1
|
Dais TN, Schlittenhardt S, Ruben M, Anson CE, Powell AK, Plieger PG. Self-Assembly of four Ni 16 Molecular Wheels with Capsule and Tubular Supramolecular Architectures. Chem Asian J 2024:e202400381. [PMID: 38924265 DOI: 10.1002/asia.202400381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Four new Ni16 molecular wheels with the general formula [L4Ni16(RCOO)16(H2O)x(MeOH)12-x] (where H4L=1,4-bis((E)-((2'-hydroxybenzyl)imino)methyl)-2,3-naphthalenediol, and R=H or Me) have been isolated and structurally characterised. Complexes C1-C3 (R=Me) were formed using nickel (II) acetate and presented as polymorphs with the same formulation of charged components. The same wheel-like architecture was observed in C4 (R=H), which was prepared using nickel (II) formate, demonstrating the potential for further versatility of the system. In contrast to similar four-fold symmetric Ni(II) wheel clusters, measurements of the static magnetic properties of C1 indicated the presence of dominant antiferromagnetic interactions and an S=0 ground state.
Collapse
Affiliation(s)
- Tyson N Dais
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Sören Schlittenhardt
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg, 8 Allée Gaspard Monge, BP, 70028, 67083, Strasbourg Cedex, France
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Christopher E Anson
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Annie K Powell
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Paul G Plieger
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
2
|
Using filters in virtual screening: A comprehensive guide to minimize errors and maximize efficiency. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Senapati BK. Recent progress in the synthesis of the furanosteroid family of natural products. Org Chem Front 2021. [DOI: 10.1039/d0qo01454k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on an overview of recent advances in the synthesis of furanosteroids and illustrates their applications in medicinal chemistry over the period of 2005–present.
Collapse
|
4
|
Ding S, Fike KR, Klemba M, Carlier PR. In vitro and in vivo evaluation of the antimalarial MMV665831 and structural analogs. Bioorg Med Chem Lett 2020; 30:127348. [PMID: 32738996 DOI: 10.1016/j.bmcl.2020.127348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Antimalarial candidates possessing novel mechanisms of action are needed to control drug resistant Plasmodium falciparum. We were drawn to Malaria Box compound 1 (MMV665831) by virtue of its excellent in vitro potency, and twelve analogs were prepared to probe its structure-activity relationship. Modulation of the diethyl amino group was fruitful, producing compound 25, which was twice as potent as 1 against cultured parasites. Efforts were made to modify the phenolic Mannich base functionality of 1, to prevent formation of a reactive quinone methide. Homologated analog 28 had reduced potency relative to 1, but still inhibited growth with EC50 ≤ 200 nM. Thus, the antimalarial activity of 1 does not derive from quinone methide formation. Chemical stability studies on dimethyl analog 2 showed remarkable hydrolytic stability of both the phenolic Mannich base and ethyl ester moieties, and 1 was evaluated for in vivo efficacy in P. berghei-infected mice (40 mg/kg, oral). Unfortunately, no reduction in parasitemia was seen relative to control. These results are discussed in the context of measured plasma and hepatocyte stabilities, with reference to structurally-related, orally-efficacious antimalarials.
Collapse
Affiliation(s)
- Sha Ding
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Katherine R Fike
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Michael Klemba
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Paul R Carlier
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
5
|
|
6
|
Lutsenko K, Hagenow S, Affini A, Reiner D, Stark H. Rasagiline derivatives combined with histamine H3 receptor properties. Bioorg Med Chem Lett 2019; 29:126612. [DOI: 10.1016/j.bmcl.2019.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
|
7
|
Gilberg E, Gütschow M, Bajorath J. X-ray Structures of Target–Ligand Complexes Containing Compounds with Assay Interference Potential. J Med Chem 2018; 61:1276-1284. [DOI: 10.1021/acs.jmedchem.7b01780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Erik Gilberg
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstr. 2, D-53113 Bonn, Germany
- Pharmaceutical
Institute, Rheinische Friedrich-Wilhelms-Universität, An der Immenburg 4, D-53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Institute, Rheinische Friedrich-Wilhelms-Universität, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jürgen Bajorath
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstr. 2, D-53113 Bonn, Germany
| |
Collapse
|
8
|
Ou-yang J, Zhang W, Qin F, Zuo W, Xu S, Wang Y, Qin B, You S, Jia X. Enantioselective bioreduction of benzo-fused cyclic ketones with engineered Candida glabrata ketoreductase 1 – a promising synthetic route to ladostigil (TV3326). Org Biomol Chem 2017; 15:7374-7379. [DOI: 10.1039/c7ob01803g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered Candida glabrata ketoreductase 1 variants are applied to the bioreduction of benzo-fused cyclic ketones. Particularly, these biocatalysts showed excellent enantioselectivity towards a key intermediate of Ladostigil.
