1
|
El-Yazbi AF, Elgammal FAH, Moneeb MS, Sabry SM. Sensitive MALDI-TOF MS and 'turn-on' fluorescent genosensor for the determination of DNA damage induced by CNS acting drugs. Int J Biol Macromol 2023; 241:124547. [PMID: 37094646 DOI: 10.1016/j.ijbiomac.2023.124547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
The genotoxic and carcinogenic adverse effects of various drugs should be considered for assessing drug benefit/risk ratio. On that account, the scope of this study is to examine the kinetics of DNA damage triggered by three CNS acting drugs; carbamazepine, quetiapine and desvenlafaxine. Two precise, simple and green approaches were proposed for probing drug induced DNA impairment; MALDI-TOF MS and terbium (Tb3+) fluorescent genosensor. The results revealed that all the studied drugs induced DNA damage manifested by the MALDI-TOF MS analysis as a significant disappearance of the DNA molecular ion peak with the appearance of other peaks at smaller m/z indicating the formation of DNA strand breaks. Moreover, significant enhancement of Tb3+ fluorescence occurred, proportional to the amount of DNA damage, upon incubation of each drug with dsDNA. Furthermore, the DNA damage mechanism is examined. The proposed Tb3+ fluorescent genosensor showed superior selectivity and sensitivity and is significantly simpler and less expensive than other methods reported for the detection of DNA damage. Moreover, the DNA damaging potency of these drugs was studied using calf thymus DNA in order to clarify the potential safety hazards associated with the studied drugs on natural DNA.
Collapse
Affiliation(s)
- Amira F El-Yazbi
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt.
| | - Feda A H Elgammal
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Marwa S Moneeb
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Suzy M Sabry
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| |
Collapse
|
2
|
Tashiro R, Sugiyama H. Photoreaction of DNA Containing 5-Halouracil and its Products. Photochem Photobiol 2022; 98:532-545. [PMID: 34543451 PMCID: PMC9197447 DOI: 10.1111/php.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
5-Halouracil, which is a DNA base analog in which the methyl group at the C5 position of thymine is replaced with a halogen atom, has been used in studies of DNA damage. In DNA strands, the uracil radical generated from 5-halouracil causes DNA damage via a hydrogen-abstraction reaction. We analyzed the photoreaction of 5-halouracil in various DNA structures and revealed that the reaction is DNA structure-dependent. In this review, we summarize the results of the analysis of the reactivity of 5-halouracil in various DNA local structures. Among the 5-halouracil molecules, 5-bromouracil has been used as a probe in the analysis of photoinduced electron transfer through DNA. The analysis of groove-binder/DNA and protein/DNA complexes using a 5-bromouracil-based electron transfer system is also described.
Collapse
Affiliation(s)
- Ryu Tashiro
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-Cyo, Suzuka, Mie, 513-8670, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Bouton J, Furquim d'Almeida A, Maes L, Caljon G, Van Calenbergh S, Hulpia F. Synthesis and evaluation of 3'-fluorinated 7-deazapurine nucleosides as antikinetoplastid agents. Eur J Med Chem 2021; 216:113290. [PMID: 33667845 DOI: 10.1016/j.ejmech.2021.113290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites are the causative agents of neglected tropical diseases with an unmet medical need. These parasites are unable to synthesize the purine ring de novo, and therefore rely on purine salvage to meet their purine demand. Evaluating purine nucleoside analogs is therefore an attractive strategy to identify antikinetoplastid agents. Several anti-Trypanosoma cruzi and anti-Trypanosoma brucei 7-deazapurine nucleosides were previously discovered, with the removal of the 3'-hydroxyl group resulting in a significant boost in activity. In this work we therefore decided to assess the effect of the introduction of a 3'-fluoro substituent in 7-deazapurine nucleosides on the anti-kinetoplastid activities. Hence, we synthesized two series of 3'-deoxy-3'-fluororibofuranosyl and 3'-deoxy-3'-fluoroxylofuranosyl nucleosides comprising 7-deazaadenine and -hypoxanthine bases and assayed these for antiparasitic activity. Several analogs with potent activity against T. cruzi and T. brucei were discovered, indicating that a fluorine atom in the 3'-position is a promising modification for the discovery of antiparasitic nucleosides.
Collapse
Affiliation(s)
- Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Arno Furquim d'Almeida
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium.
