VASH2). Moreover, compound 1 restrained angiogenesis in a concentration-dependent manner in the chick embryo chorioallantoic membrane (CAM) model. Cardiac glycosides (CGs) are good candidates as drug leads in the treatment of cancer because of their structural diversities and potent biological activities.![]()
Collapse
Affiliation(s)
- Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Ya-Xiong Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yi-Lin He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
- Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Wei-Jiao Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yue Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| |
Collapse
|
7
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil-Silva LF, Gil RR. Cross-Linked Poly-4-Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021; 60:26314-26319. [PMID: 34609778 DOI: 10.1002/anie.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Determination of the solution conformation of both small organic molecules and peptides in water remains a substantial hurdle in using NMR solution conformations to guide drug design due to the lack of easy to use alignment media. Herein we report the design of a flexible compressible chemically cross-linked poly-4-acrylomorpholine gel that can be used for the alignment of both small molecules and cyclic peptides in water. To test the new gel, residual dipolar couplings (RDCs) and J-coupling constants were used in the configurational analysis of strychnine hydrochloride, a molecule that has been studied extensively in organic solvents as well as a small cyclic peptide that is known to form an α-helix in water. The conformational ensembles for each molecule with the best fit to the data are reported. Identification of minor conformers in water that cannot easily be determined by conventional NOE measurements will facilitate the use of RDC experiments in structure-based drug design.
Collapse
Affiliation(s)
- Kathleen A Farley
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Martin R M Koos
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Ye Che
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Reto Horst
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Chris Limberakis
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Justin Bellenger
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Ricardo Lira
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | | | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
8
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil‐Silva LF, Gil RR. Cross‐Linked Poly‐4‐Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Martin R. M. Koos
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Ye Che
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Reto Horst
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Chris Limberakis
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Justin Bellenger
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Ricardo Lira
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | | | - Roberto R. Gil
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
9
|
de Melo Sousa CM, Giordani RB, de Almeida WAM, Griesinger C, Gil RR, Navarro-Vázquez A, Hallwass F. Effect of the solvent on the conformation of monocrotaline as determined by isotropic and anisotropic NMR parameters. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:561-568. [PMID: 31715029 DOI: 10.1002/mrc.4968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The conformation in solution of monocrotaline, a pyrrolizidine alkaloid presenting an eleven-membered macrocyclic diester ring, has been investigated using a combination of isotropic and anisotropic nuclear magnetic resonance parameters measured in four solvents of different polarity (D2 O, DMSO-d6 , CDCl3 , and C6 D6 ). Anisotropic nuclear magnetic resonance parameters were measured in different alignment media, based on their compatibility with the solvent of interest: cromoglycate liquid crystal solution was used for D2 O, whereas a poly (methyl methacrylate) polymer gel was chosen for CDCl3 and C6 D6 , and a poly (hydroxyethyl methacrylate) gel for DMSO-d6 . Whereas the pyrrolizidine ring shows an E6 exo-puckered conformation in all of the solvents, the macrocyclic eleven-membered ring adopts different populations of syn-parallel and anti-parallel relative orientation of the carbonyl groups according to the polarity of the solvent.
Collapse
Affiliation(s)
- Cleyton Marcos de Melo Sousa
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Instituto Federal de Pernambuco, Caruaru, Pernambuco, Brazil
| | - Raquel Brandt Giordani
- Laboratório de Farmacognosia, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Christian Griesinger
- Abteilung für NMR-basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
10
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
11
|
Zu WY, Tang JW, Hu K, Zhou YF, Gou LL, Su XZ, Lei X, Sun HD, Puno PT. Chaetolactam A, an Azaphilone Derivative from the Endophytic Fungus Chaetomium sp. g1. J Org Chem 2020; 86:475-483. [PMID: 33263391 DOI: 10.1021/acs.joc.0c02214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wen-Yu Zu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| | - Jian-Wei Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| | - Yuan-Fei Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Lei-Lei Gou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiao-Zheng Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, People’s Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| |
Collapse
|
12
|
Becker J, Koos MRM, Schulze-Sünninghausen D, Luy B. ASAP-HSQC-TOCSY for fast spin system identification and extraction of long-range couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 300:76-83. [PMID: 30711785 DOI: 10.1016/j.jmr.2018.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Based on Ernst-angle-type excitation and Acceleration by Sharing Adjacent Polarization (ASAP), a fast HSQC-TOCSY experiment is introduced. In the approach, the DIPSI-2 isotropic mixing period of the ASAP-HSQC is simply shifted, which provides a TOCSY period without additional application of rf-energy. The ASAP-HSQC-TOCSY allows the acquisition of a conventional 2D in about 30 s. Alternatively, it allows the acquisition of highly carbon-resolved spectra (several Hz digital resolution) on the order of minutes. An ASAP-HSQC-TOCSY-IPAP variant, finally, allows the sign-sensitive extraction of heteronuclear long-range coupling constants from a pair of highly resolved spectra in less than an hour. Pulse sequences, several example spectra, and a discussion of results are given.