Collapse
Affiliation(s)
- Jingping Ou-yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Fengyu Qin
- School of Life Sciences and Biopharmaceutical Sciences
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Weiguo Zuo
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- China
| | - Shaoyu Xu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- China
| | - Yan Wang
- School of Life Sciences and Biopharmaceutical Sciences
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Bin Qin
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xian Jia
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- China
| |
Collapse
|
9
|
Gilberg E, Stumpfe D, Bajorath J. Activity profiles of analog series containing pan assay interference compounds. RSC Adv 2017. [DOI: 10.1039/c7ra06736d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Shown is the distribution of activity profiles (color-coded bars) of analog series containing PAINS substructures in a heatmap.
Collapse
Affiliation(s)
- Erik Gilberg
- Department of Life Science Informatics
- B-IT
- LIMES Program Unit Chemical Biology and Medicinal Chemistry
- Rheinische Friedrich-Wilhelms-Universität
- D-53113 Bonn
| | - Dagmar Stumpfe
- Department of Life Science Informatics
- B-IT
- LIMES Program Unit Chemical Biology and Medicinal Chemistry
- Rheinische Friedrich-Wilhelms-Universität
- D-53113 Bonn
| | - Jürgen Bajorath
- Department of Life Science Informatics
- B-IT
- LIMES Program Unit Chemical Biology and Medicinal Chemistry
- Rheinische Friedrich-Wilhelms-Universität
- D-53113 Bonn
| |
Collapse
|
10
|
Xia J, Yang G, Zhuge R, Liu Y, Zhang W. Iridium-Catalyzed Asymmetric Hydrogenation of Unfunctionalized Exocyclic C=C Bonds. Chemistry 2016; 22:18354-18357. [DOI: 10.1002/chem.201604298] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Jingzhao Xia
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Guoqiang Yang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Ruijing Zhuge
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yangang Liu
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wanbin Zhang
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
11
|
Kodama K, Hayashi N, Yoshida Y, Hirose T. Direct enantioseparation of diarylmethylamines with an ortho-hydroxy group via diastereomeric salt formation and their application to the enantioselective addition reaction of diethylzinc. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Felsenstein KM, Saunders LB, Simmons JK, Leon E, Calabrese DR, Zhang S, Michalowski A, Gareiss P, Mock BA, Schneekloth JS. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression. ACS Chem Biol 2016; 11:139-48. [PMID: 26462961 PMCID: PMC4719142 DOI: 10.1021/acschembio.5b00577] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
The
transcription factor MYC plays a pivotal role in cancer initiation,
progression, and maintenance. However, it has proven difficult to
develop small molecule inhibitors of MYC. One attractive route to
pharmacological inhibition of MYC has been the prevention of its expression
through small molecule-mediated stabilization of the G-quadruplex
(G4) present in its promoter. Although molecules that bind globally
to quadruplex DNA and influence gene expression are well-known, the
identification of new chemical scaffolds that selectively modulate
G4-driven genes remains a challenge. Here, we report an approach for
the identification of G4-binding small molecules using small molecule
microarrays (SMMs). We use the SMM screening platform to identify
a novel G4-binding small molecule that inhibits MYC expression in
cell models, with minimal impact on the expression of other G4-associated
genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated
that this molecule binds reversibly to the MYC G4 with single digit
micromolar affinity, and with weaker or no measurable binding to other
G4s. Biochemical and cell-based assays demonstrated that the compound
effectively silenced MYC transcription and translation via a G4-dependent
mechanism of action. The compound induced G1 arrest and was selectively
toxic to MYC-driven cancer cell lines containing the G4 in the promoter
but had minimal effects in peripheral blood mononucleocytes or a cell
line lacking the G4 in its MYC promoter. As a measure of selectivity,
gene expression analysis and qPCR experiments demonstrated that MYC
and several MYC target genes were downregulated upon treatment with
this compound, while the expression of several other G4-driven genes
was not affected. In addition to providing a novel chemical scaffold
that modulates MYC expression through G4 binding, this work suggests
that the SMM screening approach may be broadly useful as an approach
for the identification of new G4-binding small molecules.
