1
|
Colin-Molina A, Nematiaram T, Cheung AMH, Troisi A, Frisbie CD. The Conductance Isotope Effect in Oligophenylene Imine Molecular Wires Depends on the Number and Spacing of 13C-Labeled Phenylene Rings. ACS NANO 2024; 18:7444-7454. [PMID: 38411123 DOI: 10.1021/acsnano.3c11327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We report a strong and structurally sensitive 13C intramolecular conductance isotope effect (CIE) for oligophenyleneimine (OPI) molecular wires connected to Au electrodes. Wires were built from Au surfaces beginning with the formation of 4-aminothiophenol self-assembled monolayers (SAMs) followed by subsequent condensation reactions with 13C-labeled terephthalaldehyde and phenylenediamine; in these monomers the phenylene rings were either completely 13C-labeled or the naturally abundant 12C isotopologues. Alternatively, perdeuterated versions of terephthalaldehyde and phenylenediamine were employed to make 2H(D)-labeled OPI wires. For 13C-isotopologues of short OPI wires (<4 nm) in length where the charge transport mechanism is tunneling, there was no measurable effect, i.e., 13C CIE ≈ 1, where CIE is defined as the ratio of labeled and unlabeled wire resistances, i.e., CIE = Rheavy/Rlight. However, for long OPI wires >4 nm, in which the transport mechanism is polaron hopping, a strong 13C CIE = 4-5 was observed. A much weaker inverse CIE < 1 was evident for the longest D-labeled wires. Importantly, the magnitude of the 13C CIE was sensitive to the number and spacing of 13C-labeled rings, i.e., the CIE was structurally sensitive. The structural sensitivity is intriguing because it may be employed to understand polaron hopping mechanisms and charge localization/delocalization in molecular wires. A preliminary theoretical analysis explored several possible explanations for the CIE, but so far a fully satisfactory explanation has not been identified. Nevertheless, the latest results unambiguously demonstrate structural sensitivity of the heavy atom CIE, offering directions for further utilization of this interesting effect.
Collapse
Affiliation(s)
- Abraham Colin-Molina
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tahereh Nematiaram
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G11XL, United Kingdom
| | - Andy Man Hong Cheung
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L697ZD, United Kingdom
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Taniguchi M, Lindsey JS. Synthetic Chlorins, Possible Surrogates for Chlorophylls, Prepared by Derivatization of Porphyrins. Chem Rev 2016; 117:344-535. [DOI: 10.1021/acs.chemrev.5b00696] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
3
|
Lindsey JS. De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. Chem Rev 2015; 115:6534-620. [PMID: 26068531 DOI: 10.1021/acs.chemrev.5b00065] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
4
|
Panda MK, Ladomenou K, Coutsolelos AG. Porphyrins in bio-inspired transformations: Light-harvesting to solar cell. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.04.041] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Hondros CJ, Aravindu K, Diers JR, Holten D, Lindsey JS, Bocian DF. Effects of Linker Torsional Constraints on the Rate of Ground-State Hole Transfer in Porphyrin Dyads. Inorg Chem 2012; 51:11076-86. [DOI: 10.1021/ic301613k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christopher J. Hondros
- Department of Chemistry, University of California Riverside, Riverside, California
92521-0403, United States
| | - Kunche Aravindu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695-8204, United States
| | - James R. Diers
- Department of Chemistry, University of California Riverside, Riverside, California
92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889,
United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695-8204, United States
| | - David F. Bocian
- Department of Chemistry, University of California Riverside, Riverside, California
92521-0403, United States
| |
Collapse
|
6
|
Tsuchiya T, Jakubikova E. Role of Noncoplanar Conformation in Facilitating Ground State Hole Transfer in Oxidized Porphyrin Dyads. J Phys Chem A 2012; 116:10107-14. [DOI: 10.1021/jp307285z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Tsuchiya
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|
7
|
Lindsey JS, Thamyongkit P, Taniguchi M, Bocian DF. Encoding isotopic watermarks in molecular electronic materials as an anti-counterfeiting strategy: Application to porphyrins for information storage. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424611003458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An approach for information storage employs tetrapyrrole macrocycles as charge-storage elements attached to a (semi)conductor in hybrid chips. Anti-counterfeiting measures must cohere with the tiny amounts of such electroactive material and strict constraints on composition in chips; accordingly, the incorporation of typical anti-counterfeiting taggants or microcarriers is precluded. The provenance of the tetrapyrroles can be established through the use of isotopic substitution integral to the macrocycle. The isotopic substitution can be achieved by rational site-specific incorporation or by combinatorial procedures. The formation of a mixture of such macrocycles with various isotopic composition (isotopically unmodified, isotopologues, isotopomers) provides the molecular equivalent of an indelible printed watermark. Resonance Raman spectroscopic examination can reveal the watermark, but not the underlying molecular and isotopic composition; imaging mass spectrometry can reveal the presence of isotopologues but cannot discriminate among isotopomers. Hence, deciphering the code that encrypts the watermark in an attempt at forgery is expected to be prohibitive. A brief overview is provided of strategies for incorporating isotopes in meso-substituted tetrapyrrole macrocycles.
