1
|
Kazantsev A, Bakulina O, Dar'in D, Kantin G, Bunev A, Krasavin M. Unexpected Ring Contraction of Homophthalic Anhydrides under Diazo Transfer Conditions. Org Lett 2022; 24:4762-4765. [PMID: 35749721 DOI: 10.1021/acs.orglett.2c01730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An attempted Regitz diazo transfer onto homophthalic anhydride led to the discovery of an unexpected ring contraction, which gave N-sulfonyl phthalide-3-carboxamide derivatives. The reaction is thought to proceed via a [3 + 2] cycloaddition of the substrate's enol form and the azide followed by a two-step fragmentation of the intermediate 1,2,3-triazoline with a loss of the nitrogen molecule.
Collapse
Affiliation(s)
- Alexander Kazantsev
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Olga Bakulina
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, 445020 Togliatti, Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation.,Immanuel Kant Baltic Federal University, Kaliningrad 236016, Russian Federation
| |
Collapse
|
2
|
Erguven H, Zhou C, Arndtsen BA. Multicomponent formation route to a new class of oxygen-based 1,3-dipoles and the modular synthesis of furans. Chem Sci 2021; 12:15077-15083. [PMID: 34909148 PMCID: PMC8612406 DOI: 10.1039/d1sc04088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
A new class of phosphorus-containing 1,3-dipoles can be generated by the multicomponent reaction of aldehydes, acid chlorides and the phosphonite PhP(catechyl). These 1,3-dipoles are formally cyclic tautomers of simple Wittig-type ylides, where the angle strain and moderate nucleophilicity in the catechyl-phosphonite favor their cyclization and also direct 1,3-dipolar cycloaddition to afford single regioisomers of substituted products. Coupling the generation of the dipoles with 1,3-dipolar cycloaddition offers a unique, modular route to furans from combinations of available aldehydes, acid chlorides and alkynes with independent control of all four substituents.
Collapse
Affiliation(s)
- Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road, Piscataway NJ 08854 USA
| | - Cuihan Zhou
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| |
Collapse
|
3
|
Wang Y, Zhang WX, Xi Z. Carbodiimide-based synthesis of N-heterocycles: moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem Soc Rev 2020; 49:5810-5849. [PMID: 32658233 DOI: 10.1039/c9cs00478e] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carbodiimides are a unique class of heterocumulene compounds that display distinctive chemical properties. The rich chemistry of carbodiimides has drawn increasing attention from chemists in recent years and has made them exceedingly useful compounds in modern organic chemistry, especially in the synthesis of N-heterocycles. This review has outlined the extensive application of carbodiimides in the synthesis of N-heterocycles from the 1980s to today. A wide range of reactions for the synthesis of various types of N-heterocyclic systems (three-, four-, five-, six-, seven-, larger-membered and fused heterocycles) have been developed on the basis of carbodiimides and their derivatives.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Zhang HQ, Xi JM, Liao WW. Organocatalytic Isomerization/Allylic Alkylation of O-Acylated Hemithioacetals and Their Application in Tandem Sequence to Access 2,7-Dioxabicyclo[2.2.1]heptan-3-one Derivatives. J Org Chem 2020; 85:1168-1180. [PMID: 31878775 DOI: 10.1021/acs.joc.9b03172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel protocol for the efficient preparation of α-hydroxy allylic thioesters via a Lewis base-catalyzed tandem isomerization/allylic alkylation process is reported. The resulting allylic thioesters can serve as valuable scaffolds to undergo a stereoselective intramolecular cyclization to deliver 2,7-dioxabicyclo[2.2.1]heptan-3-one derivatives in a catalytically atom-economic fashion.
Collapse
Affiliation(s)
- Huan-Qing Zhang
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Ji-Ming Xi
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| |
Collapse
|
5
|
Ketenes as Privileged Synthons in the Syntheses of Heterocyclic Compounds. Part 1. ADVANCES IN HETEROCYCLIC CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-800170-7.00004-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Brandi A, Cicchi S, Cordero FM. Novel Syntheses of Azetidines and Azetidinones. Chem Rev 2008; 108:3988-4035. [DOI: 10.1021/cr800325e] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alberto Brandi
- Dipartimento di Chimica Organica “Ugo Schiff”, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi - HeteroBioLab, Università degli Studi di Firenze, via della Lastruccia 13, 50019 Sesto F.no (FI), Italy
| | - Stefano Cicchi
- Dipartimento di Chimica Organica “Ugo Schiff”, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi - HeteroBioLab, Università degli Studi di Firenze, via della Lastruccia 13, 50019 Sesto F.no (FI), Italy
| | - Franca M. Cordero
- Dipartimento di Chimica Organica “Ugo Schiff”, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi - HeteroBioLab, Università degli Studi di Firenze, via della Lastruccia 13, 50019 Sesto F.no (FI), Italy
| |
Collapse
|
7
|
|
8
|
Singh V, Murali Krishna U, Vikrant, Trivedi GK. Cycloaddition of oxidopyrylium species in organic synthesis. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.01.049] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Hamaguchi M, Tomida N, Iyama Y. Reaction of electron-deficient N=N, N=O double bonds, singlet oxygen, and CC triple bonds with acyloxyketenes or mesoionic 1,3-dioxolium-4-olates: generation of unstable mesoionic 1,3-dioxolium-4-olates from acyloxyketenes. J Org Chem 2007; 72:1326-34. [PMID: 17288380 DOI: 10.1021/jo0621975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of azodicarboxylates and nitrosobenzene derivatives with acyloxyketenes generated from dehydrochlorination of alpha-acyloxyarylacetyl chlorides were carried out to give triacylbenzamidine and N-arylimide derivatives, respectively, in good yields. The same compounds were obtained from the reaction with mesoionic 1,3-dioxolium-4-olates generated by Rh2(OAc)4-catalyzed decomposition of aryldiazoacetic anhydride derivatives. Formation of the same compounds from the different starting materials indicates that their reactions involve the same intermediates. The formation of triacylbenzamidine and N-arylimide derivatives is explained by 1,3-dipolar cycloaddition between electron-deficient N=N or N=O bonds and mesoionic 1,3-dioxolium-4-olates following by decarboxylation, ring opening of the resultant carbonyl ylides, and subsequent Mumm rearrangement of the corresponding imidates. The reaction with singlet oxygen composed of more electronegative atoms than N=N and N=O bonds also gave products arising from the singlet oxygen adducts with 1,3-dioxolium-4-olates. The generation of less stable mesoionic 1,3-dioxolium-4-olates from acyloxyketenes was also confirmed by isolation of furandicarboxylates on generation of acyloxyketenes from alpha-acyloxyarylacetyl chlorides in the presence of reactive dipolarophile dimethyl acetylenedicarboxylate.
Collapse
Affiliation(s)
- Masashi Hamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| | | | | |
Collapse
|