Collapse
Affiliation(s)
- Johanna Becker
- Institut für Organische Chemie and Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Martin R M Koos
- Institut für Organische Chemie and Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - David Schulze-Sünninghausen
- Institut für Organische Chemie and Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Burkhard Luy
- Institut für Organische Chemie and Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
13
|
Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat Protoc 2018; 14:217-247. [DOI: 10.1038/s41596-018-0091-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Milanowski DJ, Oku N, Cartner LK, Bokesch HR, Williamson RT, Saurí J, Liu Y, Blinov KA, Ding Y, Li XC, Ferreira D, Walker LA, Khan S, Davies-Coleman MT, Kelley JA, McMahon JB, Martin GE, Gustafson KR. Unequivocal determination of caulamidines A and B: application and validation of new tools in the structure elucidation tool box. Chem Sci 2017; 9:307-314. [PMID: 29619201 PMCID: PMC5868047 DOI: 10.1039/c7sc01996c] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023] Open
Abstract
Newly described NMR experimental approaches can provide valuable structural details and a complementary means of structure verification.
Ambiguities and errors in the structural assignment of organic molecules hinder both drug discovery and total synthesis efforts. Newly described NMR experimental approaches can provide valuable structural details and a complementary means of structure verification. The caulamidines are trihalogenated alkaloids from a marine bryozoan with an unprecedented structural scaffold. Their unique carbon and nitrogen framework was deduced by conventional NMR methods supplemented by new experiments that define 2-bond heteronuclear connectivities, reveal very long-range connectivity data, or visualize the 35,37Cl isotopic effect on chlorinated carbons. Computer-assisted structural elucidation (CASE) analysis of the spectroscopic data for caulamidine A provided only one viable structural alternative. Anisotropic NMR parameters, specifically residual dipolar coupling and residual chemical shift anisotropy data, were measured for caulamidine A and compared to DFT-calculated values for the proposed structure, the CASE-derived alternative structure, and two energetically feasible stereoisomers. Anisotropy-based NMR experiments provide a global, orthogonal means to verify complex structures free from investigator bias. The anisotropic NMR data were fully consistent with the assigned structure and configuration of caulamidine A. Caulamidine B has the same heterocyclic scaffold as A but a different composition and pattern of halogen substitution. Caulamidines A and B inhibited both wild-type and drug-resistant strains of the malaria parasite Plasmodium falciparum at low micromolar concentrations, yet were nontoxic to human cells.
Collapse
Affiliation(s)
- Dennis J Milanowski
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA .
| | - Naoya Oku
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA .
| | - Laura K Cartner
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA . .,Basic Science Program, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702-1201 , USA
| | - Heidi R Bokesch
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA . .,Basic Science Program, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702-1201 , USA
| | - R Thomas Williamson
- Structure Elucidation Group, Process and Analytical Research and Development , Merck & Co. Inc. , Rahway , New Jersey 07065 , USA .
| | - Josep Saurí
- Structure Elucidation Group, Process and Analytical Research and Development , Merck & Co. Inc. , Rahway , New Jersey 07065 , USA .
| | - Yizhou Liu
- Structure Elucidation Group, Process and Analytical Research and Development , Merck & Co. Inc. , Rahway , New Jersey 07065 , USA .
| | | | - Yuanqing Ding
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | - Xing-Cong Li
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | - Daneel Ferreira
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | - Larry A Walker
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | - Shabana Khan
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | | | - James A Kelley
- Chemical Biology Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA
| | - James B McMahon
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA .
| | - Gary E Martin
- Structure Elucidation Group, Process and Analytical Research and Development , Merck & Co. Inc. , Rahway , New Jersey 07065 , USA .
| | - Kirk R Gustafson
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA .
| |
Collapse
|
15
|
Lei X, Qiu F, Sun H, Bai L, Wang WX, Xiang W, Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew Chem Int Ed Engl 2017; 56:12857-12861. [PMID: 28834640 DOI: 10.1002/anie.201705123] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/11/2017] [Indexed: 11/10/2022]
Abstract
Residual dipolar coupling (RDC) is a powerful structural parameter for the determination of the constitution, conformation, and configuration of organic molecules. Herein, we report the first liquid crystal-based orienting medium that is compatible with MeOH, thus enabling RDC acquisitions of a wide range of intermediate to polar organic molecules. The liquid crystals were produced from self-assembled oligopeptide nanotubes (AAKLVFF), which are stable at very low concentrations. The presented alignment medium is highly homogeneous, and the size of RDCs can be scaled with the concentration of the peptide. To assess the accuracy of the RDC measurement by employing this new medium, seven bioactive natural products from different classes were chosen and analyzed. The straightforward preparation of the anisotropic alignment sample will offer a versatile and robust protocol for the routine RDC measurement of natural products.