Collapse
Affiliation(s)
- Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Patchanita Thamyongkit
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| |
Collapse
|
8
|
Liu Y, Lin H, Li J, Dy JT, Tamaki K, Nakazaki J, Nakayama D, Nishiyama C, Uchida S, Kubo T, Segawa H. Ethynyl-linked push–pull porphyrin hetero-dimers for near-IR dye-sensitized solar cells: photovoltaic performances versus excited-state dynamics. Phys Chem Chem Phys 2012; 14:16703-12. [DOI: 10.1039/c2cp43165c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Le Pleux L, Pellegrin Y, Blart E, Odobel F, Harriman A. Long-Lived, Charge-Shift States in Heterometallic, Porphyrin-Based Dendrimers Formed via Click Chemistry. J Phys Chem A 2011; 115:5069-80. [DOI: 10.1021/jp2012182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Loïc Le Pleux
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS No. 6230, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Yann Pellegrin
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS No. 6230, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Errol Blart
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS No. 6230, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Fabrice Odobel
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS No. 6230, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
10
|
Aakeröy CB, Sinha AS, Chopade PD, Desper J. Halogen bonding or close packing? Examining the structural landscape in a series of Cu(ii)-acac complexes. Dalton Trans 2011; 40:12160-8. [DOI: 10.1039/c1dt10911a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Nieves-Bernier EJ, Diers JR, Taniguchi M, Holten D, Bocian DF, Lindsey JS. Probing the rate of hole transfer in oxidized synthetic chlorin dyads via site-specific (13)C-labeling. J Org Chem 2010; 75:3193-202. [PMID: 20429592 DOI: 10.1021/jo100527h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding electronic communication among interacting constituents of multicomponent molecular architectures is important for rational design in diverse fields including artificial photosynthesis and molecular electronics. One strategy for examining ground-state hole/electron transfer in an oxidized tetrapyrrolic array relies on analysis of the hyperfine interactions observed in the EPR spectrum of the pi-cation radical. This strategy has been previously employed to probe the hole/electron-transfer process in oxidized multiporphyrin arrays of normal isotopic composition, wherein (1)H and (14)N serve as the hyperfine "clocks", and in arrays containing site-specific (13)C-labels, which serve as additional hyperfine clocks. Herein, the hyperfine-clock strategy is applied to dyads of dihydroporphyrins (chlorins). Chlorins are more closely related structurally to chlorophylls than are porphyrins. A de novo synthetic strategy has been employed to introduce a (13)C label at the 19-position of the chlorin macrocycle, which is a site of large electron/hole density and is accessible synthetically beginning with (13)C-nitromethane. The resulting singly (13)C-labeled chlorin was coupled with an unlabeled chlorin to give a dyad wherein a diphenylethyne linker spans the 10-positions of the two zinc chlorins. EPR studies of the monocations of both the natural abundance and (13)C-labeled zinc chlorin dyads and benchmark zinc chlorin monomers reveal that the time scale for hole/electron transfer is in the 4-7 ns range, which is 5-10-fold longer than that in analogous porphyrin arrays. The slower hole/electron transfer rate observed for the chlorin versus porphyrin dyads is attributed to the fact that the HOMO is a(1u)-like for the chlorins versus a(2u)-like for the porphyrins; the a(1u)-like orbital exhibits little (or no) electron/hole density at the site of linker attachment whereas the a(2u)-like orbital exhibits significant electron/hole density at this site. Collectively, the studies of the chlorin and porphyrin dyads provide insights into the structural features that influence the hole/electron-transfer process.
