1
|
Das G, Harikrishna S, Gore KR. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A Critical Review. CHEM REC 2022; 22:e202200174. [PMID: 36048010 DOI: 10.1002/tcr.202200174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Indexed: 12/15/2022]
Abstract
Ribofuranose sugar conformation plays an important role in the structure and dynamics of functional nucleic acids such as siRNAs, AONs, aptamers, miRNAs, etc. To improve their therapeutic potential, several chemical modifications have been introduced into the sugar moiety over the years. The stability of the oligonucleotide duplexes as well as the formation of stable and functional protein-oligonucleotide complexes are dictated by the conformation and dynamics of the sugar moiety. In this review, we systematically categorise various ribofuranose sugar modifications employed in DNAs and RNAs so far. We discuss different stereoelectronic effects imparted by different substituents on the sugar ring and how these effects control sugar puckering. Using this data, it would be possible to predict the precise use of chemical modifications and design novel sugar-modified nucleosides for therapeutic oligonucleotides that can improve their physicochemical properties.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
2
|
Jakhlal J, Denhez C, Coantic-Castex S, Martinez A, Harakat D, Douki T, Guillaume D, Clivio P. SN- and NS-puckered sugar conformers are precursors of the (6-4) photoproduct in thymine dinucleotide. Org Biomol Chem 2022; 20:2300-2307. [PMID: 35253821 DOI: 10.1039/d2ob00044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Some amount of furanose in a southern conformation, possibly in both, but certainly in one of the two adjacent nucleotides of a dipyrimidine site, is necessary for (6-4) photoproduct formation in oligonucleotides. To explore the necessity, role, and most favorable location of each South sugar conformer in the formation of the (6-4) adduct in the thymine dinucleotide TpT, the photochemical behavior of two synthetic analogues, in which the South sugar conformation is prohibited for one of their two sugars, has been examined. Herein, we experimentally demonstrate that the presence of one sugar presenting some amount of South puckering, at any of the extremities, is sufficient to trigger (6-4) adduct formation. Nonetheless, the photochemical behavior of the dinucleotide with a South-puckered conformation at the 5'-end, mimics more closely that of TpT. In addition, using the 5' North 3' South-dilocked dinucleotide, we demonstrate that the flexibility of the South pucker at the 3'-end has little influence on the (6-4) adduct formation.
Collapse
Affiliation(s)
- Jouda Jakhlal
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51100 Reims, France.
| | - Clément Denhez
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51100 Reims, France.
- MaSCA, P3M, UFR des Sciences Exactes et Naturelles, 51100 Reims, France
| | - Stéphanie Coantic-Castex
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51100 Reims, France.
| | - Agathe Martinez
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, 51100 Reims, France
| | - Dominique Harakat
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, 51100 Reims, France
| | - Thierry Douki
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Dominique Guillaume
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51100 Reims, France.
| | - Pascale Clivio
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51100 Reims, France.
| |
Collapse
|
3
|
Thakare P, Vasile F, Vallaro M, Visentin S, Caron G, Licandro E, Cauteruccio S. Acid-base and lipophilic properties of peptide nucleic acid derivatives. J Pharm Anal 2021; 11:638-645. [PMID: 34765277 PMCID: PMC8572665 DOI: 10.1016/j.jpha.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/26/2022] Open
Abstract
The first combined experimental and theoretical study on the ionization and lipophilic properties of peptide nucleic acid (PNA) derivatives, including eleven PNA monomers and two PNA decamers, is described. The acidity constants (pKa) of individual acidic and basic centers of PNA monomers were measured by automated potentiometric pH titrations in water/methanol solution, and these values were found to be in agreement with those obtained by MoKa software. These results indicate that single nucleobases do not change their pKa values when included in PNA monomers and oligomers. In addition, immobilized artificial membrane chromatography was employed to evaluate the lipophilic properties of PNA monomers and oligomers, which showed the PNA derivatives had poor affinity towards membrane phospholipids, and confirmed their scarce cell penetrating ability. Overall, our study not only is of potential relevance to evaluate the pharmacokinetic properties of PNA, but also constitutes a reliable basis to properly modify PNA to obtain mimics with enhanced cell penetration properties. The first study on acid-base and lipophilic properties of peptide nucleic acids (PNA). pKa of acid-base centers of PNA evaluated by potentiometric method and MoKa prediction. NMR experiments provide additional information on the protonation of PNA monomers. Lipophilicity of PNA monomers and oligomers is investigated by IAM chromatography. This study can lay the basis of evaluating the pharmacokinetic properties of PNA.