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| |
Collapse
|
4
|
Li C, Ding H, Ruan Z, Zhou Y, Xiao Q. First total synthesis of kipukasin A. Beilstein J Org Chem 2017; 13:855-862. [PMID: 28546843 PMCID: PMC5433220 DOI: 10.3762/bjoc.13.86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022] Open
Abstract
In this paper, a practical approach for the total synthesis of kipukasin A is presented with 22% overall yield by using tetra-O-acetyl-β-D-ribose as starting material. An improved iodine-promoted acetonide-forming reaction was developed to access 1,2-O-isopropylidene-α-D-ribofuranose. For the first time, ortho-alkynylbenzoate was used as protecting group for the 5-hydoxy group. After subsequent Vorbrüggen glycosylation, the protecting group could be removed smoothly in the presence of 5 mol % Ph3PAuOTf in dichloromethane to provide kipukasin A in high yield and regioselectivity.
Collapse
Affiliation(s)
- Chuang Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Haixin Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Zhizhong Ruan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Yirong Zhou
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| |
Collapse
|
5
|
Gao X, Huang H. Synthesis of N 7-Alkyl-9-deaza-2'-deoxyguanosines Containing Polar N 7 Chains. Examples of Chemically Stable Analogues of N 7-Hydroxyethyl and N 7-Oxoethyl Adducts of 2'-Deoxyguanosine. J Org Chem 2016; 81:11697-11705. [PMID: 27805399 DOI: 10.1021/acs.joc.6b02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of chemically stable analogues of unstable DNA lesions enables accurate study of polymerase bypass. We report the design and synthesis of N7-hydroxyethyl-9-deaza-2'-deoxyguanosine and N7-oxoethyl-9-deaza-2'-deoxyguanosine as the analogues of N7-hydroxyethyl-2'-deoxyguanosine and N7-oxoethyl-2'-deoxyguanosine, respectively. We also developed the synthesis of these two nucleosides whose N7 side chains are protected by TBS for the convenience of conversion to phosphoramidites.
Collapse
Affiliation(s)
- Xun Gao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| | - Haidong Huang
- 4Catalyzer, 530 Old Whitfield Street, Guilford, Connecticut 06437, United States
| |
Collapse
|
6
|
Arzel L, Dubreuil D, Dénès F, Silvestre V, Mathé-Allainmat M, Lebreton J. Synthesis of Ribonucleosidic Dimers with an Amide Linkage from d-Xylose. J Org Chem 2016; 81:10742-10758. [DOI: 10.1021/acs.joc.6b01822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laurence Arzel
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Didier Dubreuil
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Fabrice Dénès
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Virginie Silvestre
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Monique Mathé-Allainmat
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Jacques Lebreton
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
7
|
Exploring the purine core of 3'-C-ethynyladenosine (EAdo) in search of novel nucleoside therapeutics. Bioorg Med Chem Lett 2016; 26:1970-2. [PMID: 26965865 PMCID: PMC7126545 DOI: 10.1016/j.bmcl.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/22/2022]
Abstract
A series of new nucleoside analogues based on a C-3 branched ethynyl sugar derivative as present in 3′-C-ethynylcytidine (ECyd) and -adenosine (EAdo), combined with modified purine bases was synthetized and evaluated against a broad array of viruses and tumour cell lines. The pronounced cytostatic activity of EAdo was confirmed. EAdo and its 2,6-diaminopurine analogue showed inhibitory activity against vaccinia virus (EC50: 0.31 and 51 μM, respectively). Derivative 10 on the other hand was found active against varicella zoster virus (EC50: 4.68 μM).
