1
|
Chakrabarty S, Takacs JM. Phosphonate-Directed Catalytic Asymmetric Hydroboration: Delivery of Boron to the More Substituted Carbon, Leading to Chiral Tertiary Benzylic Boronic Esters. ACS Catal 2018; 8:10530-10536. [PMID: 31134137 DOI: 10.1021/acscatal.8b03591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phosphonate-directed catalytic asymmetric hydroboration (CAHB) of β-aryl/heteroaryl methylidenes and trisubstituted alkenes by pinacolborane enables facile access to functionalized, chiral tertiary benzylic boronic esters. Hydroboration is catalyzed by a chiral rhodium catalyst prepared in situ from a Rh(I)-precursor in combination with a simple TADDOL-derived chiral cyclic monophosphite in a 1:1 ratio. The regio- and stereochemistry arises from the combined effects of the relative disposition of the directing group to the alkene, the alkene substitution pattern, and the necessity of an aryl substituent attached to the alkene. A range of aryl and heteroaryl substituents can be accommodated, and for several chiral substrates, the reactions are efficiently catalyst-controlled enabling the choice of diastereomeric products as desired. Stereospecific transformations of the chiral boronic ester afford chiral phosphonates bearing a quaternary carbon stereocenter. The synthetic utility of the products is further demonstrated by α-oxidation of the phosphonate leading to hydroxy- and oxo-phosphonates; the latter readily undergo elimination/substitution reactions to unmask the phosphonate functionality with the formation of aldehydes, alcohols, esters, amides, acids and ketones.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Department of Chemistry and Center for Integrated Biomolecular Communication, University of Nebraska—Lincoln, Lincoln, Nebraska 68588−0304, United States
| | - James M. Takacs
- Department of Chemistry and Center for Integrated Biomolecular Communication, University of Nebraska—Lincoln, Lincoln, Nebraska 68588−0304, United States
| |
Collapse
|
2
|
|
3
|
Identification and characterization of a thermostable and cobalt-dependent amidase from Burkholderia phytofirmans ZJB-15079 for efficient synthesis of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid. Appl Microbiol Biotechnol 2016; 101:1953-1964. [DOI: 10.1007/s00253-016-7921-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
4
|
Wu ZM, Zheng RC, Zheng YG. Exploitation and characterization of three versatile amidase super family members from Delftia tsuruhatensis ZJB-05174. Enzyme Microb Technol 2016; 86:93-102. [DOI: 10.1016/j.enzmictec.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
5
|
Abstract
The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by other methods. Nitrile substrates are readily available, and the mild reaction conditions are specific toward cyano and amido functional groups without interfering with other reactive functional groups. I anticipate that further advances in this field will lead to new and engineered nitrile-hydrolyzing enzymes or catalytic systems with improved activity and altered selectivity. These advances will broaden the scope of these transformations and their applications in organic synthesis.
Collapse
Affiliation(s)
- Mei-Xiang Wang
- MOE Key
Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
6
|
Pasquarelli F, Spera A, Cantarella L, Cantarella M. Biodegradation of bromoxynil using the cascade enzymatic system nitrile hydratase/amidase from Microbacterium imperiale CBS 498-74. Comparison between free enzymes and resting cells. RSC Adv 2015. [DOI: 10.1039/c5ra01438g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work investigates the biodegradation of bromoxynil to the corresponding acid to reduce its acute toxicity.
Collapse
Affiliation(s)
- Fabrizia Pasquarelli
- Department of Industrial and Information Engineering and Economics
- University of L'Aquila
- 67100 L'Aquila
- Italy
| | - Agata Spera
- Department of Industrial and Information Engineering and Economics
- University of L'Aquila
- 67100 L'Aquila
- Italy
| | - Laura Cantarella
- Department of Civil and Mechanical Engineering
- University of Cassino and Southern Lazio
- 03043 Cassino
- Italy
| | - Maria Cantarella
- Department of Industrial and Information Engineering and Economics
- University of L'Aquila
- 67100 L'Aquila
- Italy
| |
Collapse
|
7
|
Ao YF, Wang DX, Zhao L, Wang MX. Biotransformations of Racemic 2,3-Allenenitriles in Biphasic Systems: Synthesis and Transformations of Enantioenriched Axially Chiral 2,3-Allenoic Acids and Their Derivatives. J Org Chem 2014; 79:3103-10. [DOI: 10.1021/jo500228z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu-Fei Ao
- Beijing National
Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular
Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - De-Xian Wang
- Beijing National
Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular
Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Zhao
- Key Laboratory
of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry
of Education, Tsinghua University, Beijing 100084, China
| | - Mei-Xiang Wang
- Key Laboratory
of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry
of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Cantarella L, Gallifuoco A, Spera A, Cantarella M. Nitrile, amide and temperature effects on amidase-kinetics during acrylonitrile bioconversion by nitrile-hydratase/amidase in situ cascade system. BIORESOURCE TECHNOLOGY 2013; 142:320-328. [PMID: 23747443 DOI: 10.1016/j.biortech.2013.04.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
In this study the amidase kinetics of an in situ NHase/AMase cascade system was explored as a function of operational parameters such as temperature, substrate concentration and product formation. The results indicated that controlling amidase inactivation, during acrylonitrile bioconversion, makes it possible to recover the intermediate product of the two-step reaction in almost a pure form, without using purified enzyme. It has been demonstrated, in long-term experiments performed in continuous stirred UF-membrane bioreactors, that amidase is kinetically controlled by its proper substrate, depending on the structure, and by acrylonitrile. Using acrylamide, AMase-stability is temperature dependent (5°C, kd=0.008 h(-1); 30°C kd=0.023 h(-1)). Using benzamide, amidase is thermally stable up to 50°C and no substrate inhibition/inactivation occurs. With acrylonitrile, AMase-activity and -stability remain unchanged at concentrations <200 mM but at 200 mM, 35°C, after 70 h process, 90% irreversible inactivation occurs as no AMase-activity on benzamide revives.