Collapse
Affiliation(s)
- Pramod Thakare
- Department of Chemistry, University of Milan, 20133, Milan, Italy
| | - Francesca Vasile
- Department of Chemistry, University of Milan, 20133, Milan, Italy
| | - Maura Vallaro
- Molecular Biotechnology & Health Sciences Department, University of Turin, 10135, Turin, Italy
| | - Sonja Visentin
- Molecular Biotechnology & Health Sciences Department, University of Turin, 10135, Turin, Italy
| | - Giulia Caron
- Molecular Biotechnology & Health Sciences Department, University of Turin, 10135, Turin, Italy
| | | | | |
Collapse
|
4
|
Danielsen MB, Christensen NJ, Jørgensen PT, Jensen KJ, Wengel J, Lou C. Polyamine-Functionalized 2'-Amino-LNA in Oligonucleotides: Facile Synthesis of New Monomers and High-Affinity Binding towards ssDNA and dsDNA. Chemistry 2020; 27:1416-1422. [PMID: 33073896 DOI: 10.1002/chem.202004495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/16/2020] [Indexed: 12/15/2022]
Abstract
Attachment of cationic moieties to oligonucleotides (ONs) promises not only to increase the binding affinity of antisense ONs by reducing charge repulsion between the two negatively charged strands of a duplex, but also to augment their in vivo stability against nucleases. In this study, polyamine functionality was introduced into ONs by means of 2'-amino-LNA scaffolds. The resulting ONs exhibited efficient binding towards ssDNA, ssRNA and dsDNA targets, and the 2'-amino-LNA analogue carrying a triaminated linker showed the most pronounced duplex- and triplex-stabilizing effect. Molecular modelling revealed that favourable conformational and electrostatic effects led to salt-bridge formation between positively charged polyamine moieties and the Watson-Hoogsteen groove of the dsDNA targets, resulting in the observed triplex stabilization. All the investigated monomers showed increased resistance against 3'-nucleolytic digestion relative to the non-functionalized controls.
Collapse
Affiliation(s)
- Mathias B Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Niels Johan Christensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Per T Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Knud J Jensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
5
|
Kumar R, Ries A, Wengel J. Synthesis and Excellent Duplex Stability of Oligonucleotides Containing 2'-Amino-LNA Functionalized with Galactose Units. Molecules 2017; 22:molecules22050852. [PMID: 28531137 PMCID: PMC6153924 DOI: 10.3390/molecules22050852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
A convenient method for the preparation of oligonucleotides containing internally-attached galactose and triantennary galactose units has been developed based on click chemistry between 2′-N-alkyne 2′-amino-LNA nucleosides and azido-functionalized galactosyl building blocks. The synthesized oligonucleotides show excellent binding affinity and selectivity towards complementary DNA/RNA strands with an increase in the melting temperature of up to +23.5 °C for triply-modified variants.
Collapse
Affiliation(s)
- Rajesh Kumar
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Annika Ries
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
6
|
Lou C, Samuelsen SV, Christensen NJ, Vester B, Wengel J. Oligonucleotides Containing Aminated 2'-Amino-LNA Nucleotides: Synthesis and Strong Binding to Complementary DNA and RNA. Bioconjug Chem 2017; 28:1214-1220. [PMID: 28332825 DOI: 10.1021/acs.bioconjchem.7b00061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mono- and diaminated 2'-amino-LNA monomers were synthesized and introduced into oligonucleotides. Each modification imparts significant stabilization of nucleic acid duplexes and triplexes, excellent sequence selectivity, and significant nuclease resistance. Molecular modeling suggested that structural stabilization occurs via intrastrand electrostatic attraction between the protonated amino groups of the aminated 2'-amino-LNA monomers and the host oligonucleotide backbone.
Collapse
Affiliation(s)
| | | | - Niels Johan Christensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen , Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | | | | |
Collapse
|
7
|
Mehra V, Lumb I, Anand A, Kumar V. Recent advances in synthetic facets of immensely reactive azetidines. RSC Adv 2017. [DOI: 10.1039/c7ra08884a] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent developments in synthetic strategies towards functionalized azetidines along with their versatility as heterocyclic synthons.
Collapse
Affiliation(s)
- Vishu Mehra
- Department of Chemistry
- Hindu College
- Amritsar-143005
- India
| | - Isha Lumb
- Department of Chemistry
- Baring Union Christian College
- Batala-143505
- India
| | - Amit Anand
- Department of Chemistry
- Khalsa College
- Amritsar-143005
- India
| | - Vipan Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
8
|
Kumar R, Kumar M, Maity J, Prasad AK. Chemo-enzymatic synthesis of 3′-O,4′-C-methylene-linked α-l-arabinonucleosides. RSC Adv 2016. [DOI: 10.1039/c6ra17218k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biocatalytic methodology has been developed for the efficient and environment friendly synthesis of 3′-O,4′-C-methylene-linked α-l-arabinonucleosides.