Collapse
Affiliation(s)
- Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Feng Qiu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Liwen Bai
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, China
| | - Hongping Xiao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
16
|
Lei X, Qiu F, Sun H, Bai L, Wang WX, Xiang W, Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxiang Lei
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Feng Qiu
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Liwen Bai
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Wensheng Xiang
- School of Life Science; Northeast Agricultural University; Harbin Heilongjiang Province 150030 China
| | - Hongping Xiao
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| |
Collapse
|
17
|
Cornilescu G, Ramos Alvarenga RF, Wyche TP, Bugni TS, Gil RR, Cornilescu CC, Westler WM, Markley JL, Schwieters CD. Progressive Stereo Locking (PSL): A Residual Dipolar Coupling Based Force Field Method for Determining the Relative Configuration of Natural Products and Other Small Molecules. ACS Chem Biol 2017; 12:2157-2163. [PMID: 28617580 DOI: 10.1021/acschembio.7b00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Establishing the relative configuration of a bioactive natural product represents the most challenging part in determining its structure. Residual dipolar couplings (RDCs) are sensitive probes of the relative spatial orientation of internuclear vectors. We adapted a force field structure calculation methodology to allow free sampling of both R and S configurations of the stereocenters of interest. The algorithm uses a floating alignment tensor in a simulated annealing protocol to identify the conformations and configurations that best fit experimental RDC and distance restraints (from NOE and J-coupling data). A unique configuration (for rigid molecules) or a very small number of configurations (for less rigid molecules) of the structural models having the lowest chiral angle energies and reasonable magnitudes of the alignment tensor are provided as the best predictions of the unknown configuration. For highly flexible molecules, the progressive locking of their stereocenters into their statistically dominant R or S state dramatically reduces the number of possible relative configurations. The result is verified by checking that the same configuration is obtained by initiating the locking from different regions of the molecule. For all molecules tested having known configurations (with conformations ranging from mostly rigid to highly flexible), the method accurately determined the correct configuration.
Collapse
Affiliation(s)
| | - René F. Ramos Alvarenga
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Thomas P. Wyche
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Biological
Chemistry and Molecular Pharmacology Department, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tim S. Bugni
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Roberto R. Gil
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | - Charles D. Schwieters
- Center for
Information Technology, National Institutes of Health, Bethesda, Maryland 20892-5624, United States
| |
Collapse
|
18
|
Schulze-Sünninghausen D, Becker J, Koos MRM, Luy B. Improvements, extensions, and practical aspects of rapid ASAP-HSQC and ALSOFAST-HSQC pulse sequences for studying small molecules at natural abundance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:151-161. [PMID: 28603039 DOI: 10.1016/j.jmr.2017.05.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Previously we introduced two novel NMR experiments for small molecules, the so-called ASAP-HSQC and ALSOFAST-HSQC (Schulze-Sünninghausen et al., 2014), which allow the detection of heteronuclear one-bond correlations in less than 30s at natural abundance. We propose an improved symmetrized pulse scheme of the basic experiment to minimize artifact intensities and the combination with non-uniform sampling to enable the acquisition of conventional HSQC spectra in as short as a couple of seconds and extremely 13C-resolved spectra in less than ten minutes. Based on steady state investigations, a first estimate to relative achievable signal intensities with respect to conventional, ASAP-, and ALSOFAST-HSQC experiments is given. In addition, we describe several extensions to the basic pulse schemes, like a multiplicity-edited version, a revised symmetrized CLIP-ASAP-HSQC, an ASAP-/ALSOFAST-HSQC sequence with broadband BIRD-based 1H,1H decoupling, and a symmetrized sequence optimized for water suppression. Finally, RF-power considerations with respect to the high duty cycle of the experiments are given.
Collapse
Affiliation(s)
- David Schulze-Sünninghausen
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Johanna Becker
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Martin R M Koos
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
19
|
Reller M, Wesp S, Koos MRM, Reggelin M, Luy B. Biphasic Liquid Crystal and the Simultaneous Measurement of Isotropic and Anisotropic Parameters by Spatially Resolved NMR Spectroscopy. Chemistry 2017. [DOI: 10.1002/chem.201702126] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Malin Reller
- Institut für Organische Chemie and Institut für Biologische Grenzflächen 4 - Magnetische Resonanz; Karlsruher Institut für Technologie (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Svenja Wesp
- Organische Chemie; Technische Universität Darmstadt; Alarich-Weiss Str. 4 64287 Darmstadt Germany
| | - Martin R. M. Koos
- Institut für Organische Chemie and Institut für Biologische Grenzflächen 4 - Magnetische Resonanz; Karlsruher Institut für Technologie (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Michael Reggelin
- Organische Chemie; Technische Universität Darmstadt; Alarich-Weiss Str. 4 64287 Darmstadt Germany
| | - Burkhard Luy