Collapse
|
8
|
Greenberg MM. Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome catalyzed reactions. Acc Chem Res 2014; 47:646-55. [PMID: 24369694 DOI: 10.1021/ar400229d] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abasic lesions are a family of DNA modifications that lack Watson-Crick bases. The parent member of this family, the apurinic/apyrimidinic lesion (AP), occurs as an intermediate during DNA repair, following nucleobase alkylation, and from random hydrolysis of native nucleotides. In a given day, each cell produces between 10000 and 50000 AP lesions. A variety of oxidants including γ-radiolysis produce oxidized abasic sites, such as C4-AP, from the deoxyribose backbone. A number of potent, cytotoxic antitumor agents, such as bleomycin and the enediynes (e.g., calicheamicin, esperamicin, and neocarzinostatin) also lead to oxidized abasic sites in DNA. The absence of Watson-Crick bases prevents DNA polymerases from properly determining which nucleotide to incorporate opposite abasic lesions. Consequently, several studies have revealed that (oxidized) abasic sites are highly mutagenic. Abasic lesions are also chemically unstable, are prone to strand scission, and possess electrophilic carbonyl groups. However, researchers have only uncovered the consequences of the inherent reactivity of these electrophiles within the past decade. The development of solid phase synthesis methods for oligonucleotides that both place abasic sites in defined positions and circumvent their inherent alkaline lability has facilitated this research. Chemically synthesized oligonucleotides containing abasic lesions provide substrates that have allowed researchers to discover a range of interesting chemical properties of potential biological importance. For instance, abasic lesions form DNA-DNA interstrand cross-links, a particularly important family of DNA damage because they block replication and transcription absolutely. In addition, bacterial repair enzymes can convert an interstrand cross-link derived from C4-AP into a double-strand break, the most deleterious form of DNA damage. Oxidized abasic lesions can also inhibit DNA repair enzymes that remove damaged nucleotides. DNA polymerase β, an enzyme that is irreversibly inactivated, is vitally important in base excision repair and is overproduced in some tumor cells. Nucleosome core particles, the monomeric components that make up chromatin, accentuate the chemical instability of abasic lesions. In experiments using synthetic nucleosome core particles containing abasic sites, the histone proteins catalyze strand cleavage at the sites that incorporate these lesions. Furthermore, in the presence of the C4-AP lesion, strand scission is accompanied by modification of the histone protein. The reactivity of (oxidized) abasic lesions illustrates how seemingly simple nucleic acid modifications can have significant biochemical effects and may provide a chemical basis for the cytotoxicity of the chemotherapeutic agents that produce them.
Collapse
Affiliation(s)
- Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Povirk LF. Processing of damaged DNA ends for double-strand break repair in mammalian cells. ISRN MOLECULAR BIOLOGY 2012; 2012. [PMID: 24236237 PMCID: PMC3825254 DOI: 10.5402/2012/345805] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Most DNA double-strand breaks (DSBs)formed in a natural environment have chemical modifications at or near the ends that preclude direct religation and require removal or other processing so that rejoining can proceed. Free radical-mediated DSBs typically bear unligatable 3'-phosphate or 3'-phosphoglycolate termini and often have oxidized bases and/or abasic sites near the break. Topoisomerase-mediated DSBs are blocked by covalently bound peptide fragments of the topoisomerase. Enzymes capable of resolving damaged ends include polynucleotide kinase/phosphatase, which restores missing 5'-phosphates and removes 3'-phosphates; tyrosyl-DNA phosphodiesterases I and II (TDP1 and TDP2), which remove peptide fragments of topoisomerases I and II, respectively, and the Artemis and Metnase endonucleases, which can trim damaged overhangs of diverse structure. TDP1 as well as APE1 can remove 3'-phosphoglycolates and other 3' blocks, while CtIP appears to provide an alternative pathway for topoisomerase II fragment removal. Ku, a core DSB joining protein, can cleave abasic sites near DNA ends. The downstream processes of patching and ligation are tolerant of residual damage, and can sometimes proceed without complete damage removal. Despite these redundant pathways for resolution, damaged ends appear to be a significant barrier to rejoining, and their resolution may be a rate-limiting step in repair of some DSBs..
Collapse
Affiliation(s)
- Lawrence F Povirk
- Department of Pharmacology and Toxicology, and Massey Cancer Center, Virginia Commonwealth University, 401 College St. Richmond, VA 23298, USA, 804-828-9640
| |
Collapse
|
10
|
Sczepanski JT, Hiemstra CN, Greenberg MM. Probing DNA interstrand cross-link formation by an oxidized abasic site using nonnative nucleotides. Bioorg Med Chem 2011; 19:5788-93. [PMID: 21903404 DOI: 10.1016/j.bmc.2011.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 11/17/2022]
Abstract
The C4'-oxidized abasic site (C4-AP) forms two types of interstrand cross-links with the adjacent nucleotides in DNA. Previous experiments revealed that dG does not react with the lesion and that formation of one type of cross-link is catalyzed by the opposing dA. iso-Guanosine·dC and 2-aminopurine·dT base pairs were used to determine why dG does not cross-link with C4-AP despite its well known reactivity with other bis-electrophiles. 7-Deaza-2'-deoxyadenosine was used to probe the role of the nucleotide opposite C4-AP in the catalysis of interstrand cross-link formation.