Collapse
Affiliation(s)
- Rajesh Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Manish Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Jyotirmoy Maity
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
9
|
Lou C, Vester B, Wengel J. Oligonucleotides containing a piperazino-modified 2'-amino-LNA monomer exhibit very high duplex stability and remarkable nuclease resistance. Chem Commun (Camb) 2015; 51:4024-7. [PMID: 25659978 DOI: 10.1039/c5cc00322a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Incorporation of a piperazino-modified 2'-amino-LNA monomer (PipLNA-T) into oligonucleotides conferred very high affinity and base-pairing selectivity towards complementary DNA and RNA strands. Furthermore, one PipLNA-T modification provided a robust nuclease resistance that safeguarded three neighbouring natural nucleosides from 3'-exonucleolytic degradation. These favourable properties render PipLNA-T a promising oligonucleotide modification for various biological applications.
Collapse
Affiliation(s)
- Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | |
Collapse
|
10
|
Astakhova IK, Wengel J. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids. Acc Chem Res 2014; 47:1768-77. [PMID: 24749544 DOI: 10.1021/ar500014g] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONSPECTUS: Incorporation of chemically modified nucleotide scaffolds into nucleic acids to form assemblies rich in function is an innovative area with great promise for nanotechnology and biomedical and material science applications. The intrinsic biorecognition potential of nucleic acids combined with advanced properties of the locked nucleic acids (LNAs) provide opportunities to develop new nanomaterials and devices like sensors, aptamers, and machines. In this Account, we describe recent research on preparation and investigation of the properties of LNA/DNA hybrids containing functionalized 2'-amino-LNA nucleotides. By application of different chemical reactions, modification of 2'-amino-LNA scaffolds can be efficiently performed in high yields and with various tags, postsynthetically or during the automated oligonucleotide synthesis. The choice of a synthetic method for scaffolding along 2'-amino-LNA mainly depends on the chemical nature of the modification, its price, its availability, and applications of the product. One of the most useful applications of the product LNA/DNA scaffolds containing 2'-amino-LNA is to detect complementary DNA and RNA targets. Examples of these applications include sensing of clinically important single-nucleotide polymorphisms (SNPs) and imaging of nucleic acids in vitro, in cell culture, and in vivo. According to our studies, 2'-amino-LNA scaffolds are efficient within diagnostic probes for DNA and RNA targets and as therapeutics, whereas both 2'-amino- and isomeric 2'-α-l-amino-LNA scaffolds have promising properties for stabilization and detection of DNA nanostructures. Attachment of fluorescent groups to the 2'-amino group results in very high fluorescent quantum yields of the duplexes and remarkable sensitivity of the fluorescence signal to target binding. Notably, fluorescent LNA/DNA probes bind nucleic acid targets with advantages of high affinity and specificity. Thus, molecular motion of nanodevices and programmable self-assembly of chemically modified LNA/DNA nanomaterials can be followed by bright fluorescence signaling from the functionalized LNA units. Another appealing aspect of the amino-LNA scaffolds is specific targeting of nucleic acids and proteins for therapeutic applications. 2'-Amino-LNA/DNA conjugates containing peptide and polyaromatic hydrocarbon (PAH) groups are promising in this context as well as for advanced imaging and diagnostic purposes in vivo. For imaging applications, photostability of fluorescence dyes is of crucial importance. Chemically stable and photostable fluorescent PAH molecules attached to 2'-amino functionality of the 2'-amino-LNA are potent for in vitro and in vivo imaging of DNA and RNA targets. We believe that rational evolution of the biopolymers of Nature may solve the major challenges of the future material science and biomedicine. However, this requires strong scientific progress and efficient interdisciplinary research. Examples of this Account demonstrate that among other synthetic biopolymers, synthetic nucleic acids containing functionalized 2'-amino-LNA scaffolds offer great opportunities for material science, diagnostics, and medicine of the future.