Collapse
Affiliation(s)
- Kenneth M. Felsenstein
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
- NCI/JHU Molecular Targets and Drug Discovery Program, Baltimore, Maryland, United States
| | - Lindsey B. Saunders
- Chemical
Biology Laboratory, National Cancer Institute, Building 376, Room 225C, P.O. Box B, Frederick, Maryland 21702-1201, United States
| | - John K. Simmons
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
| | - Elena Leon
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
- NCI/JHU Molecular Targets and Drug Discovery Program, Baltimore, Maryland, United States
| | - David R. Calabrese
- Chemical
Biology Laboratory, National Cancer Institute, Building 376, Room 225C, P.O. Box B, Frederick, Maryland 21702-1201, United States
| | - Shuling Zhang
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
| | - Aleksandra Michalowski
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
| | - Peter Gareiss
- Yale Center for Molecular Discovery, West Haven, Connecticut, United States
| | - Beverly A. Mock
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
| | - John S. Schneekloth
- Chemical
Biology Laboratory, National Cancer Institute, Building 376, Room 225C, P.O. Box B, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
13
|
Akbaba Y, Bastem E, Topal F, Gülçin İ, Maraş A, Göksu S. Synthesis and Carbonic Anhydrase Inhibitory Effects of Novel Sulfamides Derived from 1-Aminoindanes and Anilines. Arch Pharm (Weinheim) 2014; 347:950-7. [DOI: 10.1002/ardp.201400257] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/06/2014] [Accepted: 08/15/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Yusuf Akbaba
- Department of Basic Sciences; Faculty of Science; Erzurum Technical University; Erzurum Turkey
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
| | - Enes Bastem
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
| | - Fevzi Topal
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
- Department of Medical Services and Techniques; Vocational School of Health Services; Gumushane University; Gumushane Turkey
| | - İlhami Gülçin
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
- Department of Zoology; College of Science; King Saud University; Riyadh Saudi Arabia
| | - Ahmet Maraş
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
| | - Süleyman Göksu
- Department of Chemistry; Faculty of Science; Ataturk University; Erzurum Turkey
| |
Collapse
|
14
|
Cao S, Christiansen R, Peng X. Substituent effects on oxidation-induced formation of quinone methides from arylboronic ester precursors. Chemistry 2013; 19:9050-8. [PMID: 23670793 DOI: 10.1002/chem.201300539] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/07/2013] [Indexed: 11/08/2022]
Abstract
A series of arylboronic esters containing different aromatic substituents and various benzylic leaving groups (Br or N(+)Me3Br(-)) have been synthesized. The substituent effects on their reactivity with H2O2 and formation of quinone methide (QM) have been investigated. NMR spectroscopy and ethyl vinyl ether (EVE) trapping experiments were used to determine the reaction mechanism and QM formation, respectively. QMs were not generated during oxidative cleavage of the boronic esters but by subsequent transformation of the phenol products under physiological conditions. The oxidative deboronation is facilitated by electron-withdrawing substituents, such as aromatic F, NO2, or benzylic N(+)Me3Br(-), whereas electron-donating substituents or a better leaving group favor QM generation. Compounds containing an aromatic CH3 or OMe group, or a good leaving group (Br), efficiently generate QMs under physiological conditions. Finally, a quantitative relationship between the structure and activity has been established for the arylboronic esters by using a Hammett plot. The reactivity of the arylboronic acids/esters and the inhibition or facilitation of QM formation can now be predictably adjusted. This adjustment is important as some applications may benefit and others may be limited by QM generation.