- Institut für Organische Chemie and Institut für Biologische Grenzflächen 4 - Magnetische Resonanz; Karlsruher Institut für Technologie (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
20
|
Navarro-Vázquez A, Berdagué P, Lesot P. Integrated Computational Protocol for the Analysis of Quadrupolar Splittings from Natural-Abundance Deuterium NMR Spectra in (Chiral) Oriented Media. Chemphyschem 2017; 18:1252-1266. [DOI: 10.1002/cphc.201601423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Armando Navarro-Vázquez
- Departamento de Química Fundamental; Universidade Federal de Pernambuco Cidade Universitária; CEP: 50 740-540 Recife PE Brazil
- Institute of Organic Chemistry and Institute for Biological Interfaces; Karlsruhe Institute of Technology (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe German
| | - Philippe Berdagué
- RMN en Milieu Orienté; ICMMO; UMR CNRS 8182; Université Paris-Sud/Université Paris-Saclay; Bât. 410 91405 Orsay cedex France
| | - Philippe Lesot
- RMN en Milieu Orienté; ICMMO; UMR CNRS 8182; Université Paris-Sud/Université Paris-Saclay; Bât. 410 91405 Orsay cedex France
| |
Collapse
|
21
|
França JAA, Navarro-Vázquez A, Lei X, Sun H, Griesinger C, Hallwass F. Complete NMR assignment and conformational analysis of 17-α-ethinylestradiol by using RDCs obtained in grafted graphene oxide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:297-303. [PMID: 27637176 DOI: 10.1002/mrc.4526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
The 1 H and 13 C NMR spectra of 17-α-ethinylestradiol (EE2), a well-known contraceptive, including diastereotopic methylene groups, were fully assigned with the help of residual dipolar couplings (RDC) measured in the recently developed grafted graphene oxide orienting medium. RDC analysis, which included all 1 DCH couplings and the long-range 2 DCH1 H-C≡13 C coupling, also pointed to the presence of a minor conformation arising from pseudo-rotation of the steroid B ring. Saturation-transfer difference (STD) measurements revealed that the most likely interaction between EE2 and orienting medium occurred on the C and D ring. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- José A A França
- Instituto Federal de Alagoas, Campus Piranhas, Avenida Sergipe, s/n° Xingó, 57460-000, Piranhas, AL, Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901, Recife, PE, Brazil
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, PR China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Robert-Rössle-StraΒe 10, 13125, Berlin, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Fassberg 11, 37077, Göttingen, Germany
| | - Fernando Hallwass
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901, Recife, PE, Brazil
| |
Collapse
|
22
|
Schmidts V. Perspectives in the application of residual dipolar couplings in the structure elucidation of weakly aligned small molecules. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:54-60. [PMID: 27743456 DOI: 10.1002/mrc.4543] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 05/28/2023]
Abstract
This perspective article aims to review the general methodology in the application of residual dipolar couplings (RDCs) in the structure elucidation of small molecules and give the author's view on challenges for future applications. Recent improvements in the availability of alignment media, new pulse sequences for the measurement of couplings and improvements in the analysis software have garnered widespread interest in the technique. However, further generalization is needed in order to make RDC analysis into a truly "routine" method. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Volker Schmidts
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
23
|
Nath N, Schmidt M, Gil RR, Williamson RT, Martin GE, Navarro-Vázquez A, Griesinger C, Liu Y. Determination of Relative Configuration from Residual Chemical Shift Anisotropy. J Am Chem Soc 2016; 138:9548-56. [DOI: 10.1021/jacs.6b04082] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nilamoni Nath
- Department
of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Manuel Schmidt
- Department
of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Roberto R. Gil
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - R. Thomas Williamson
- Process Research and Development, NMR Structure Elucidation Group, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gary E. Martin
- Process Research and Development, NMR Structure Elucidation Group, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Armando Navarro-Vázquez
- Departamento
de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE 50740-560, Brazil
- Institute
of Organic Chemistry and Institute for Biological Interfaces Karlsruhe, Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Christian Griesinger
- Department
of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Yizhou Liu
- Process Research and Development, NMR Structure Elucidation Group, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
24
|
Becker J, Luy B. CLIP-ASAP-HSQC for fast and accurate extraction of one-bond couplings from isotropic and partially aligned molecules. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:878-885. [PMID: 26137959 DOI: 10.1002/mrc.4276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Fast measurement of heteronuclear one-bond couplings, a class of NMR parameters valuable for structure elucidation, is highly desirable, especially if samples undergo chemical reactions or dynamic processes are observed. Methods presented so far face severe limitations in terms of resolution, accessible bandwidth, and sensitivity. We present the CLean InPhase-Acceleration by Sharing Adjacent Polarization-HSQC (CLIP-ASAP-HSQC) pulse sequence that allows fast acquisition of spectra with clean inphase multiplets in about 25 s. The performance in terms of accurate extraction of one-bond couplings is demonstrated on three test samples including partially aligned molecules.