Collapse
Affiliation(s)
- I. Kira Astakhova
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jesper Wengel
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
11
|
Vibhute AM, Sureshan KM. Strength from Weakness: Conformational Divergence between Solid and Solution States of Substituted Cyclitols Facilitated by CH···O Hydrogen Bonding. J Org Chem 2014; 79:4892-908. [DOI: 10.1021/jo5004778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amol M. Vibhute
- School
of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Thiruvananthapuram, Kerala 695016, India
| | - Kana M. Sureshan
- School
of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Thiruvananthapuram, Kerala 695016, India
| |
Collapse
|
12
|
Diastereoselective synthesis of 2,3-disubstituted 1-arylazetidines via NaBH4-promoted facile reduction of C-3 functionalized azetidin-2-ones. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Synthesis of optically active 1,2,3-trisubstituted azetidines employing an organocatalytic approach with l-proline. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.01.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhou C, Chattopadhyaya J. Intramolecular free-radical cyclization reactions on pentose sugars for the synthesis of carba-LNA and carba-ENA and the application of their modified oligonucleotides as potential RNA targeted therapeutics. Chem Rev 2012; 112:3808-32. [PMID: 22530946 DOI: 10.1021/cr100306q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chuanzheng Zhou
- Chemical Biology Program, Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Sweden
| | | |
Collapse
|
15
|
Upadhayaya R, Deshpande SG, Li Q, Kardile RA, Sayyed AY, Kshirsagar EK, Salunke RV, Dixit SS, Zhou C, Földesi A, Chattopadhyaya J. Carba-LNA-5MeC/A/G/T modified oligos show nucleobase-specific modulation of 3'-exonuclease activity, thermodynamic stability, RNA selectivity, and RNase H elicitation: synthesis and biochemistry. J Org Chem 2011; 76:4408-31. [PMID: 21500818 DOI: 10.1021/jo200073q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Using the intramolecular 5-exo-5-hexenyl radical as a key cyclization step, we previously reported an unambiguous synthesis of carba-LNA thymine (cLNA-T), which we subsequently incorporated in antisense oligonucleotides (AON) and investigated their biochemical properties [J. Am. Chem. Soc.2007, 129 (26), 8362-8379]. These cLNA-T incorporated oligos showed specific RNA affinity of +3.5-5 °C/modification for AON:RNA heteroduplexes, which is comparable to what is found for those of LNAs (Locked Nucleic Acids). These modified oligos however showed significantly enhanced nuclease stability (ca. 100 times more) in the blood serum compared to those of the LNA modified counterparts without compromising any RNase H recruitment capability. We herein report the synthesis of 5-methylcytosine-1-yl ((Me)C), 9-adeninyl (A), and 9-guaninyl (G) derivatives of cLNA and their oligonucleotides and report their biochemical properties as potential RNA-directed inhibitors. In a series of isosequential carba-LNA modified AONs, we herein show that all the cLNA modified AONs are found to be RNA-selective, but the magnitude of RNA-selectivity of 7'-R-Me-cLNA-G (cLNA-G) (ΔT(m) = 2.9 °C/modification) and intractable isomeric mixtures of 7'-(S/R)-Me-cLNA-T (cLNA-T, ΔT(m) = 2.2 °C/modification) was found to be better than diastereomeric mixtures of 7'-(S/R)-Me-cLNA-(Me)C with trace of cENA-(Me)C (cLNA-(Me)C, ΔT(m) = 1.8 °C/modification) and 7'-R-Me-cLNA-A (cLNA-A, ΔT(m) = 0.9 °C/modification). cLNA-(Me)C modified AONs however exhibited the best nuclease stability, which is 4-, 7-, and 20-fold better, respectively, than cLNA-T, cLNA-A, and cLNA-G modified counterparts, which in turn was more than 100 times stable than that of the native. When the modification sites are appropriately chosen in the AONs, the cLNA-A, -G, and -(Me)C modified sites in the AON:RNA hybrids can be easily recognized by RNase H, and the RNA strand of the hybrid is degraded in a specific manner, which is important for the design of oligos for therapeutic purposes. The cLNA-(Me)C modified AON/RNA, however, has been found to be degraded 4 times faster than cLNA-A and G modified counterparts. By appropriately choosing the carba-LNA modification sites in AON strands, the digestion of AON:RNA can be either totally repressed or be limited to cleavage at specific sites or at a single site only (similar to that of catalytic RNAzyme or DNAzyme). Considering all physico- and biochemical aspects of cLNA modified oligos, the work suggests that the cLNA modified antisense oligos have the potential of being a promising therapeutic candidate due to their (i) higher nucleobase-specific RNA affinity and RNA selectivity, (ii) greatly improved nuclease stability, and (iii) efficient RNase H recruitment capability, which can induce target RNA cleavage in a very specific manner at multiple or at a single site, in a designed manner.
