1
|
Pratesi D, Mirabella S, Petrucci G, Matassini C, Faggi C, Cardona F, Goti A. Stereospecific Access to α‐ and β‐N‐Glycosylamine Derivatives by a Metal Free O‐to‐N [3,3]‐Sigmatropic Rearrangement. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Debora Pratesi
- Università degli Studi di Firenze: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 50019 Sesto Fiorentino ITALY
| | - Stefania Mirabella
- Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 Sesto Fiorentino ITALY
| | - Giulia Petrucci
- Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 Sesto Fiorentino ITALY
| | - Camilla Matassini
- Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 Sesto Fiorentino ITALY
| | - Cristina Faggi
- Università degli Studi di Firenze: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 Sesto Fiorentino ITALY
| | - Francesca Cardona
- Università degli Studi di Firenze: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 50019 Sesto Fiorentino ITALY
| | - Andrea Goti
- Universita' di Firenze Chemistry ""Ugo Schiff"" via della Lastruccia 13 I-50019 Sesto Fiorentino FI ITALY
| |
Collapse
|
2
|
Wei Y, Ben-Zvi B, Diao T. Diastereoselective Synthesis of Aryl C-Glycosides from Glycosyl Esters via C-O Bond Homolysis. Angew Chem Int Ed Engl 2021; 60:9433-9438. [PMID: 33438338 PMCID: PMC8044010 DOI: 10.1002/anie.202014991] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Indexed: 12/20/2022]
Abstract
C-aryl glycosyl compounds offer better in vivo stability relative to O- and N-glycoside analogues. C-aryl glycosides are extensively investigated as drug candidates and applied to chemical biology studies. Previously, C-aryl glycosides were derived from lactones, glycals, glycosyl stannanes, and halides, via methods displaying various limitations with respect to the scope, functional-group compatibility, and practicality. Challenges remain in the synthesis of C-aryl nucleosides and 2-deoxysugars from easily accessible carbohydrate precursors. Herein, we report a cross-coupling method to prepare C-aryl and heteroaryl glycosides, including nucleosides and 2-deoxysugars, from glycosyl esters and bromoarenes. Activation of the carbohydrate substrates leverages dihydropyridine (DHP) as an activating group followed by decarboxylation to generate a glycosyl radical via C-O bond homolysis. This strategy represents a new means to activate alcohols as a cross-coupling partner. The convenient preparation of glycosyl esters and their stability exemplifies the potential of this method in medicinal chemistry.
Collapse
Affiliation(s)
- Yongliang Wei
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Benjamin Ben-Zvi
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Tianning Diao
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
3
|
Wei Y, Ben‐zvi B, Diao T. Diastereoselective Synthesis of Aryl
C
‐Glycosides from Glycosyl Esters via C−O Bond Homolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yongliang Wei
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| | - Benjamin Ben‐zvi
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| | - Tianning Diao
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
4
|
Li Z, Bavaro T, Tengattini S, Bernardini R, Mattei M, Annunziata F, Cole RB, Zheng C, Sollogoub M, Tamborini L, Terreni M, Zhang Y. Chemoenzymatic synthesis of arabinomannan (AM) glycoconjugates as potential vaccines for tuberculosis. Eur J Med Chem 2020; 204:112578. [PMID: 32717482 DOI: 10.1016/j.ejmech.2020.112578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 10/23/2022]
Abstract
Mycobacteria infection resulting in tuberculosis (TB) is one of the top ten leading causes of death worldwide in 2018, and lipoarabinomannan (LAM) has been confirmed to be the most important antigenic polysaccharide on the TB cell surface. In this study, a convenient synthetic method has been developed for synthesizing three branched oligosaccharides derived from LAM, in which a core building block was prepared by enzymatic hydrolysis in flow chemistry with excellent yield. After several steps of glycosylations, the obtained oligosaccharides were conjugated with recombinant human serum albumin (rHSA) and the ex-vivo ELISA tests were performed using serum obtained from several TB-infected patients, in order to evaluate the affinity of the glycoconjugate products for the human LAM-antibodies. The evaluation results are positive, especially compound 21 that exhibited excellent activity which could be considered as a lead compound for the future development of a new glycoconjugated vaccine against TB.
