1
|
Yamaguchi T, Obika S. Derivative Synthesis toward Enhancement of the Biophysical Properties of 2′,4′-Bridged Nucleic Acids. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
2
|
Habuchi T, Yamaguchi T, Obika S. Thioamide-Bridged Nucleic Acid (thioAmNA) Containing Thymine or 2-Thiothymine: Duplex-Forming Ability, Base Discrimination, and Enzymatic Stability. Chembiochem 2019; 20:1060-1067. [PMID: 30552742 DOI: 10.1002/cbic.201800702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 01/03/2023]
Abstract
Oligonucleotides containing bridged nucleic acids (BNAs) show high duplex-forming ability towards target single-stranded RNA, so many BNAs have been developed for antisense applications. Amide-bridged nucleic acids (AmNAs), which are BNA analogues bearing an amide bond at the bridge, exhibit high duplex-forming ability, enzymatic stability, and antisense activity; thus, the AmNA motif represents a promising BNA scaffold. The high enzymatic stability of the AmNA motif is presumably attributable to the bulky amide structure, because it inhibits the access of nucleases to the phosphodiester linkage. Here, to improve enzymatic stability further, we designed thioAmNAs: thioamide-bridged nucleotides that have a bulkier bridge structure than AmNA. The synthesis of thioAmNAs bearing either thymine (thioAmNA-T) or 2-thiothymine (thioAmNA-S2 T) bases was successful, and the obtained monomers were introduced into designed oligonucleotides without noticeable by-product generation. The thioAmNA-T- and thioAmNA-S2 T-modified oligonucleotides showed strong binding affinity toward complementary single-stranded RNA, with the thioAmNA-S2 T-modified oligonucleotide displaying excellent base-discrimination capability. Moreover, both thioAmNA-T and thioAmNA-S2 T endowed oligonucleotides with higher resistance to enzymatic degradation than AmNA-T. These results indicate that thioAmNAs are potentially useful chemical modifications for oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Takaki Habuchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Habuchi T, Yamaguchi T, Aoyama H, Horiba M, Ito KR, Obika S. Hybridization and Mismatch Discrimination Abilities of 2',4'-Bridged Nucleic Acids Bearing 2-Thiothymine or 2-Selenothymine Nucleobase. J Org Chem 2019; 84:1430-1439. [PMID: 30632750 DOI: 10.1021/acs.joc.8b02863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligonucleotides modified with 2'- O,4'- C-spirocyclopropylene-bridged nucleic acid (scpBNA) exhibit excellent duplex-forming ability with their complementary single-stranded RNA (ssRNA). Here, we demonstrate that scpBNA bearing a 2-thiothymine (scpBNA-S2T) or 2-selenothymine (scpBNA-Se2T) nucleobase provides robust mismatch discrimination capabilities to oligonucleotides without compromising their high binding affinities toward the full complementary ssRNA. X-ray crystallographic analysis of a self-assembling oligonucleotide featuring 2',4'-BNA/LNA-2-thiothymine (2',4'-BNA/LNA-S2T, where 2',4'-BNA and LNA stand for "2'- O,4'- C-methylene-bridged nucleic acid" and "locked nucleic acid", respectively), a prototype of scpBNA-S2T, revealed that the 2-thiocarbonyl moiety plays a crucial role in the destabilization of thymine-guanine mismatched wobble base pairs.
Collapse
Affiliation(s)
- Takaki Habuchi
- Graduate School of Pharmaceutical Sciences , Osaka University , 1-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences , Osaka University , 1-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences , Osaka University , 1-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Masahiko Horiba
- Graduate School of Pharmaceutical Sciences , Osaka University , 1-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Kosuke Ramon Ito
- Graduate School of Pharmaceutical Sciences , Osaka University , 1-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences , Osaka University , 1-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
4
|
Masaki Y, Yamamoto K, Inde T, Yoshida K, Maruyama A, Nagata T, Tanihata J, Takeda S, Sekine M, Seio K. Synthesis of 2'-O-(N-methylcarbamoylethyl) 5-methyl-2-thiouridine and its application to splice-switching oligonucleotides. Bioorg Med Chem Lett 2018; 29:160-163. [PMID: 30551900 DOI: 10.1016/j.bmcl.2018.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023]
Abstract
The effect of 2'-O-(N-methylcarbamoyl)ethyl (MCE) modification on splice-switching oligonucleotides (SSO) was systematically evaluated. The incorporation of five MCE nucleotides at the 5'-termini of SSOs effectively improved the splice switching effect. In addition, the incorporation of 2'-O-(N-methylcarbamoylethyl)-5-methyl-2-thiouridine (s2TMCE), a duplex-stabilizing nucleotide with an MCE modification, into SSOs further improved splice switching. These SSOs may be useful for the treatment of genetic diseases associated with splicing errors.