Collapse
Affiliation(s)
- RamShankar Upadhayaya
- Institute of Molecular Medicine, International Biotech Park, Tal Mulshi, Hinjewadi, Pune, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pradhan TK, Krishnan KS, Vasse JL, Szymoniak J. Access to Enantiomerically Enriched cis-2,3-Disubstituted Azetidines via Diastereoselective Hydrozirconation. Org Lett 2011; 13:1793-5. [DOI: 10.1021/ol200323r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tarun K. Pradhan
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 6229) and Université de Reims, 51687 Reims Cedex 2, France
| | - K. Syam Krishnan
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 6229) and Université de Reims, 51687 Reims Cedex 2, France
| | - Jean-Luc Vasse
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 6229) and Université de Reims, 51687 Reims Cedex 2, France
| | - Jan Szymoniak
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 6229) and Université de Reims, 51687 Reims Cedex 2, France
| |
Collapse
|
17
|
Johannsen MW, Crispino L, Wamberg MC, Kalra N, Wengel J. Amino acids attached to 2'-amino-LNA: synthesis and excellent duplex stability. Org Biomol Chem 2010; 9:243-52. [PMID: 21049102 DOI: 10.1039/c0ob00532k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of 2'-amino-LNA (the 2'-amino derivative of locked nucleic acid) has opened up a number of exciting possibilities with respect to modified nucleic acids. While maintaining the excellent duplex stability inferred by LNA-type oligonucleotides, the nitrogen in the 2'-position of 2'-amino-LNA monomers provides an excellent handle for functionalisation. Herein, the synthesis of amino acid functionalised 2'-amino-LNA derivatives is described. Following ON synthesis, a glycyl unit attached to the N2'-position of 2'-amino-LNA monomers was further acylated with a variety of amino acids. On binding to DNA/RNA complements, the modified ONs induce a marked increase in thermal stability, which is particularly apparent in a buffer system with a low salt concentration. The increase in thermal stability is thought to be caused, at least in part, by decreased electrostatic repulsion between the negatively charged phosphate backbones when positively charged amino acid residues are appended. Upon incorporation of more than one 2'-amino-LNA modification, the effects are found to be nearly additive. For comparison, 2'-amino-LNA derivatives modified with uncharged groups have been synthesised and their effect on duplex thermal stability likewise investigated.
Collapse
Affiliation(s)
- Marie W Johannsen
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
18
|
Zhou C, Chattopadhyaya J. Why Carba-LNA-modified oligonucleotides show considerably improved 3'-exonuclease stability compared to that of the LNA modified or the native counterparts: A Michaelis-Menten kinetic analysis. J Org Chem 2010; 75:2341-9. [PMID: 20225808 DOI: 10.1021/jo100170g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, 12 different native or LNA, carba-LNA-modified dinucleoside phosphates were designed as simple chemical models to study how carba-LNA modifications improve the 3'-exonuclease (SVPDE in this study) resistance of internucleotidic phosphate compared to those exhibited by LNA-modified and the native counterparts. Michaelis-Menten kinetic studies for dimers 3 - 7, in which the LNA or carba-LNA modifications are located at the 5'-end, showed that (i) increased 3'-exonuclease resistance of (5')[LNA-T](p)T (3) compared to the native (5')T(p)T (1) was mainly attributed to steric hindrance imposed by the LNA modification that retards the nuclease binding (K(M)) and (ii) digestion of (5')[carba-LNA-dT](p)T (4) and (5')[LNA-T](p)T (3), however, exhibit similar K(M)s, whereas the former shows a 100x decrease in K(cat) and is hence more stable than the latter. By studying the correlation between log k(cat) and pK(a) of the departing 3'(or 6')-OHs for 3-7, we found the pK(a) of 3'-OH of carba-LNA-T was 1.4 pK(a) units higher than that of LNA-T, and this relatively less acidic character of the 3'-OH in the former leads to the 100x decrease in the catalytic efficiency for the digestion of (5')[carba-LNA-T](p)T (4). In contrast, Michaelis-Menten kinetic studies for dimers 9-12, with the LNA or carba-LNA modifications at the 3'-end, showed that the digestion of (5')T(p)[LNA-T] (9) exhibited similar K(M) but k(cat) decreased around 40 times compared to that of the native (5')T(p)T (1). Similar k(cat) values have been observed for digestion of (5')T(p)[carba-LNA-T] (10) and (5')T(p)[LNA-T] (9). The higher stability of carba-LNA modified dimer 10 compared with LNA modified dimer 9 comes solely from the increased K(M).