Collapse
Affiliation(s)
- Zhihao Li
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Teodora Bavaro
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Sara Tengattini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Roberta Bernardini
- Italy Centro Servizi Interdipartimentale - STA, University of Rome "Tor Vergata", Rome, Italy
| | - Maurizio Mattei
- Italy Centro Servizi Interdipartimentale - STA, University of Rome "Tor Vergata", Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Richard B Cole
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Changping Zheng
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
5
|
McDonagh AW, Mahon MF, Murphy PV. Lewis Acid Induced Anomerization of Se-Glycosides. Application to Synthesis of α-Se-GalCer. Org Lett 2016; 18:552-5. [DOI: 10.1021/acs.orglett.5b03591] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anthony W. McDonagh
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Paul V. Murphy
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
6
|
Guo Z, Gong R, Mu Y, Wang X, Wan X. Oligopeptide-Assisted Self-Assembly of Oligothiophenes: Co-Assembly and Chirality Transfer. Chem Asian J 2014; 9:3245-50. [DOI: 10.1002/asia.201402646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 10/24/2022]
|
7
|
Abstract
Nitrogen-containing macrocyclic compounds (amines, amides, and N-heterocyclic derivatives) are important targets in supramolecular chemistry. This chapter discusses the importance of aza-macrocycles in general and, in particular, those receptors containing sugar unit(s). The combination of a carbohydrate scaffold bearing nitrogen-containing functional groups in macrocyclic molecules opens a convenient route to chiral receptors having potentially useful properties. The carbohydrate-based macrocycles discussed are classified into several general groups: (1) aza-crown ethers containing a carbohydrate subunit, (2) cyclic homooligomers from amino sugars, (3) sugar-based cryptands, (4) cyclic peptides containing amino sugar units (including C2- and C3-symmetrical macrocyclic glycopeptides), (5) nitrogen- containing glycophanes, and (6) 1,2,3-triazoles containing synthetic cyclodextrin analogues. The general strategies employed, as well as specific ones leading to such complex derivatives, are surveyed. Applications of such carbohydrate receptors, pointing to their importance as hosts in supramolecular chemistry, are discussed.
Collapse
|
8
|
Farrell M, Zhou J, Murphy PV. Regiospecific Anomerisation of Acylated Glycosyl Azides and Benzoylated Disaccharides by Using TiCl4. Chemistry 2013; 19:14836-51. [DOI: 10.1002/chem.201302572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Indexed: 01/28/2023]
|
9
|
Gong R, Song Y, Guo Z, Li M, Jiang Y, Wan X. A clickable, highly soluble oligopeptide that easily forms organogels. Supramol Chem 2013. [DOI: 10.1080/10610278.2013.766735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ruiying Gong
- a Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , 189 Songling Road, Qingdao, Shandong Province , 266101 , P.R. China
| | - Yubao Song
- b Department of Chemistry , Qingdao University of Science and Technology , 53 Zhengzhou Road, Qingdao, Shandong Province , 266042 , P.R. China
| | - Zongxia Guo
- a Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , 189 Songling Road, Qingdao, Shandong Province , 266101 , P.R. China
| | - Ming Li
- b Department of Chemistry , Qingdao University of Science and Technology , 53 Zhengzhou Road, Qingdao, Shandong Province , 266042 , P.R. China
| | - Yi Jiang
- a Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , 189 Songling Road, Qingdao, Shandong Province , 266101 , P.R. China
| | - Xiaobo Wan
- a Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , 189 Songling Road, Qingdao, Shandong Province , 266101 , P.R. China
| |
Collapse
|
10
|