Collapse
Affiliation(s)
- Jonathan T Sczepanski
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
11
|
Chan SW, Dedon PC. The biological and metabolic fates of endogenous DNA damage products. J Nucleic Acids 2010; 2010:929047. [PMID: 21209721 PMCID: PMC3010698 DOI: 10.4061/2010/929047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/31/2010] [Indexed: 12/12/2022] Open
Abstract
DNA and other biomolecules are subjected to damaging chemical reactions during normal physiological processes and in states of pathophysiology caused by endogenous and exogenous mechanisms. In DNA, this damage affects both the nucleobases and 2-deoxyribose, with a host of damage products that reflect the local chemical pathology such as oxidative stress and inflammation. These damaged molecules represent a potential source of biomarkers for defining mechanisms of pathology, quantifying the risk of human disease and studying interindividual variations in cellular repair pathways. Toward the goal of developing biomarkers, significant effort has been made to detect and quantify damage biomolecules in clinically accessible compartments such as blood and and urine. However, there has been little effort to define the biotransformational fate of damaged biomolecules as they move from the site of formation to excretion in clinically accessible compartments. This paper highlights examples of this important problem with DNA damage products.
Collapse
Affiliation(s)
- Simon Wan Chan
- Department of Biological Engineering, Massachusetts Institute of Technology, NE47-277, Cambridge, MA 02139, USA
| | | |
Collapse
|
12
|
Wong RS, Sczepanski JT, Greenberg MM. Excision of a lyase-resistant oxidized abasic lesion from DNA. Chem Res Toxicol 2010; 23:766-70. [PMID: 20232790 DOI: 10.1021/tx9003984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The C2'-oxidized abasic lesion (C2-AP) is produced in DNA that is subjected to oxidative stress. The lesion disrupts replication and gives rise to mutations that are dependent upon the identity of the upstream nucleotide. Ape1 incises C2-AP, but the 5'-phosphorylated fragment is not a substrate for the lyase activity of DNA polymerase beta. Excision of the lesion is achieved by strand displacement synthesis in the presence of flap endonuclease during which C2-AP and the 3'-adjacent nucleotide are replaced. The oxidized abasic lesion is also a substrate for the bacterial UvrABC nucleotide excision repair system. These data suggest that the redundant nature of DNA repair systems provides a means for removing a lesion that resists excision by short patch base excision repair.
Collapse
Affiliation(s)
- Remus S Wong
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
13
|
Pitié M, Pratviel G. Activation of DNA Carbon−Hydrogen Bonds by Metal Complexes. Chem Rev 2010; 110:1018-59. [DOI: 10.1021/cr900247m] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marguerite Pitié
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, and Université de Toulouse, Toulouse, France
| | - Geneviève Pratviel
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, and Université de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Fate of DNA Sugar Radicals. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1872-0854(10)04004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
More JD, Campbell MG. Reaction of acetylated carbohydrates with trimethylaluminum: concise synthesis of 1,2-O-isopropylidene d-ribofuranose. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.03.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Huang H, Greenberg MM. Synthesis and analysis of oligonucleotides containing abasic site analogues. J Org Chem 2008; 73:2695-703. [PMID: 18324835 DOI: 10.1021/jo702614p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA damage results in the formation of abasic sites from the formal hydrolysis of the glycosidic bond (AP) and several oxidized abasic lesions. Previous studies on AP sites revealed that DNA polymerases preferentially incorporated dA opposite them in approximately 80% of the replication events in Escherichia coli. These results were consistent with the hypothesis that the AP sites are noninstructive lesions due to the absence of a Watson-Crick base whose bypass adheres to the "A-rule." Recent replication studies of the oxidized abasic lesion, 2-deoxyribonolactone (L), revealed that DNA polymerase(s) does not apply the A-rule when bypassing it and incorporates large amounts of dG opposite L. These studies suggested that abasic sites such as L do direct polymerases to selectively incorporate nucleotides opposite them. However, it was not possible to determine the structural basis for this molecular recognition from these experiments. A group of oligonucleotides containing analogues of the AP and L lesions were synthesized and characterized as probes to gain insight into the structural basis for the distinct effect of 2-deoxyribonolactone on replication. These molecules will be useful tools for studying replication in cells and in vitro.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