Collapse
Affiliation(s)
- Yoshiaki Masaki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-16, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Keishi Yamamoto
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-16, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takeshi Inde
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-16, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Keita Yoshida
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-16, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Atsuya Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-16, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Mitsuo Sekine
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-16, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kohji Seio
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-16, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
5
|
|
6
|
Masaki Y, Inde T, Nagata T, Tanihata J, Kanamori T, Seio K, Takeda S, Sekine M. Enhancement of exon skipping in mdx52 mice by 2′-O-methyl-2-thioribothymidine incorporation into phosphorothioate oligonucleotides. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00468j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Incorporation of 2′-O-methyl-2-thioribothymidine (s2Tm) into antisense oligoribonucleotides significantly enhanced the exon skipping activity in Duchenne muscular dystrophy model mice.
Collapse
Affiliation(s)
- Yoshiaki Masaki
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Takeshi Inde
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Tetsuya Nagata
- Department of Molecular Therapy
- Institute of Neuroscience
- National Center of Neurology and Psychiatry
- Kodaira
- Japan
| | - Jun Tanihata
- Department of Molecular Therapy
- Institute of Neuroscience
- National Center of Neurology and Psychiatry
- Kodaira
- Japan
| | - Takashi Kanamori
- Education Academy of Computational Life Sciences
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kohji Seio
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy
- Institute of Neuroscience
- National Center of Neurology and Psychiatry
- Kodaira
- Japan
| | - Mitsuo Sekine
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
7
|
Tlatelpa PC, Huang H. Stability of pyrimidine N-glycosydic bonds in the presence of Lawesson’s reagents: revisit of 2-thiolation of pyrimidine nucleosides. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.06.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
White JD, Jana S. Studies of the Synthesis of Providencin: Construction and Assembly of Two Major Subunits. J Org Chem 2014; 79:700-10. [DOI: 10.1021/jo402485h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James D. White
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Somnath Jana
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
9
|
Masaki Y, Miyasaka R, Hirai K, Kanamori T, Tsunoda H, Ohkubo A, Seio K, Sekine M. Properties of 5- and/or 2-modified 2′-O-cyanoethyl uridine residue: 2′-O-cyanoethyl-5-propynyl-2-thiouridine as an efficient duplex stabilizing component. Org Biomol Chem 2014; 12:1157-62. [DOI: 10.1039/c3ob41983e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Puig-de-la-Bellacasa R, Giménez L, Pettersson S, Pascual R, Gonzalo E, Esté JA, Clotet B, Borrell JI, Teixidó J. Diverse combinatorial design, synthesis and in vitro evaluation of new HEPT analogues as potential non-nucleoside HIV-1 reverse transcription inhibitors. Eur J Med Chem 2012; 54:159-74. [DOI: 10.1016/j.ejmech.2012.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
|
11
|
Masaki Y, Miyasaka R, Hirai K, Tsunoda H, Ohkubo A, Seio K, Sekine M. Prediction of the stability of modified RNA duplexes based on deformability analysis: oligoribonucleotide derivatives modified with 2'-O-cyanoethyl-5-propynyl-2-thiouridine as a promising component. Chem Commun (Camb) 2012; 48:7313-5. [PMID: 22710854 DOI: 10.1039/c2cc33409g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a method to predict the stability of a modified RNA duplex. Ten unique modified RNA duplexes showed a linear relationship between the calculated and experimentally determined duplex stabilities.
Collapse
Affiliation(s)
- Yoshiaki Masaki
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Furukawa K, Hattori M, Ohki T, Kitamura Y, Kitade Y, Ueno Y. Nucleic acid probe containing fluorescent tricyclic base-linked acyclonucleoside for detection of single nucleotide polymorphisms. Bioorg Med Chem 2011; 20:16-24. [PMID: 22177406 DOI: 10.1016/j.bmc.2011.11.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 11/16/2022]
Abstract
The development of a reliable and simple method for detecting single nucleotide polymorphisms (SNPs), common genetic variations in the human genome, is currently an important research area because SNPs are important for identifying disease-causing genes and for pharmacogenetic studies. Here, we developed a novel method for SNP detection. We designed and synthesized DNA probes containing a fluorescent tricyclic base-linked acyclonucleoside P. The type of nucleobases involved in the SNP sites in the DNA and RNA targets could be determined using four DNA probes containing P. Thus, this system would provide a novel and simple method for detecting SNPs in DNA and RNA targets.