Wang GN, André S, Gabius HJ, Murphy PV. Bi- to tetravalent glycoclusters: synthesis, structure-activity profiles as lectin inhibitors and impact of combining both valency and headgroup tailoring on selectivity. Org Biomol Chem 2012; 10:6893-907. [PMID: 22842468 DOI: 10.1039/c2ob25870f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The emerging functional versatility of cellular glycans makes research on the design of synthetic inhibitors a timely topic. In detail, the combination of ligand (or headgroup or contact site) structure with spatial parameters that depend on topological and geometrical factors underlies the physiological selectivity of glycan-protein (lectin) recognition. We herein tested a panel of bi-, tri- and tetravalent compounds against two plant agglutinins and adhesion/growth-regulatory lectins (galectins). In addition, we examined the impact of headgroup tailoring (converting lactose to 2'-fucosyllactose) in combination with valency increase in two assay types of increasing biorelevance (from solid-phase binding to cell binding). Compounds were prepared using copper-catalysed azide alkyne cycloaddition from peracetylated lactosyl or 2'-fucosyllactosyl azides. Significant inhibition was achieved for the plant toxin with a tetravalent compound. Different levels of sensitivity were noted for the three groups of the galectin family. The headgroup extension to 2'-fucosyllactose led to a selectivity gain, especially for the chimera-type galectin-3. Valency increase established discrimination against the homodimeric proteins, whereas the combination of valency with the headgroup extension led to discrimination against the tandem-repeat-type galectin-8 for chicken galectins but not human galectins-3 and -4. Thus, detailed structure-activity profiling of glycoclusters combined with suitably modifying the contact site for the targeted lectin will help minimize cross-reactivity among this class of closely related proteins.
Collapse
Affiliation(s)
- Guan-Nan Wang
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | | | |
Collapse
|
11
|
Synthesis of bivalent glycoclusters containing GlcNAc as hexasaccharide mimetics. Bactericidal activity against Helicobacter pylori. Carbohydr Res 2012; 360:1-7. [PMID: 22975273 DOI: 10.1016/j.carres.2012.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 11/23/2022]
Abstract
The Cu(I) catalysed cycloaddition reaction of azides and alkynes has been used to generate a series of divalent GlcNAc clusters with both α and β configurations. These glycoclusters can be considered as potential mimetics of an anti Helicobacter pylori hexasaccharide as they present two GlcNAc residues grafted onto a core scaffold. Two bivalent compounds based on α-O-GlcNAc were identified that selectively reduced the viability of H. pylori. These compounds showed activity towards different strains of H. pylori (Pu4 vs P12). The activity of the oligosaccharide mimetics is speculated to be due to the GlcNAc residues being able to adopt spatial arrangements accessible to the anti H. pylori hexasaccharide which may be important for activity.
Collapse
|
12
|
Uriel C, Ventura J, Gómez AM, López JC, Fraser-Reid B. Methyl 1,2-Orthoesters as Useful Glycosyl Donors in Glycosylation Reactions: A Comparison with n-Pent-4-enyl 1,2-Orthoesters. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Uriel C, Ventura J, Gómez AM, López JC, Fraser-Reid B. Unexpected stereocontrolled access to 1α,1'β-disaccharides from methyl 1,2-ortho esters. J Org Chem 2011; 77:795-800. [PMID: 22141592 DOI: 10.1021/jo202335n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mannopyranose-derived methyl 1,2-orthoacetates (R = Me) and 1,2-orthobenzoates (R = Ph) undergo stereoselective formation of 1α,1'β-disaccharides, upon treatment with BF(3)·Et(2)O in CH(2)Cl(2), rather than the expected acid-catalyzed reaction leading to methyl glycosides by way of a rearrangement-glycosylation process of the liberated methanol.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Wang C, Sanders B, Baker DC. Synthesis of a glycodendrimer incorporating multiple mannosides on a glucoside core. CAN J CHEM 2011. [DOI: 10.1139/v11-069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of a glycodendrimer by incorporating repetitive mannoside units onto a glucoside core was carried out to multivalently probe fundamental carbohydrate–protein interactions. The dendritic structure was constructed by a modified procedure that utilized multiple glycosylations between a thioether glycosyl donor and five elongated spacer arms of a glycosyl acceptor. The completed dendrimer bears a full carbohydrate structure, and thus should find its potential application in the study of mannose–lectin interactions.