Collapse
Affiliation(s)
- Johanna Becker
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 4 - Magnetic Resonance, Eggenstein-Leopoldshafen, Germany
| | - Burkhard Luy
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 4 - Magnetic Resonance, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| |
Collapse
|
25
|
Reinsperger T, Luy B. Homonuclear BIRD-decoupled spectra for measuring one-bond couplings with highest resolution: CLIP/CLAP-RESET and constant-time-CLIP/CLAP-RESET. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 239:110-120. [PMID: 24365099 DOI: 10.1016/j.jmr.2013.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 06/03/2023]
Abstract
Heteronuclear one-bond couplings are of interest for various aspects of structural analysis of small organic molecules, including for example the distinction of axial and equatorial protons or the use of RDCs as angular constraints. Such couplings are most easily measured from pure doublets in HSQC-type spectra. Recently, the fully decoupled RESET HSQC experiment was reported and several other so-called pure-shift methods followed that allow for the removal of splittings due to homonuclear scalar interactions in one and two-dimensional NMR. In this work we present broadband homonuclear decoupled CLIP/CLAP-RESET experiments based on an isotope-selective BIRD filter element using a recently reported improved version of Zangger-Sterk data chunking. The concatenated FIDs result in multiplets in which most homonuclear splittings are removed while the heteronuclear one-bond couplings are retained. Couplings can be extracted in an IPAP fashion without scaling of subspectra by the use of optimized coherence transfer elements like the COB-INEPT. The method leads to complete homonuclear decoupling for CH groups and CH3 groups in isotropic samples, but leaves residual splittings with antiphase contributions for e.g. CH2 groups due to (2)JHH coupling evolution that is not affected by the BIRD element. For this case we present a constant-time version of the proposed BIRD decoupling scheme with full homonuclear decoupling. In addition, the effects of strong coupling are discussed. Strong coupling artifacts cannot be circumvented, but the proposed experiments allow their distinct recognition.
Collapse
Affiliation(s)
- Tony Reinsperger
- Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Postfach 3640, 76021 Karlsruhe, Germany; Institut für Organische Chemie, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Burkhard Luy
- Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Postfach 3640, 76021 Karlsruhe, Germany; Institut für Organische Chemie, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
26
|
Schmidts V, Fredersdorf M, Lübken T, Porzel A, Arnold N, Wessjohann L, Thiele CM. RDC-based determination of the relative configuration of the fungicidal cyclopentenone 4,6-diacetylhygrophorone A12. JOURNAL OF NATURAL PRODUCTS 2013; 76:839-844. [PMID: 23659349 DOI: 10.1021/np300728b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The hygrophorones, a class of cyclopentenones isolated from fruiting bodies of the genus Hygrophorus (basidiomycetes), show promising antifungal activity. While the constitution of 4,6-diacetylhygrophorone A(12) (3) and the relative configuration of the stereogenic centers in the cyclopentenone ring were elucidated using standard NMR and MS techniques, the relative configuration of the exocyclic stereogenic center could not be assigned. By introducing a sample of 3 into an alignment medium and measuring anisotropic NMR parameters, namely, residual dipolar couplings, we were able to unambiguously determine the relative configuration of all three stereogenic centers in 4,6-diacetylhygrophorone A(12) simultaneously by fitting several structure proposals to the experimental data.
Collapse
Affiliation(s)
- Volker Schmidts
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Petersenstraße 22, Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Tzvetkova P, Luy B, Simova S. Configuration verification via RDCs on the example of a tetra-substituted pyrrolidine ring. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50 Suppl 1:S92-S101. [PMID: 23280666 DOI: 10.1002/mrc.3902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023]
Abstract
The configurational analysis of organic compounds is an important application for high resolution NMR spectroscopy. In the present study, a tetra-substituted pyrrolidine with four chiral carbon atoms is analyzed using classical methods based on (3) J and NOE data in solution and compared and verified with recently introduced alternative approaches via residual dipolar couplings (RDCs) in two weak anisotropic alignment media. The molecule shows sufficient rigidity in the five-membered ring for the configurational characterization with the various techniques. However, the flexibility caused by the many freely rotating bonds potentially poses problems for the interpretation of data. It is shown that RDCs measured in poly-γ-benzyl-l-glutamate and a stretched polydimethylsiloxane gel provide useful information for the distinction of diastereomers, but the success varies with the data interpretation strategy used. Although a general improvement of corresponding correlation factors is observed when limiting data to a subset of dipolar couplings directly connected to the central ring, the distinction power is reduced because of the smaller number of RDCs available for potential model falsification. Singular value decomposition for fitting experimental RDCs is able to distinguish in most cases the correct from incorrect configurations, but the differences in correlation factors can be relatively small. Surprisingly, predicting RDCs using the rod model as implemented in PALES gives best results in distinguishing the eight possible diastereomers. It is also found that the use of proton-phosphorus and carbon-phosphorus RDCs helps with the configurational analysis of the model compound.
Collapse
Affiliation(s)
- Pavleta Tzvetkova
- Institute of Organic Chemistry and Institute for Biological Surfaces, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
28
|
Ehni S, Luy B. A systematic approach for optimizing the robustness of pulse sequence elements with respect to couplings, offsets, and B1-field inhomogeneities (COB). MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50 Suppl 1:S63-S72. [PMID: 23280662 DOI: 10.1002/mrc.3846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 06/01/2023]
Abstract
Robust experiments that cover a wide range of chemical shift offsets and J-couplings are highly desirable for a multitude of applications in small molecule NMR spectroscopy. Many attempts to improve individual aspects of the robustness of pulse sequence elements based on rational and numerical design have been reported, but a general optimization strategy to cover all necessary aspects for a fully robust sequence is still lacking. In this article, a viable optimization strategy is introduced that covers a defined range of couplings, offsets, and B(1)-field inhomogeneities (COB) in a time-optimal way. Individual components of the optimization strategy can be optimized in any adequate way. As an example for the COB approach, we present the (1)H -(13)C-COB-INEPT with transfer of approximately 99% over the full carbon and proton bandwidth and (1)J(CH) -couplings in the range of 120-250 Hz, which have been optimized using efficient algorithms derived from optimal control theory. The theoretical performance is demonstrated in a number of corresponding COB-HSQC experiments.
