1
|
van Andel L, Rosing H, Tibben MM, Lucas L, Lubomirov R, Avilés P, Francesch A, Fudio S, Gebretensae A, Hillebrand MJX, Schellens JHM, Beijnen JH. Metabolite profiling of the novel anti-cancer agent, plitidepsin, in urine and faeces in cancer patients after administration of 14C-plitidepsin. Cancer Chemother Pharmacol 2018; 82:441-455. [PMID: 29974200 DOI: 10.1007/s00280-018-3637-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Plitidepsin absorption, distribution, metabolism and excretion characteristics were investigated in a mass balance study, in which six patients received a 3-h intravenous infusion containing 7 mg 14C-plitidepsin with a maximum radioactivity of 100 µCi. METHODS Blood samples were drawn and excreta were collected until less than 1% of the administered radioactivity was excreted per matrix for two consecutive days. Samples were pooled within-patients and between-patients and samples were screened for metabolites. Afterwards, metabolites were identified and quantified. Analysis was done using Liquid Chromatography linked to an Ion Trap Mass Spectrometer and offline Liquid Scintillation Counting (LC-Ion Trap MS-LSC). RESULTS On average 4.5 and 62.4% of the administered dose was excreted via urine over the first 24 h and in faeces over 240 h, respectively. Most metabolites were found in faeces. CONCLUSION Plitidepsin is extensively metabolised and it undergoes dealkylation (demethylation), oxidation, carbonyl reduction, and (internal) hydrolysis. The chemical formula of several metabolites was confirmed using high resolution mass data.
Collapse
Affiliation(s)
- L van Andel
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands. .,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - H Rosing
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - M M Tibben
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - L Lucas
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - R Lubomirov
- Pharma Mar, S.A., Colmenar Viejo, Madrid, Spain
| | - P Avilés
- Pharma Mar, S.A., Colmenar Viejo, Madrid, Spain
| | - A Francesch
- Pharma Mar, S.A., Colmenar Viejo, Madrid, Spain
| | - S Fudio
- Pharma Mar, S.A., Colmenar Viejo, Madrid, Spain
| | - A Gebretensae
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - M J X Hillebrand
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - J H M Schellens
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J H Beijnen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Kotha S, Deodhar D, Khedkar P. Diversity-oriented synthesis of medicinally important 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) derivatives and higher analogs. Org Biomol Chem 2015; 12:9054-91. [PMID: 25299735 DOI: 10.1039/c4ob01446d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid (Tic) is a constrained analog of phenylalanine (Phe). The Tic unit has been identified as a core structural element present in several peptide-based drugs and forms an integral part of various biologically active compounds. This report covers the biological significance of the Tic core and provides a detailed account of various synthetic approaches available for the construction of Tic derivatives. Along with the traditional methods such as the Pictet-Spengler and Bischler-Nepieralski reactions, we cover various recent approaches such as enyne metathesis, [2 + 2 + 2] cycloaddition and the Diels-Alder reaction to generate Tic derivatives. In addition, syntheses of higher analogs of Tic are also discussed.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai - 400 076, India.
| | | | | |
Collapse
|
3
|
Lee J, Currano JN, Carroll PJ, Joullié MM. Didemnins, tamandarins and related natural products. Nat Prod Rep 2012; 29:404-24. [PMID: 22270031 DOI: 10.1039/c2np00065b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery and isolation of the didemnin family of marine depsipeptides in 1981, the synthesis and biological activity of its congeners have been of great interest to the scientific community. The didemnins have demonstrated antitumor, antiviral, and immunosuppressive activity at low nano- and femtomolar levels. Of the congeners, didemnin B was the first marine natural product to reach phase II clinical trials in the United States, stimulating many analogue syntheses to date. About two decades later, tamandarins A and B were isolated, and were found to possess very similar structure and biological activity to that of the didemnin B. These compounds have shown impressive biological activity and some progress has been made in establishing structure-activity relationships. However, their molecular mechanism of action still remains unclear. This review highlights the long-standing study of didemnins and its critical application towards the understanding of the molecular mechanism of action of tamandarins and their potential use as therapeutic agents.