Collapse
Affiliation(s)
- Chuanzheng Zhou
- Bioorganic Chemistry Program, Department of Cell and Molecular Biology, Box 581, Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
19
|
Ghosh R, Maity JK, Achari B, Mandal SB. Locked Nucleosides Based on Oxabicyclo[3.2.1]octane and Oxabicyclo[2.2.1]heptane Skeletons. J Org Chem 2010; 75:2419-22. [DOI: 10.1021/jo100194z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramprasad Ghosh
- Department of Chemistry, Indian Institute of Chemical Biology (a unit of CSIR), 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Joy Krishna Maity
- Department of Chemistry, Indian Institute of Chemical Biology (a unit of CSIR), 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Basudeb Achari
- Department of Chemistry, Indian Institute of Chemical Biology (a unit of CSIR), 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Sukhendu B Mandal
- Department of Chemistry, Indian Institute of Chemical Biology (a unit of CSIR), 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
20
|
Kumar S, Hansen MH, Albaek N, Steffansen SI, Petersen M, Nielsen P. Synthesis of functionalized carbocyclic locked nucleic acid analogues by ring-closing diene and enyne metathesis and their influence on nucleic acid stability and structure. J Org Chem 2009; 74:6756-69. [PMID: 19711996 DOI: 10.1021/jo9013657] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of bicylic 2'-deoxynucleosides that are locked in the N-type conformation due to three-carbon linkages between the 2'- and 4'-positions have been prepared by ring-closing diene or enyne metathesis. The alkene or 1,3-diene hereby introduced in the bicyclic system is further derivatized, the latter showing the expected potential for Diels-Alder reactions. Four derivatives that are saturated or unsaturated as well as functionalized at the 2'-4'-linkage are incorporated into oligodeoxynucleotides, and the affinity of these for complementary RNA and DNA is studied. Substantially increased affinity for complementary RNA is observed, especially with additional hydroxyl groups attached to the bicyclic system. On the other hand, decreased affinity for complementary single-stranded DNA is obtained, whereas only a very small influence on a triplex-forming oligonucleotide sequence is found. Hence, a strong RNA-selective nucleic acid recognition is seen, and it can be concluded that the 2'-oxygen atom is less important for the formation of DNA:RNA duplexes than for the formation of DNA:DNA duplexes. However, the lack of a 2'-oxygen in the duplex formation can be partly compensated by other hydrophilic moieties around the 2'-4'-linkages indicating structural water binding to be of significant importance.
Collapse
Affiliation(s)
- Surender Kumar
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
21
|
Zhou C, Plashkevych O, Chattopadhyaya J. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides. J Org Chem 2009; 74:3248-65. [PMID: 19348480 DOI: 10.1021/jo900391n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two diastereomerically pure carba-LNA dioxaphosphorinane nucleotides [(S(p))- or (R(p))-D(2)-CNA], simultaneously conformationally locked at the sugar and the phosphate backbone, have been designed and synthesized. Structural studies by NMR as well as by ab initio calculations showed that in (S(p))- and (R(p))-D(2)-CNA the following occur: (i) the sugar is locked in extreme North-type conformation with P = 11 degrees and Phi(m) = 54 degrees ; (ii) the six-membered 1,3,2-dioxaphosphorinane ring adopts a half-chair conformation; (iii) the fixed phosphate backbone delta, epsilon, and zeta torsions were found to be delta [gauch(+)], epsilon (cis), zeta [anticlinal(+)] for (S(p))-D(2)-CNA, and delta [gauche(+)], epsilon (cis), zeta [anticlinal(-)] for (R(p))-D(2)-CNA. It has been found that F(-) ion can catalyze the isomerization of pure (S(p))-D(2)-CNA or (R(p))-D(2)-CNA to give an equilibrium mixture (K = 1.94). It turned out that at equilibrium concentration the (S(p))-D(2)-CNA isomer is preferred over the (R(p))-D(2)-CNA isomer by 0.39 kcal/mol. The chemical reactivity of the six-membered dioxaphosphorinane ring in D(2)-CNA was found to be dependent on the internucleotidic phosphate stereochemistry. Thus, both (S(p))- and (R(p))-D(2)-CNA dimers (17a and 17b) were very labile toward nucleophile attack in concentrated aqueous ammonia [t(1/2) = 12 and 6 min, respectively] to give carba-LNA-6',5'-phosphodiester (21) approximately 70-90%, carba-LNA-3',5'-phosphodiester (22) approximately 10%, and carba-LNA-6',3'-phosphodiester (23) <10%. In contrast, the (S(p))-D(2)-CNA was about 2 times more stable than (R(p))-D(2)-CNA under hydrazine hydrate/pyridine/AcOH (pH = 5.6) [t(1/2) = 178 and 99 h, respectively], which was exploited in the deprotection of pure (S(p))-D(2)-CNA-incorporated antisense oligodeoxynucleotides (AON). Thus, after removal of the solid supports from the (S(p))-D(2)-CNA-modified AONs by BDU/MeCN, they were treated with hydrazine hydrate in pyridine/AcOH to give pure AONs in 35-40% yield, which was unequivocally characterized by MALDI-TOF to show that they have an intact six-membered dioxaphosphorinane ring. The effect of pure (S(p))-D(2)-CNA modification in the AONs was estimated by complexing to the complementary RNA and DNA strands by the thermal denaturation studies. This showed that this cyclic phosphotriester modification destabilizes the AON/DNA and AON/RNA duplex by about -6 to -9 degrees C/modification. Treatment of (S(p))-D(2)-CNA-modified AON with concentrated aqueous ammonia gave carba-LNA-6',5'-phosphodiester modified AON ( approximately 80%) plus a small amount of carba-LNA-3',5'-phosphodiester-modified AON ( approximately 20%). It is noteworthy that Carba-LNA-3',5'-phosphodiester modification stabilized the AON/RNA duplex by +4 degrees C/modification (J. Org. Chem. 2009, 74, 118), whereas carba-LNA-6', 5'-phosphodiester modification destabilizes both AON/RNA and AON/DNA significantly (by -10 to -19 degrees C/modification), which, as shown in our comparative CD studies, that the cyclic phosphotriester modified AONs as well as carba-LNA-6',5'-phosphodiester modified AONs are much more weakly stacked than carba-LNA-3',5'-phosphodiester-modified AONs.