Collapse
Affiliation(s)
- Sebastian Ehni
- Institute of Organic Chemistry and Institute for Biological Interfaces, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | | |
Collapse
|
29
|
Thiele CM, Bermel W. Speeding up the measurement of one-bond scalar (1J) and residual dipolar couplings (1D) by using non-uniform sampling (NUS). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:134-43. [PMID: 22342269 DOI: 10.1016/j.jmr.2012.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/12/2012] [Accepted: 01/22/2012] [Indexed: 05/16/2023]
Abstract
The accurate and precise measurement of one-bond scalar and residual dipolar coupling (RDC) constants is of prime importance to be able to use RDCs for structure determination. If coupling constants are to be extracted from the indirect dimension of HSQC spectra a significant saving of measurement time can be achieved by non-uniform sampling (NUS). Coupling constants can either be obtained with the same precision as in traditionally acquired spectra in a fraction of the measurement time or the precision can be significantly improved if the same amount of measurement time as for traditionally acquired spectra is invested. The application of NUS for the measurement of (1)J (scalar coupling constants) and (1)T (total couplings constants) from different kinds of ω(1)-coupled spectra (including also J-scaled ones) is examined in detail and the possible gains in time or resolution are discussed. When using the newly proposed compressed sensing (CS) algorithm for processing, the quality of the spectra is comparable to the traditionally sampled ones.
Collapse
Affiliation(s)
- Christina M Thiele
- Clemens Schöpf Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstr. 22, 64287 Darmstadt, Germany.
| | | |
Collapse
|
30
|
Sun H, Reinscheid UM, Whitson EL, d'Auvergne EJ, Ireland CM, Navarro-Vázquez A, Griesinger C. Challenge of large-scale motion for residual dipolar coupling based analysis of configuration: the case of fibrosterol sulfate A. J Am Chem Soc 2011; 133:14629-36. [PMID: 21776994 DOI: 10.1021/ja205295q] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fibrosterol sulfate A is a polysulfated bis-steroid with an atypical side chain. Due to the flexibility of the linker, large-scale motions that change dramatically the shape of the entire molecule are expected. Such motions pose major challenges to the structure elucidation and the correct determination of configuration. In this study, we will describe the determination of the relative configuration of fibrosterol sulfate A through a residual dipolar coupling based multiple alignment tensor analysis complemented by molecular dynamics. For completeness, we applied also the single tensor approach which is unreliable due to the large-scale motions and compare the results.
Collapse
Affiliation(s)
- Han Sun
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Trigo-Mouriño P, Navarro-Vázquez A, Ying J, Gil RR, Bax A. Structural discrimination in small molecules by accurate measurement of long-range proton-carbon NMR residual dipolar couplings. Angew Chem Int Ed Engl 2011; 50:7576-80. [PMID: 21751308 PMCID: PMC3184250 DOI: 10.1002/anie.201101739] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/17/2011] [Indexed: 11/09/2022]
Abstract
Accurate measurement of long-range CH residual dipolar couplings (RDCs) (2D CH and 3D CH) by a new selective J -scaled HSQC experiment significantly improves the structural discrimination power of RDCs in small molecules with multiple stereocenters. The extraction of the long-range couplings is clean and straightforward, and in most cases yields the sign of the RDC too. The experiment is demonstrated with 10-epi-8-deoxycumambrin B, a tricyclic natural compound with five chiral centers.
Collapse
Affiliation(s)
- Pablo Trigo-Mouriño
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Ave, Pittsburgh, PA 15213, USA Fax: (+1) 412-268-1061
| | | | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Roberto R. Gil
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Ave, Pittsburgh, PA 15213, USA Fax: (+1) 412-268-1061
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Trigo-Mouriño P, Navarro-Vázquez A, Ying J, Gil RR, Bax A. Structural Discrimination in Small Molecules by Accurate Measurement of Long-Range Proton-Carbon NMR Residual Dipolar Couplings. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Gil RR. Konstitutions-, Konfigurations- und Konformationsanalyse niedermolekularer organischer Verbindungen auf der Grundlage von dipolaren Restkopplungen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Gil RR. Constitutional, Configurational, and Conformational Analysis of Small Organic Molecules on the Basis of NMR Residual Dipolar Couplings. Angew Chem Int Ed Engl 2011; 50:7222-4. [DOI: 10.1002/anie.201101561] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Indexed: 11/06/2022]
|
35
|
Kummerlöwe G, Grage SL, Thiele CM, Kuprov I, Ulrich AS, Luy B. Variable angle NMR spectroscopy and its application to the measurement of residual chemical shift anisotropy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 209:19-30. [PMID: 21256060 DOI: 10.1016/j.jmr.2010.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
The successful measurement of anisotropic NMR parameters like residual dipolar couplings (RDCs), residual quadrupolar couplings (RQCs), or residual chemical shift anisotropy (RCSA) involves the partial alignment of solute molecules in an alignment medium. To avoid any influence of the change of environment from the isotropic to the anisotropic sample, the measurement of both datasets with a single sample is highly desirable. Here, we introduce the scaling of alignment for mechanically stretched polymer gels by varying the angle of the director of alignment relative to the static magnetic field, which we call variable angle NMR spectroscopy (VA-NMR). The technique is closely related to variable angle sample spinning NMR spectroscopy (VASS-NMR) of liquid crystalline samples, but due to the mechanical fixation of the director of alignment no sample spinning is necessary. Also, in contrast to VASS-NMR, VA-NMR works for the full range of sample inclinations between 0° and 90°. Isotropic spectra are obtained at the magic angle. As a demonstration of the approach we measure ¹³C-RCSA values for strychnine in a stretched PDMS/CDCl₃ gel and show their usefulness for assignment purposes. In this context special care has been taken with respect to the exact calibration of chemical shift data, for which three approaches have been derived and tested.