Collapse
Affiliation(s)
- Jisun Lee
- University of Pennsylvania, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | | | | |
Collapse
|
5
|
Bravo SB, García-Rendueles MER, Seoane R, Dosil V, Cameselle-Teijeiro J, López-Lázaro L, Zalvide J, Barreiro F, Pombo CM, Alvarez CV. Plitidepsin has a cytostatic effect in human undifferentiated (anaplastic) thyroid carcinoma. Clin Cancer Res 2006; 11:7664-73. [PMID: 16278386 DOI: 10.1158/1078-0432.ccr-05-0455] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Undifferentiated (anaplastic) thyroid carcinoma is a highly aggressive human cancer with very poor prognosis. Although there have been a few studies of candidate treatments, the fact that it is an infrequent tumor makes it very difficult to design clinical trials. A strong association has been observed between undifferentiated thyroid carcinoma and TP53 mutations in numerous molecular genetic and expression studies. Plitidepsin (Aplidin, PharmaMar, Madrid, Spain) is a novel anticancer compound obtained from a sea tunicate. This compound has been reported to induce apoptosis independently of TP53 status. We investigated the actions of plitidepsin in human thyroid cancer cells. In initial experiments using primary cultured cells from a differentiated (papillary) carcinoma, we found that 100 nmol/L plitidepsin induced apoptosis, whereas lower doses were cytostatic. Because our aim was to study the effects of plitidepsin at clinically relevant concentrations, subsequent experiments were done with a dosage regimen reflecting plasma concentrations observed in previously reported clinical trials: 100 nmol/L for 4 hours, followed by 10 nmol/L for 20 hours (4(100)/20(10) plitidepsin). This plitidepsin dosage regimen blocked the proliferation of a primary undifferentiated/anaplastic thyroid carcinoma culture obtained in our laboratory and of a commercial cell line (8305C) obtained from an undifferentiated thyroid carcinoma; however, it did not induce apoptosis. The proportion of cells in the G(1) phase of the cell cycle was greatly increased and the proportion in the S/G(2)-M phases greatly reduced, suggesting that plitidepsin blocks G(1)-to-S transition. Levels of the cyclin D1/cyclin-dependent kinase 4/p21 complex proteins were decreased and, in line with this, the levels of unphosphorylated Rb1 increased. The decrease in cell cycle proteins correlated with hypoacetylation of histone H3. Finally, we did experiments to assess how rapidly tumor cells return to their initial pretreatment proliferative behavior after 4(100)/20(10) plitidepsin treatment. Cells from undifferentiated tumors needed more than 3 days to recover logarithmic growth, and after 7 days, cell number was still significantly lower than in control cultures. 4(100)/20(10) plitidepsin inhibited the growth in soft agar. Together, our data show that plitidepsin is able to block in vitro cell cycle progression at concentrations similar to serum concentrations observed in vivo, and that this effect is persistent for several days after plitidepsin removal. Whether plitidepsin will prove to be clinically useful in the treatment of undifferentiated thyroid cancers remains to be established. However, our results raise the possibility that plitidepsin might be effective alone or in combination with radiotherapy and/or other drug treatments.
Collapse
Affiliation(s)
- Susana B Bravo
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gutiérrez-Rodríguez M, Martín-Martínez M, García-López MT, Herranz R, Cuevas F, Polanco C, Rodríguez-Campos I, Manzanares I, Cárdenas F, Feliz M, Lloyd-Williams P, Giralt E. Synthesis, Conformational Analysis, and Cytotoxicity of Conformationally Constrained Aplidine and Tamandarin A Analogues Incorporating a Spirolactam β-Turn Mimetic. J Med Chem 2004; 47:5700-12. [PMID: 15509169 DOI: 10.1021/jm040788m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the aim of studying the contribution of the beta II turn conformation at the side chain of didemnins to the bioactive conformation responsible for their antitumoral activity, conformationally restricted analogues of aplidine and tamandarin A, where the side chain dipeptide Pro8-N-Me-d-Leu7 is replaced with the spirolactam beta II turn mimetic (5R)-7-[(1R)-1-carbonyl-3-methylbutyl]-6-oxo-1,7-diazaspiro[4.4]nonane, were prepared. Additionally, restricted analogues, where the aplidine (pyruvyl9) or tamandarin A [(S)-Lac9] acyl groups are replaced with the isobutyryl, Boc, and 2-methylacryloyl groups, were also prepared. These structural modifications were detrimental to cytotoxic activity, leading to a decrease of 1-2 orders of magnitude with respect to that exhibited by aplidine and tamandarin A. The conformational analysis of one of these spirolactam aplidine analogues, by NMR and molecular modeling methods, showed that the conformational restriction caused by the spirolactam does not produce significant changes in the overall conformation of aplidine, apart from preferentially stabilizing the trans rotamer at the pyruvyl9-spirolactam amide bond, whereas in aplidine both cis and trans rotamers at the pyruvyl9-Pro8 amide bond are more or less equally stabilized. These results seem to indicate a preference for the cis form at that amide bond in the bioactive conformation of aplidine. The significant influence of this cis/trans isomerism upon the cytotoxicity suggests a possible participation of a peptidylprolyl cis/trans isomerase in the mechanism of action of aplidine.
Collapse
|
8
|
Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. JOURNAL OF NATURAL PRODUCTS 2004; 67:1216-1238. [PMID: 15332835 DOI: 10.1021/np040031y] [Citation(s) in RCA: 441] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The marine environment has proven to be a very rich source of extremely potent compounds that have demonstrated significant activities in antitumor, antiinflammatory, analgesia, immunomodulation, allergy, and anti-viral assays. Although the case can and has been made that the nucleosides such as Ara-A and Ara-C are derived from knowledge gained from investigations of bioactive marine nucleosides, no drug directly from marine sources (whether isolated or by total synthesis) has yet made it to the commercial sector in any disease. However, as shown in this review, there are now significant numbers of very interesting molecules that have come from marine sources, or have been synthesized as a result of knowledge gained from a prototypical compound, that are either in or approaching Phase II/III clinical trials in cancer, analgesia, allergy, and cognitive diseases. A substantial number of other potential agents are following in their wake in preclinical trials in these and in other diseases.
Collapse
Affiliation(s)
- David J Newman
- Natural Products Branch, Developmental Therapeutics Program, NCI-Frederick, P.O. Box B, Frederick, Maryland 21702, USA.
| | | |
Collapse
|