17
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
18
|
Affiliation(s)
- Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, NE47-277, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
19
|
Kim S, Schaefer HF. Effects of Microsolvation on the Adenine−Uracil Base Pair and Its Radical Anion: Adenine−Uracil Mono- and Dihydrates. J Phys Chem A 2007; 111:10381-9. [PMID: 17705454 DOI: 10.1021/jp072727g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microhydration effects upon the adenine-uracil (AU) base pair and its radical anion have been investigated by explicitly considering various structures of their mono- and dihydrates at the B3LYP/DZP++ level of theory. For the neutral AU base pair, 5 structures were found for the monohydrate and 14 structures for the dihydrate. In the lowest-energy structures of the neutral mono- and dihydrates, one and two water molecules bind to the AU base pair through a cyclic hydrogen bond via the N(9)-H and N(3) atoms of the adenine moiety, while the lowest-lying anionic mono- and dihydrates have a water molecule which is involved in noncyclic hydrogen bonding via the O4 atom of the uracil unit. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of the AU base pair are predicted to increase upon hydration. While the VDE and AEA of the unhydrated AU pair are 0.96 and 0.40 eV, respectively, the corresponding predictions for the lowest-lying anionic dihydrates are 1.36 and 0.75 eV, respectively. Because uracil has a greater electron affinity than adenine, an excess electron attached to the AU base pair occupies the pi* orbital of the uracil moiety. When the uracil moiety participates in hydrogen bonding as a hydrogen bond acceptor (e.g., the N(6)-H(6a)...O(4) hydrogen bond between the adenine and uracil bases and the O(w)-H(w)...N and O(w)-H(w)...O hydrogen bonds between the AU pair and the water molecules), the transfer of the negative charge density from the uracil moiety to either the adenine or water molecules efficiently stabilizes the system. In addition, anionic structures which have C-H...O(w) contacts are energetically more favorable than those with N-H...O(w) hydrogen bonds, because the C-H...O(w) contacts do not allow the unfavorable electron density donation from the water to the uracil moiety. This delocalization effect makes the energetic ordering for the anionic hydrates very different from that for the corresponding neutrals.
Collapse
Affiliation(s)
- Sunghwan Kim
- Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
20
|
Kim J, Kreller CR, Greenberg MM. Preparation and analysis of oligonucleotides containing the c4'-oxidized abasic site and related mechanistic probes. J Org Chem 2006; 70:8122-9. [PMID: 16277338 PMCID: PMC1382185 DOI: 10.1021/jo0512249] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The C4'-oxidized abasic site (C4-AP) is produced by a variety of DNA damaging agents. This alkali labile lesion can exist in up to four diastereomeric cyclic forms, in addition to the acyclic keto-aldehyde. Synthetic oligonucleotides containing the lesion were prepared from a stable photochemical precursor. Chemical integrity of the lesion containing oligonucleotides was probed using phosphodiesterase lability. Analysis of the 3',5'-phosphate diester of the monomeric lesion released from single diastereomers of photolabile precursors by 1H NMR indicates that isomerization of the hemiacetal and/or hemiketal is rapid. The syntheses and characterization of oligonucleotides containing configurationally stable analogues of C4-AP, which serve as mechanistic probes for deciphering the structural basis of the biochemical and biological effects of the C4'-oxidized abasic lesion, are also described.
Collapse
|
21
|
Kodama T, Greenberg MM. Preparation and analysis of oligonucleotides containing lesions resulting from C5'-oxidation. J Org Chem 2006; 70:9916-24. [PMID: 16292822 PMCID: PMC1657062 DOI: 10.1021/jo051666k] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] Hydrogen atom abstraction from the C5'-position of nucleotides in DNA results in direct strand scission. The newly formed 5'-termini of the cleaved DNA consists of alkali-labile fragments of the oxidized nucleotide. One terminus contains a 5'-aldehyde as part of an otherwise undamaged nucleotide (T-al). A second more structurally distinct product that is produced in lower yields results from cleavage of the C4'-C5' carbon-carbon bond. The 1,4-dioxo-2-phosphorylbutane (DOB) is a precursor of the alkylating agent but-2-ene-1,4-dial. To facilitate studies on these lesions, methods for synthesizing oligodeoxynucleotides containing DOB or T-al at their 5'-termini were developed. The effects of these lesions on the UV-melting temperatures of duplex DNA, and their cleavage labilities were determined. T-al cleaves very slowly (t(1/2) = 100.7 h), whereas DOB has a half-life at 37 degrees C (pH 7.2) of less than 11 h. In addition, DOB forms a stable adduct very efficiently with Tris, which protects the abasic site against cleavage.