Collapse
Affiliation(s)
- Grit Kummerlöwe
- Department Chemie, Lehrstuhl Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Prabhu UR, Chaudhari SR, Suryaprakash N. Visualization of enantiomers and determination of homo- and hetero-nuclear residual dipolar and scalar couplings: The natural abundant 13C edited J/D-resolved NMR techniques. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Sato S, Morohara O, Fujita D, Yamaguchi Y, Kato K, Fujita M. Parallel-Stacked Aromatic Hosts for Orienting Small Molecules in a Magnetic Field: Induced Residual Dipolar Coupling by Encapsulation. J Am Chem Soc 2010; 132:3670-1. [DOI: 10.1021/ja100325b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Structural Glycobiology Team, RIKEN, Advanced Science Institute, 2-1 Hirosawa Wako, Saitama, 351-0198, Japan, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-0027, and Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, JST-CREST, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Osamu Morohara
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Structural Glycobiology Team, RIKEN, Advanced Science Institute, 2-1 Hirosawa Wako, Saitama, 351-0198, Japan, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-0027, and Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, JST-CREST, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Daishi Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Structural Glycobiology Team, RIKEN, Advanced Science Institute, 2-1 Hirosawa Wako, Saitama, 351-0198, Japan, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-0027, and Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, JST-CREST, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Yoshiki Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Structural Glycobiology Team, RIKEN, Advanced Science Institute, 2-1 Hirosawa Wako, Saitama, 351-0198, Japan, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-0027, and Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, JST-CREST, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Koichi Kato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Structural Glycobiology Team, RIKEN, Advanced Science Institute, 2-1 Hirosawa Wako, Saitama, 351-0198, Japan, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-0027, and Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, JST-CREST, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Structural Glycobiology Team, RIKEN, Advanced Science Institute, 2-1 Hirosawa Wako, Saitama, 351-0198, Japan, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-0027, and Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, JST-CREST, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
38
|
Swarbrick JD, Ashton TD. NMR studies of dextromethorphan in both isotropic and anisotropic states. Chirality 2010; 22:42-9. [DOI: 10.1002/chir.20703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Gayathri C, de la Fuente MC, Luy B, Gil RR, Navarro-Vázquez A. Probing heterocycle conformation with residual dipolar couplings. Chem Commun (Camb) 2010; 46:5879-81. [DOI: 10.1039/c0cc01271h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Intelmann D, Kummerlöwe G, Haseleu G, Desmer N, Schulze K, Fröhlich R, Frank O, Luy B, Hofmann T. Structures of Storage-Induced Transformation Products of the Beerâs Bitter Principles, Revealed by Sophisticated NMR Spectroscopic and LCâMS Techniques. Chemistry 2009; 15:13047-58. [DOI: 10.1002/chem.200902058] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Thiele CM, Maliniak A, Stevensson B. Use of Local Alignment Tensors for the Determination of Relative Configurations in Organic Compounds. J Am Chem Soc 2009; 131:12878-9. [DOI: 10.1021/ja904536b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christina M. Thiele
- Clemens Schöpf Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstr. 22, D-64287 Darmstadt, Germany, and Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, Sweden
| | - Arnold Maliniak
- Clemens Schöpf Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstr. 22, D-64287 Darmstadt, Germany, and Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, Sweden
| | - Baltzar Stevensson
- Clemens Schöpf Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstr. 22, D-64287 Darmstadt, Germany, and Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
42
|
Kummerlöwe G, Luy B. Residual dipolar couplings as a tool in determining the structure of organic molecules. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2008.11.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Affiliation(s)
- Christina M. Thiele
- Technische Universität Darmstadt, Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Petersenstr. 22, 64287 Darmstadt, Germany, Fax: +49‐6151‐165531
| |
Collapse
|
44
|
Enthart A, Freudenberger JC, Furrer J, Kessler H, Luy B. The CLIP/CLAP-HSQC: pure absorptive spectra for the measurement of one-bond couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 192:314-322. [PMID: 18411067 DOI: 10.1016/j.jmr.2008.03.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/28/2008] [Accepted: 03/18/2008] [Indexed: 05/26/2023]
Abstract
Heteronuclear residual dipolar one-bond couplings of organic molecules at natural abundance are most easily measured using t2 coupled HSQC spectra. However, inevitably mismatched transfer delays result in phase distortions due to residual dispersive antiphase coherences in such experiments. In this article, slightly modified t2 coupled HSQC experiments with clean inphase (CLIP) multiplets are introduced which also reduce the intensities of undesired long-range cross peaks. With the corresponding antiphase (CLAP) experiment, situations where alpha and beta components overlap can be resolved for all multiplicities in an IPAP manner. A comparison of the experiments using hard pulses and shaped broadband excitation and inversion pulses on the heteronucleus is given and potential spectral artefacts are discussed in detail.