Collapse
Affiliation(s)
- Laura Cantarella
- Department of Civil and Mechanical Engineering, University of Cassino and of Lazio Meridionale, Via Di Biasio 43, 03043 Cassino (FR), Italy
| | | | | | | |
Collapse
|
9
|
Zhang LB, Wang DX, Zhao L, Wang MX. Synthesis and Application of Enantioenriched Functionalized α-Tetrasubstituted α-Amino Acids from Biocatalytic Desymmetrization of Prochiral α-Aminomalonamides. J Org Chem 2012; 77:5584-91. [DOI: 10.1021/jo3007122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Li-Bing Zhang
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Molecular Recognition
and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - De-Xian Wang
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Molecular Recognition
and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Chen P, Gao M, Wang DX, Zhao L, Wang MX. Enantioselective Biotransformations of Racemic and Meso Pyrrolidine-2,5-dicarboxamides and Their Application in Organic Synthesis. J Org Chem 2012; 77:4063-72. [DOI: 10.1021/jo300412j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Chen
- Beijing National Laboratory for Molecular
Sciences, CAS Key Laboratory of Molecular Recognition and Function,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Gao
- Beijing National Laboratory for Molecular
Sciences, CAS Key Laboratory of Molecular Recognition and Function,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular
Sciences, CAS Key Laboratory of Molecular Recognition and Function,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Zhao
- MOST Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mei-Xiang Wang
- MOST Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Microbial whole cell-catalyzed desymmetrization of prochiral malonamides: practical synthesis of enantioenriched functionalized carbamoylacetates and their application in the preparation of unusual α-amino acids. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
|
13
|
|
14
|
Leng DH, Wang DX, Huang ZT, Wang MX. Highly efficient and enantioselective biotransformations of β-lactam carbonitriles and carboxamides and their synthetic applications. Org Biomol Chem 2010; 8:4736-43. [PMID: 20721414 DOI: 10.1039/c0ob00198h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalyzed by Rhodococcus erythropolis AJ270, a nitrile hydratase and amidase containing microbial whole cell catalyst, a number of racemic 1-arylmethyl- and 1-allyl-4-oxoazetidine-2-carbonitriles and carboxamides underwent efficient transformations under very mild conditions to produce enantiopure functionalized S-amide and R-acid products in excellent yields. While the nitrile hydratase showed good enzyme activity but virtually no enantioselectivity, the amidase displayed high R-enantioselectivity against almost all amide substrates tested. The synthetic applications of the resulting functionalized chiral β-lactam derivatives were demonstrated by the facile preparation of β-lactam-fused heterocyclic compounds.
Collapse
Affiliation(s)
- Dong-Hui Leng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | | | | |
Collapse
|
15
|
Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY, Imanaka T. Efficient production of (R)-(−)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
PIDA-mediated synthesis of oxazoles through oxidative cycloisomerization of propargylamides. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.02.096] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Ohtaki A, Murata K, Sato Y, Noguchi K, Miyatake H, Dohmae N, Yamada K, Yohda M, Odaka M. Structure and characterization of amidase from Rhodococcus sp. N-771: Insight into the molecular mechanism of substrate recognition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:184-92. [DOI: 10.1016/j.bbapap.2009.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/27/2009] [Accepted: 10/01/2009] [Indexed: 11/26/2022]
|
18
|
Yang L, Wang DX, Zheng QY, Pan J, Huang ZT, Wang MX. Highly efficient and concise synthesis of both antipodes of SB204900, clausenamide, neoclausenamide, homoclausenamide and ζ-clausenamide. Implication of biosynthetic pathways of clausena alkaloids. Org Biomol Chem 2009; 7:2628-34. [DOI: 10.1039/b901965k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Feng YS, Chen PC, Wen FS, Hsiao WY, Lee CM. Nitrile hydratase from Mesorhizobium sp. F28 and its potential for nitrile biotransformation. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
André V, Robin S, Rousseau G. Preparation of halo enol phostones by reaction of acetylenic phosphonate monoesters with (bis-collidine)halo hexafluorophosphate. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Ma DY, Wang DX, Pan J, Huang ZT, Wang MX. Nitrile Biotransformations for the Synthesis of Highly Enantioenriched β-Hydroxy and β-Amino Acid and Amide Derivatives: A General and Simple but Powerful and Efficient Benzyl Protection Strategy To Increase Enantioselectivity of the Amidase. J Org Chem 2008; 73:4087-91. [DOI: 10.1021/jo800074k] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Da-You Ma
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | - Jie Pan
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | - Zhi-Tang Huang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | - Mei-Xiang Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
22
|
Ma DY, Wang DX, Pan J, Huang ZT, Wang MX. Nitrile biotransformations for the synthesis of enantiomerically enriched β2-, and β3-hydroxy and -alkoxy acids and amides, a dramatic O-substituent effect of the substrates on enantioselectivity. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|