Collapse
Affiliation(s)
- Chuanzheng Zhou
- Department of Bioorganic Chemistry, Box 581, ICM, Biomedical Center, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
22
|
Mitsuoka Y, Kodama T, Ohnishi R, Hari Y, Imanishi T, Obika S. A bridged nucleic acid, 2',4'-BNA COC: synthesis of fully modified oligonucleotides bearing thymine, 5-methylcytosine, adenine and guanine 2',4'-BNA COC monomers and RNA-selective nucleic-acid recognition. Nucleic Acids Res 2009; 37:1225-38. [PMID: 19136459 PMCID: PMC2651773 DOI: 10.1093/nar/gkn1062] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 11/13/2022] Open
Abstract
Recently, we synthesized pyrimidine derivatives of the 2'-O,4'-C-methylenoxymethylene-bridged nucleic-acid (2',4'-BNA(COC)) monomer, the sugar conformation of which is restricted in N-type conformation by a seven-membered bridged structure. Oligonucleotides (BNA(COC)) containing this monomer show high affinity with complementary single-stranded RNA and significant resistance to nuclease degradation. Here, BNA(COC) consisting of 2',4'-BNA(COC) monomers bearing all four bases, namely thymine, 5-methylcytosine, adenine and guanine was efficiently synthesized and properties of duplexes containing the 2',4'-BNA(COC) monomers were investigated by UV melting experiments and circular dichroism (CD) spectroscopy. The UV melting curve analyses showed that the BNA(COC)/BNA(COC) duplex possessed excellent thermal stability and that the BNA(COC) increased thermal stability with a complementary RNA strand. On the other hand, BNA(COC)/DNA heteroduplexes showed almost the same thermal stability as RNA/DNA heteroduplexes. Furthermore, mismatched sequence studies showed that BNA(COC) generally improved the sequence selectivity with Watson-Crick base-pairing compared to the corresponding natural DNA and RNA. A CD spectroscopic analysis indicated that the BNA(COC) formed duplexes with complementary DNA and RNA in a manner similar to natural RNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Kumar TS, Madsen AS, Østergaard ME, Sau SP, Wengel J, Hrdlicka PJ. Functionalized 2'-amino-alpha-L-LNA: directed positioning of intercalators for DNA targeting. J Org Chem 2009; 74:1070-81. [PMID: 19108636 PMCID: PMC2853939 DOI: 10.1021/jo802037v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chemically modified oligonucleotides are increasingly applied in nucleic acid based therapeutics and diagnostics. LNA (locked nucleic acid) and its diastereomer alpha-L-LNA are two promising examples thereof that exhibit increased thermal and enzymatic stability. Herein, the synthesis, biophysical characterization, and molecular modeling of N2'-functionalized 2'-amino-alpha-L-LNA is described. Chemoselective N2'-functionalization of protected amino alcohol 1 followed by phosphitylation afforded a structurally varied set of target phosphoramidites, which were incorporated into oligodeoxyribonucleotides. Incorporation of pyrene-functionalized building blocks such as 2'-N-(pyren-1-yl)carbonyl-2'-amino-alpha-L-LNA (monomer X) led to extraordinary increases in thermal affinity of up to +19.5 degrees C per modification against DNA targets in particular. In contrast, incorporation of building blocks with small nonaromatic N2'-functionalities such as 2'-N-acetyl-2'-amino-alpha-L-LNA (monomer V) had detrimental effects on thermal affinity toward DNA/RNA complements with decreases of as much as -16.5 degrees C per modification. Extensive thermal DNA selectivity, favorable entropic contributions upon duplex formation, hybridization-induced bathochromic shifts of pyrene absorption maxima and increases in circular dichroism signal intensity, and molecular modeling studies suggest that pyrene-functionalized 2'-amino-alpha-L-LNA monomers W-Y having short linkers between the bicyclic skeleton and the pyrene moiety allow high-affinity hybridization with DNA complements and precise positioning of intercalators in nucleic acid duplexes. This rigorous positional control has been utilized for the development of probes for emerging therapeutic and diagnostic applications focusing on DNA targeting.