Collapse
Affiliation(s)
- Sheng Cao
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
15
|
Luan F, Cordeiro MND, Alonso N, García-Mera X, Caamaño O, Romero-Duran FJ, Yañez M, González-Díaz H. TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases. Bioorg Med Chem 2013; 21:1870-9. [DOI: 10.1016/j.bmc.2013.01.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/13/2013] [Accepted: 01/17/2013] [Indexed: 01/08/2023]
|
16
|
Constructing the Heterocyclic Core of Viridin and Wortmannin. ADVANCES IN HETEROCYCLIC CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-408100-0.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
17
|
Baell JB, Ferrins L, Falk H, Nikolakopoulos G. PAINS: Relevance to Tool Compound Discovery and Fragment-Based Screening. Aust J Chem 2013. [DOI: 10.1071/ch13551] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pan assay interference compounds (PAINS) are readily discovered in any bioassay and can appear to give selective and optimisable hits. The most common PAINS can be readily recognised by their structure. However, there are compounds that closely resemble PAINS that are not specifically recognised by the PAINS filters. In addition, highly reactive compounds are not encoded for in the PAINS filters because they were excluded from the high-throughput screening (HTS) library used to develop the filters and so were never present to provide indicting data. A compounding complication in the area is that very occasionally a PAINS compound may serve as a viable starting point for progression. Despite such an occasional example, the literature is littered with an overwhelming number of examples of compounds that fail to progress and were probably not optimisable in the first place, nor useful tool compounds. Thus it is with great caution and diligence that compounds possessing a known PAINS core should be progressed through to medicinal chemistry optimisation, if at all, as the chances are very high that the hits will be found to be non-progressable, often after a significant waste of resources.
Collapse
|
18
|
Onyango EO, Jacobi PA. Synthetic Studies on Furanosteroids: Construction of the Viridin Core Structure via Diels–Alder/retro-Diels–Alder and Vinylogous Mukaiyama Aldol-Type Reaction. J Org Chem 2012; 77:7411-27. [DOI: 10.1021/jo301232w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evans O. Onyango
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United
States
| | - Peter A. Jacobi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United
States
| |
Collapse
|
19
|
|
20
|
Markle TF, Rhile IJ, Mayer JM. Kinetic effects of increased proton transfer distance on proton-coupled oxidations of phenol-amines. J Am Chem Soc 2011; 133:17341-52. [PMID: 21919508 PMCID: PMC3228417 DOI: 10.1021/ja2056853] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh(2)NH(2) substituent (1). Spectroscopic, structural, thermochemical, and computational studies show that the two amino-phenols are very similar, except that the O···N distance (d(ON)) is >0.1 Å longer in 2 than in 1. The difference in d(ON) is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations (•)OAr-NH(3)(+) by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. 2 orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C(6)H(4)OMe)(3)(•+) (3a(+)) occurs at (1.4 ± 0.1) × 10(4) M(-1) s(-1), only a factor of 2 slower than the closely related reaction of 1 with N(C(6)H(4)OMe)(2)(C(6)H(4)Br)(•+) (3b(+)). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG° (2 + 3a(+)) = +0.078 V versus ΔG° (1 + 3b(+)) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δ ln(k)/Δ ln(K(eq))). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly anharmonic O···H···N potential energy surface and the influence of proton vibrational excited states.
Collapse
Affiliation(s)
- Todd F Markle
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA.
| | | | | |
Collapse
|
21
|
|
22
|
Cheng G, Wang X, Su D, Liu H, Liu F, Hu Y. Preparation of Enantiopure Substituted Piperidines Containing 2-Alkene or 2-Alkyne Chains: Application to Total Syntheses of Natural Quinolizidine-Alkaloids. J Org Chem 2010; 75:1911-6. [DOI: 10.1021/jo902615u] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guolin Cheng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xinyan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Deyong Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hui Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Fei Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuefei Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
23
|
Liu H, Su D, Cheng G, Xu J, Wang X, Hu Y. Enantiopure 2,6-disubstituted piperidines bearing one alkene- or alkyne-containing substituent: preparation and application to total syntheses of indolizidine-alkaloids. Org Biomol Chem 2010; 8:1899-904. [DOI: 10.1039/b927007h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Ulanenko K, Falb E, Gottlieb HE, Herzig Y. Novel 5-Dimethylamino-1- and 2-Indanyl Uracil Derivatives. J Org Chem 2006; 71:7053-6. [PMID: 16930062 DOI: 10.1021/jo0609881] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Dimethylamino-1-aminoindan undergoes thermal decomposition and reacts with 6-chlorouracil to give 5-indanyl-6-chlorouracil derivative 9. The formation of 9 may be rationalized by a putative mechanism based on the intermediacy of the imminium methide species 8a.
Collapse
Affiliation(s)
- Konstantin Ulanenko
- Global Innovative R & D, Teva Pharmaceutical Industries Ltd., Netanya 42504, Israel
| | | | | | | |
Collapse
|