Collapse
Affiliation(s)
- Kinji Furukawa
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Carlucci M, Kierzek E, Marciniak A, Turner DH, Kierzek R. Chemical synthesis of LNA-2-thiouridine and its influence on stability and selectivity of oligonucleotide binding to RNA. Biochemistry 2009; 48:10882-93. [PMID: 19835380 PMCID: PMC2839159 DOI: 10.1021/bi901506f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hybridization to RNA is important for many applications, including antisense therapeutics, RNA interference, and microarray screening. Similar thermodynamic stabilities of A-U and G-U base pairs result in difficulties in selective binding to RNA. Moreover, A-U pairs are weaker than G-C pairs so that binding is sometimes weak when many A-U pairs are present. It is known, however, that replacement of uridine with 2-thiouridine significantly improves binding and selectivity. To test for additional improvement of binding and of the specificity for binding A over G, LNA-2-thiouridine was synthesized for the first time and incorporated into many LNA-2'-O-methyl-RNA/RNA duplexes. UV melting was used to measure the thermodynamic effect of replacing 2'-O-methyluridine with 2'-O-methyl-2-thiouridine or LNA-2-thiouridine. The 2-thiouridine usually enhances binding and selectivity. Selectivity is optimized when a single 2-thiouridine is placed at an internal position in a duplex.
Collapse
Affiliation(s)
- Marta Carlucci
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Anna Marciniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627-0216, USA
- Center for Pediatric Biomedical Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
14
|
Nawrot B, Sochacka E. Preparation of short interfering RNA containing the modified nucleosides 2-thiouridine, pseudouridine, or dihydrouridine. ACTA ACUST UNITED AC 2009; Chapter 16:16.2.1-16.2.16. [PMID: 19488969 DOI: 10.1002/0471142700.nc1602s37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modified uridine derivatives such as 2-thiouridine (s(2)U), pseudouridine (Psi), and dihydrouridine (D) are naturally existing nucleoside units identified in tRNA molecules. Recently, we have shown that such base-modified units introduced into functionally important sites of siRNA modulate thermodynamic stability of the duplex and its gene silencing activity. In this unit, we describe chemical synthesis of 3'-phosphoramidite derivatives of s(2)U and D units (the 3'-phosphoramidite derivative of Psi is commercially available), and their use for the synthesis of RNA oligonucleotides according to the routine phosphoramidite protocol. The only exception concerns the oxidation step with I(2)/pyridine/water which, if applied towards oligonucleotides containing s(2)U units, would lead to the loss of sulfur. Therefore, to avoid this side reaction, tert-butyl hydroperoxide is used as an oxidizing reagent. After the oligonucleotide chain assembly is completed, the resulting oligomer is deprotected under mild basic conditions (MeNH(2)/EtOH/DMSO) to avoid dihydrouracil ring opening, which is a reported side-reaction during the routine synthesis of dihydrouridine-containing RNA. Oligonucleotides modified with s(2)U, D, or Psi units are useful models for structure-function studies. Here, the procedure for preparation of siRNA duplexes is described.
Collapse
Affiliation(s)
- Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | | |
Collapse
|
15
|
Enderlin G, Nielsen P. Synthesis of 6'-branched locked nucleic acid by a radical TEMPO-scavanged stereoselective mercury cyclization. J Org Chem 2008; 73:6891-4. [PMID: 18672932 DOI: 10.1021/jo801081t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A 6'(R)-hydroxymethyl derivative of the locked nucleic acid (LNA)-thymidine monomer has been synthesized by a stereoselective mercury cyclization and subsequent use of TEMPO as a radical scavenger. This compound was converted to an azide derivative, which in a Huisgen-type [3 + 2] cycloaddition afforded a double-headed nucleoside with a triazole linking an additional thymine to the 6'-position of the LNA-nucleoside monomer.
Collapse
Affiliation(s)
- Gerald Enderlin
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, 5230 Odense M, Denmark
| | | |
Collapse
|
16
|
Okamoto I, Seio K, Sekine M. Study of the base discrimination ability of DNA and 2'-O-methylated RNA oligomers containing 2-thiouracil bases towards complementary RNA or DNA strands and their application to single base mismatch detection. Bioorg Med Chem 2008; 16:6034-41. [PMID: 18487052 DOI: 10.1016/j.bmc.2008.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/26/2022]
Abstract
Precise detection of target DNA and RNA sequences using chemically modified oligonucleotides is of crucial importance in gene analysis and gene silence. The hybridisation and base discrimination abilities of oligonucleotides containing 2'-O-methyl-2-thiouridine (s(2)Um) in homo- and hetero-duplexes composed of DNA and RNA strands have been studied in detail. When s(2)Um was incorporated into RNA or DNA strands, the hybridisation and base discrimination abilities of the modified RNA or DNA oligomers towards the complementary RNA strands were superior to those of the corresponding unmodified oligomers. On the other hand, their base discrimination abilities towards complementary DNA strands were almost the same as those of the unmodified ones. The base discrimination abilities of 2-thiouracil base-containing oligonucleotide probes on slide glass plates were also studied. These modified probes exhibited efficient detection of mismatched base pairing.