Collapse
Affiliation(s)
- T Santhosh Kumar
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
Andreu I, Delgado J, Espinós A, Pérez-Ruiz R, Jiménez MC, Miranda MA. Cycloreversion of Azetidines via Oxidative Electron Transfer. Steady-State and Time-Resolved Studies. Org Lett 2008; 10:5207-10. [DOI: 10.1021/ol802181u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Julio Delgado
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Amparo Espinós
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Raul Pérez-Ruiz
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
| | - M. Consuelo Jiménez
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Miguel A. Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
| |
Collapse
|
25
|
Honcharenko D, Zhou C, Chattopadhyaya J. Modulation of pyrene fluorescence in DNA probes depends upon the nature of the conformationally restricted nucleotide. J Org Chem 2008; 73:2829-42. [PMID: 18331060 DOI: 10.1021/jo702747w] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The DNA probes (ODNs) containing a 2'-N-(pyren-1-yl)-group on the conformationally locked nucleosides [2'-N-(pyren-1-yl)carbonyl-azetidine thymidine, Aze-pyr (X), and 2'-N-(pyren-1-yl)carbonyl-aza-ENA thymidine, Aza-ENA-pyr (Y)], show that they can bind to complementary RNA more strongly than to the DNA. The Aze-pyr (X) containing ODNs with the complementary DNA and RNA duplexes showed an increase in the fluorescence intensity (measured at lambda em approximately 376 nm) depending upon the nearest neighbor at the 3'-end to X [dA ( approximately 12-20-fold) > dG ( approximately 9-20-fold) > dT ( approximately 2.5-20-fold) > dC ( approximately 6-13-fold)]. They give high fluorescence quantum yields (Phi F = 0.13-0.89) as compared to those of the single-stranded ODNs. The Aza-ENA-pyr (Y)-modified ODNs, on the other hand, showed an enhancement of the fluorescence intensity only with the complementary DNA (1.4-3.9-fold, Phi F = 0.16-0.47); a very small increase in fluorescence is also observed with the complementary RNA (1.1-1.7-fold, Phi F = 0.17-0.22), depending both upon the site of the Y modification introduced as well as on the chemical nature of the nucleobase adjacent to the modification site into the ODN. The fluorescence properties, thermal denaturation experiments, absorption, and circular dichroism (CD) studies with the X- and Y-modified ODNs in the form of matched homo- and heteroduplexes consistently suggested (i) that the orientation of the pyrene moiety is outside the helix of the nucleic acid duplexes containing a dT-d/rA base pair at the 3'-end of the modification site for both X and Y types of modifications, and (ii) that the microenvironment around the pyrene moiety in the ODN/DNA and ODN/RNA duplexes is dictated by the chemical nature of the conformational constraint in the sugar moiety, as well as by the nature of neighboring nucleobases. The pyrene fluorescence emission in both X and Y types of the conformationally restricted nucleotides is found to be sensitive to a mismatched base present in the target RNA: (i) The X-modified ODN showed a decrease ( approximately 37-fold) in the fluorescence intensity (measured at lambda em approximately 376 nm) upon duplex formation with RNA containing a G nucleobase mismatch (dT-rG pair instead of dT-rA) opposite to the modification site. (ii) In contrast, the Y-modified ODN in the heteroduplex resulted in a approximately 3-fold increase in the fluorescence intensity upon dT-rG mismatch, instead of matched dT-rA pair, in the RNA strand. Our data corroborate that the pyrene moiety is intercalated in the X-modified mismatched ODN/RNA (G mismatch) heteroduplex as compared to that of the Y-modified ODN/RNA (G mismatch) heteroduplex, in which it is located outside the helix.
Collapse
Affiliation(s)
- Dmytro Honcharenko
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden
| | | | | |
Collapse
|
26
|
Zhou C, Plashkevych O, Chattopadhyaya J. Unusual radical 6-endo cyclization to carbocyclic-ENA and elucidation of its solution conformation by 600 MHz NMR and ab initio calculations. Org Biomol Chem 2008; 6:4627-33. [DOI: 10.1039/b813870b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|