Collapse
Affiliation(s)
- Andreas Enthart
- Munich Center for Integrated Protein Science, Department Chemie, Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | | | | | | | |
Collapse
|
45
|
Luy B, Frank A, Kessler H. Conformational Analysis of Drugs by Nuclear Magnetic Resonance Spectroscopy. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527621286.ch9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Jin L, Pham TN, Uhrín D. Measurement of1H–1H Residual Dipolar Coupling Constants for Structural Studies of Medium Size Molecules. Chemphyschem 2007; 8:1228-35. [PMID: 17457790 DOI: 10.1002/cphc.200700071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Residual dipolar coupling constants (RDCs) are being increasingly applied to elucidate the configuration and conformation of small organic molecules, peptides and oligosaccharides. In this paper we describe a set of robust 1D NMR methods for accurate and precise measurement of proton-proton RDCs of small and medium size molecules. The performance of these techniques is not impeded by the presence of overlapping and broad (1)H multiplets that are typically observed for such molecules in weakly aligned media. The use of these techniques provides access to a large pool of proton-proton RDCs opening new avenues for the solution structure elucidation of medium size molecules by NMR. The techniques are illustrated on the determination of the alignment tensor of the reducing monosaccharide ring of cellobiose and the determination of the relative configuration of sodium cholate.
Collapse
Affiliation(s)
- Lan Jin
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | |
Collapse
|
47
|
Furrer J, John M, Kessler H, Luy B. J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution. JOURNAL OF BIOMOLECULAR NMR 2007; 37:231-43. [PMID: 17235497 DOI: 10.1007/s10858-006-9130-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 11/29/2006] [Indexed: 05/13/2023]
Abstract
The access to weak alignment media has fuelled the development of methods for efficiently and accurately measuring residual dipolar couplings (RDCs) in NMR-spectroscopy. Among the wealth of approaches for determining one-bond scalar and RDC constants only J-modulated and J-evolved techniques retain maximum resolution in the presence of differential relaxation. In this article, a number of J-evolved experiments are examined with respect to the achievable minimum linewidth in the J-dimension, using the peptide PA4 and the 80-amino-acid-protein Saposin C as model systems. With the JE-N-BIRDd,X-HSQC experiment, the average full-width at half height could be reduced to approximately 5 Hz for the protein, which allows the additional resolution of otherwise unresolved peaks by the active (J+D)-coupling. Since RDCs generally can be scaled by the choice of alignment medium and alignment strength, the technique introduced here provides an effective resort in cases when chemical shift differences alone are insufficient for discriminating signals. In favorable cases even secondary structure elements can be distinguished.
Collapse
Affiliation(s)
- Julien Furrer
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
48
|
Thiele CM, Marx A, Berger R, Fischer J, Biel M, Giannis A. Determination of the Relative Configuration of a Five-Membered Lactone from Residual Dipolar Couplings. Angew Chem Int Ed Engl 2006; 45:4455-60. [PMID: 16763954 DOI: 10.1002/anie.200503247] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Thiele CM, Marx A, Berger R, Fischer J, Biel M, Giannis A. Bestimmung der relativen Konfiguration eines Fünfring-Lactons aus dipolaren Restkopplungen. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503247] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Klages J, Neubauer C, Coles M, Kessler H, Luy B. Structure Refinement of Cyclosporin A in Chloroform by Using RDCs Measured in a Stretched PDMS-Gel. Chembiochem 2005; 6:1672-8. [PMID: 16138307 DOI: 10.1002/cbic.200500146] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
New developments concerning alignment media for apolar solvents like chloroform make it possible to measure anisotropic parameters such as residual dipolar couplings (RDCs) at relatively low concentrations and natural isotopic abundance. As RDCs provide structural restraints with respect to an external coordinate system, long-range structural arrangements of the time-averaged structure can be determined with high precision. The method is demonstrated on the well-studied cyclo-undecapeptide Cyclosporin A (CsA), for which crystal and conventionally derived NMR structures are available. Neither crystal nor NMR structure are consistent with heteronuclear D(CH) RDCs measured in a stretched poly(dimethylsiloxane) gel, and refinement by using the anisotropic parameter results in a highly defined structure with a slightly changed backbone conformation. The applied methods and interpretation of the structural model are discussed.
Collapse
Affiliation(s)
- Jochen Klages
- Department Chemie, Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|