Collapse
Affiliation(s)
- Tetsuya Kodama
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA
| | | |
Collapse
|
22
|
Kroeger KM, Kim J, Goodman MF, Greenberg MM. Replication of an oxidized abasic site in Escherichia coli by a dNTP-stabilized misalignment mechanism that reads upstream and downstream nucleotides. Biochemistry 2006; 45:5048-56. [PMID: 16605273 PMCID: PMC1447609 DOI: 10.1021/bi052276v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abasic sites (AP) and oxidized abasic lesions are often referred to as noninstructive lesions because they cannot participate in Watson-Crick base pairing. The aptness of the term noninstructive for describing AP site replication has been called into question by recent investigations in E. coli using single-stranded shuttle vectors. These studies revealed that the replication of templates containing AP sites or the oxidized abasic lesions resulting from C1'- (L) and C4'-oxidation (C4-AP) are distinct from one another, suggesting that structural features other than Watson-Crick hydrogen bonds contribute to controlling replication. The first description of the replication of the abasic site resulting from formal C2'-oxidation (C2-AP) is presented here. Full-length and single-nucleotide deletion products are observed when templates containing C2-AP are replicated in E. coli. Single nucleotide deletion formation is largely dependent upon the concerted effort of pol II and pol IV, whereas pol V suppresses frameshift product formation. Pol V utilizes the A-rule when bypassing C2-AP. In contrast, pol II and pol IV utilize a dNTP-stabilized misalignment mechanism to read the upstream and downstream nucleotides when bypassing C2-AP. This is the first example in which the identity of the 3'-adjacent nucleotide is read during the replication of a DNA lesion. The results raise further questions as to whether abasic lesions are noninstructive lesions. We suggest that abasic site bypass is affected by the local biopolymer structure in addition to the structure of the lesion.
Collapse
Affiliation(s)
| | | | | | - Marc M. Greenberg
- * To whom correspondence should addressed. Tel: 410-516-8095. Fax: 410-516-7044. E-mail:
| |
Collapse
|
23
|
Goodenough AK, Kozekov ID, Zang H, Choi JY, Guengerich FP, Harris TM, Rizzo CJ. Site specific synthesis and polymerase bypass of oligonucleotides containing a 6-hydroxy-3,5,6,7-tetrahydro-9H-imidazo[1,2-a]purin-9-one base, an intermediate in the formation of 1,N2-etheno-2'-deoxyguanosine. Chem Res Toxicol 2006; 18:1701-14. [PMID: 16300379 PMCID: PMC3135970 DOI: 10.1021/tx050141k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The reaction of DNA with certain bis-electrophiles such as chlorooxirane and chloroacetaldehyde produces etheno adducts. These lesions are highly miscoding, and some of the chemical agents that produce them have been shown to be carcinogenic in laboratory animals and in humans. An intermediate in the formation of 1,N2-ethenoguanine is 6-hydroxy-3,5,6,7-tetrahydro-9H-imidazo[1,2-a]purin-9-one (6-hydroxyethanoguanine), which undergoes conversion to the etheno adduct. The chemical properties and miscoding potential of the hydroxyethano adduct have not been previously studied. A synthesis of the hydroxyethano-adducted nucleoside was developed, and it was site specifically incorporated into oligonucleotides. This adduct had a half-life of between 24 and 48 h at neutral pH and 25 degrees C at the nucleoside and oligonucleotide levels. The miscoding potential of the hydroxyethano adduct was examined by primer extension reactions with the DNA polymerases Dpo4 and pol T7-, and the results were compared to the corresponding etheno-adducted oligonucleotide. Dpo4 preferentially incorporated dATP opposite the hydroxyethano adduct and dGTP opposite the etheno adduct; pol T7- preferentially incorporated dATP opposite the etheno adduct while dGTP and dATP were incorporated opposite the hydroxyethano adduct with nearly equal catalytic efficiencies. Collectively, these results indicate that the hydroxyethano adduct has a sufficient lifetime and miscoding properties to contribute to the mutagenic spectrum of chlorooxirane and related genotoxic species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carmelo J. Rizzo
- To whom correspondence should be addressed. Tel: 615-322-6100. Fax: 615-343-1234. E-mail:
| |
Collapse
|