Collapse
Affiliation(s)
- Chao Wang
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Brian Sanders
- Department of Chemistry, the University of Tennessee, Knoxville, TN 37996-1600, USA
| | - David C. Baker
- Department of Chemistry, the University of Tennessee, Knoxville, TN 37996-1600, USA
| |
Collapse
|
15
|
Pilgrim W, Murphy PV. SnCl4- and TiCl4-Catalyzed Anomerization of Acylated O- and S-Glycosides: Analysis of Factors That Lead to Higher α:β Anomer Ratios and Reaction Rates. J Org Chem 2010; 75:6747-55. [DOI: 10.1021/jo101090f] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wayne Pilgrim
- School of Chemistry, National University of Ireland, Galway, Ireland
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
16
|
Affiliation(s)
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland, Galway, Ireland, Fax: +353‐91‐525700
| |
Collapse
|
17
|
Witczak ZJ. Recent advances in the synthesis of functionalized carbohydrate azides. CARBOHYDRATE CHEMISTRY 2010. [DOI: 10.1039/9781849730891-00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zbigniew J. Witczak
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University Wilkes-Barre, 84 W. South Street 18766 Pennsylvania U.S.A
| |
Collapse
|
18
|
McCarthy JR, Bhaumik J, Merbouh N, Weissleder R. High-yielding syntheses of hydrophilic conjugatable chlorins and bacteriochlorins. Org Biomol Chem 2009; 7:3430-6. [PMID: 19675897 DOI: 10.1039/b908713c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Next-generation photodynamic therapy agents based upon the conjugation of multiple photosensitizers to a targeting backbone will allow for more efficacious light-based therapies. To this end, we have developed glucose-modified chlorins and bacteriochlorins featuring a reactive carboxylic acid linker for conjugation to targeting moieties. The photosensitizers were synthesized in relatively high yields from meso-tetra(p-aminophenyl)porphyrin, and resulted in neutral, hydrophilic chromophores with superb absorption profiles in the far-red and near-infrared portions of the electromagnetic spectrum. In addition, conjugation of these photosensitizers to a model nanoscaffold (crosslinked dextran-coated nanoparticles) demonstrated that the inclusion of hydrophilic sugar moieties increased the number of dyes that can be loaded while maintaining suspension stability. The described compounds are expected to be particularly useful in the synthesis of a number of targeted nanotherapeutic systems.
Collapse
Affiliation(s)
- Jason R McCarthy
- Center for Molecular Imaging Research, Harvard Medical School and Massachusetts General Hospital, 149 13th St., Rm 5406, Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
19
|
André S, Velasco-Torrijos T, Leyden R, Gouin S, Tosin M, Murphy PV, Gabius HJ. Phenylenediamine-based bivalent glycocyclophanes: synthesis and analysis of the influence of scaffold rigidity and ligand spacing on lectin binding in cell systems with different glycomic profiles. Org Biomol Chem 2009; 7:4715-25. [DOI: 10.1039/b913010a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Doyle D, Murphy PV. Synthesis of novel glycophanes derived from glucuronic acid by ring closing alkene and alkyne metathesis. Carbohydr Res 2008; 343:2535-44. [DOI: 10.1016/j.carres.2008.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 05/30/2008] [Accepted: 06/07/2008] [Indexed: 11/17/2022]
|
21
|
|
22
|
Cronin L, Tosin M, Müller-Bunz H, Murphy PV. The synthesis of cyclic imidates from amides of glucuronic acid and investigation of glycosidation reactions. Carbohydr Res 2007; 342:111-8. [PMID: 17123491 DOI: 10.1016/j.carres.2006.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/20/2006] [Accepted: 10/25/2006] [Indexed: 11/28/2022]
Abstract
The synthesis of novel cyclic glycosyl imidates and an investigation of their potential as donors in glycosidation reactions is described. The results show that 1,2-cis glycosides obtained from the reactions of glycosyl acetates or cyclic imidates, each derived from amides of glucuronic acid, result from the anomerisation of initially formed 1,2-trans glycosides.
Collapse
Affiliation(s)
- Linda Cronin
- UCD School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|