Collapse
Affiliation(s)
- Itaru Okamoto
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
17
|
Seio K, Sasami T, Tawarada R, Sekine M. Synthesis of 2'-O-methyl-RNAs incorporating a 3-deazaguanine, and UV melting and computational studies on its hybridization properties. Nucleic Acids Res 2006; 34:4324-34. [PMID: 16936323 PMCID: PMC1636341 DOI: 10.1093/nar/gkl088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
2′-O-Methyl-RNAs incorporating 3-deazaguanine (c3G) were synthesized by use of N,N-diphenylcarbamoyl and N,N-dimethylaminomethylene as its base protecting groups to suppress sheared-type 5′-GA-3′/5′-GA-3′ tandem mismatched base pairing which requires the N3 atom. These modified RNAs hybridized more weakly with the complementary and single mismatch-containing RNAs than the unmodified RNAs. The Tm experiments were performed to clarify the effects of replacement of the fifth G with c3G on stabilization of 2′-O-methyl-(5′-CGGCGAGGAG-3′)/5′-CUCCGAGCCG-3′ and 2′-O-methyl-(5′-CGGGGACGAG-3′)/5′-CUCGGACCCG-3′duplexes, which form sheared-type and face-to-face type 5′-GA-3′/5′-GA-3′ tandem mismatched base pairs, respectively. Consequently, this replacement led to more pronounced destabilization of the former duplex that needs the N3 atom for the sheared-type base pair than the latter that does not need it for the face-to-face type base pair. A similar tendency was observed for 2′-O-methyl-RNA/DNA duplexes. These results suggest that the N3 atom of G plays an important role in stabilization of the canonical G/C base pair as well as the base discrimination and its loss suppressed formation of the undesired sheared-type mismatched base pair. Computational studies based on ab initio calculations suggest that the weaker hydrogen bonding ability and larger dipole moment of c3G can be the origin of the lower Tm.
Collapse
Affiliation(s)
- Kohji Seio
- Frontier Collaborative Research Center, Tokyo Institute of Technology4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
- CREST, JST (Japan Science and Technology Agency)4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Takeshi Sasami
- Department of Life Science, Tokyo Institute of Technology4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
- CREST, JST (Japan Science and Technology Agency)4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Ryuya Tawarada
- Department of Life Science, Tokyo Institute of Technology4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
- CREST, JST (Japan Science and Technology Agency)4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Mitsuo Sekine
- Department of Life Science, Tokyo Institute of Technology4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
- CREST, JST (Japan Science and Technology Agency)4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
- To whom correspondence should be addressed. Tel: +81 45 924 5706; Fax: +81 45 924 5772;
| |
Collapse
|
18
|
Okamoto I, Seio K, Sekine M. Triplex forming ability of oligonucleotides containing 2'-O-methyl-2-thiouridine or 2-thiothymidine. Bioorg Med Chem Lett 2006; 16:3334-6. [PMID: 16631365 DOI: 10.1016/j.bmcl.2006.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 11/24/2022]
Abstract
The triplex forming ability of oligonucleotides containing 2'-O-methyl-2-thiouridine (s2Um) and 2-thiothymidine (s2T) was studied. The UV melting experiments revealed that triplex forming oligonucleotides (TFOs) containing both s2Um or s2T stabilized significantly parallel triplexes. The main reason for stabilization of triplexes was due to the stacking effect of the 2-thiocarbonyl group. Moreover, it turned out that these modified TFOs had a high selectivity in recognition of a matched Hoogsteen base from a mismatched one.
Collapse
Affiliation(s)
- Itaru Okamoto
- Department of Life Science, Tokyo Institute of Technology, Japan
| | | | | |
Collapse
|
19
|
Kierzek E, Kierzek R, Turner DH, Catrina IE. Facilitating RNA structure prediction with microarrays. Biochemistry 2006; 45:581-93. [PMID: 16401087 PMCID: PMC4070881 DOI: 10.1021/bi051409+] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.
Collapse
Affiliation(s)
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Douglas H. Turner
- To whom correspondence should be addressed. Phone: (585) 275-3207. Fax: (585) 276-0205.
| | | |
Collapse
|
20
|
Okamoto I, Shohda KI, Seio K, Sekine M. Incorporation of 2′-O-Methyl-2-thiouridine into Oligoribonucleotides Induced Stable A-form Structure. CHEM LETT 2006. [DOI: 10.1246/cl.2006.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Okamoto I, Seio K, Sekine M. Improved synthesis of oligonucleotides containing 2-thiouridine derivatives by use of diluted iodine solution. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2005.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Børsting P, Freitag M, Nielsen P. Dinucleotides containing two allyl groups by combinations of allyl phosphotriesters, 5-allyl-, 2′-O-allyl- and 2′-arabino-O-allyl uridine derivatives as substrates for ring-closing metathesis. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|