Collapse
Affiliation(s)
- Elías J Nieves-Bernier
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | | | | | | | | | | |
Collapse
|
12
|
Diers JR, Taniguchi M, Holten D, Lindsey JS, Bocian DF. Probing the Rate of Hole Transfer in Oxidized Porphyrin Dyads Using Thallium Hyperfine Clocks. J Am Chem Soc 2010; 132:12121-32. [DOI: 10.1021/ja105082d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- James R. Diers
- Departments of Chemistry, University of California, Riverside, California 92521-0403, North Carolina State University, Raleigh, North Carolina 27695-8204, and Washington University, St. Louis, Missouri 63130-4889
| | - Masahiko Taniguchi
- Departments of Chemistry, University of California, Riverside, California 92521-0403, North Carolina State University, Raleigh, North Carolina 27695-8204, and Washington University, St. Louis, Missouri 63130-4889
| | - Dewey Holten
- Departments of Chemistry, University of California, Riverside, California 92521-0403, North Carolina State University, Raleigh, North Carolina 27695-8204, and Washington University, St. Louis, Missouri 63130-4889
| | - Jonathan S. Lindsey
- Departments of Chemistry, University of California, Riverside, California 92521-0403, North Carolina State University, Raleigh, North Carolina 27695-8204, and Washington University, St. Louis, Missouri 63130-4889
| | - David F. Bocian
- Departments of Chemistry, University of California, Riverside, California 92521-0403, North Carolina State University, Raleigh, North Carolina 27695-8204, and Washington University, St. Louis, Missouri 63130-4889
| |
Collapse
|
13
|
Song HE, Taniguchi M, Diers JR, Kirmaier C, Bocian DF, Lindsey JS, Holten D. Linker Dependence of Energy and Hole Transfer in Neutral and Oxidized Multiporphyrin Arrays. J Phys Chem B 2009; 113:16483-93. [DOI: 10.1021/jp9072558] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hee-eun Song
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - Masahiko Taniguchi
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - James R. Diers
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - David F. Bocian
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - Jonathan S. Lindsey
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| |
Collapse
|
14
|
Wilson TM, Tauber MJ, Wasielewski MR. Toward an n-Type Molecular Wire: Electron Hopping within Linearly Linked Perylenediimide Oligomers. J Am Chem Soc 2009; 131:8952-7. [DOI: 10.1021/ja902258g] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Thea M. Wilson
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0314
| | - Michael J. Tauber
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0314
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0314
| |
Collapse
|
15
|
Song HE, Taniguchi M, Kirmaier C, Bocian DF, Lindsey JS, Holten D. Probing Ground-state Hole Transfer Between Equivalent, Electrochemically Inaccessible States in Multiporphyrin Arrays Using Time-resolved Optical Spectroscopy. Photochem Photobiol 2009; 85:693-704. [DOI: 10.1111/j.1751-1097.2008.00471.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Song HE, Kirmaier C, Diers JR, Lindsey JS, Bocian DF, Holten D. Energy- and hole-transfer dynamics in oxidized porphyrin dyads. J Phys Chem B 2009; 113:54-63. [PMID: 19067561 DOI: 10.1021/jp8060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms and dynamics of quenching of a photoexcited free base porphyrin (Fb*) covalently linked to a nearby oxidized zinc porphyrin (Zn(+)) have been investigated in a set of five dyads using time-resolved absorption spectroscopy. The dyads include porphyrins joined at the meso-positions by a diphenylethyne linker or a diarylethyne linker with 2,6-dimethyl substitution on either one or both of the aryl rings. Another dyad is linked at the beta-pyrrole positions of the porphyrins via a diphenylethyne linker. The type of linker and attachment site modulate the interporphyrin through-bond electronic coupling via steric hindrance (porphyrin-linker orbital overlap) and attachment motif (porphyrin electron density at the connection site). For each ZnFb dyad, the zinc porphyrin is selectively electrochemically oxidized (to produce Zn(+)Fb), the free base porphyrin is selectively excited with a 130 fs flash (to produce Zn(+)Fb*), and the subsequent dynamics monitored. The Zn(+)Fb* excited state has a lifetime of approximately 3 to approximately 30 ps (depending on the linker steric hindrance and attachment site) and decays by parallel excited-state energy- and hole-transfer pathways. The relative yields of the two channels depend on a number of factors including the linker-mediated through-bond electronic coupling and a modest (< or =20%) Forster through-space contribution for the energy-transfer route. One product of Zn(+)Fb* decay is the metastable ground-state ZnFb(+), which decays to the Zn(+)Fb preflash state by ground-state hole transfer with a linker-dependent rate constant of (20 ps)(-1) to (150 ps)(-1). Collectively, these results provide a detailed understanding of the mechanism and dynamics of quenching of excited porphyrins by nearby oxidized sites, as well as the dynamics of ground-state hole transfer between nonequivalent porphyrins (Zn and Fb). The findings also lay the foundation for the study of ground-state hole transfer between identical porphyrins (e.g., Zn/Zn, Fb/Fb) in larger multiporphyrin arrays wherein a hole is selectively placed via electrochemical oxidation.
Collapse
Affiliation(s)
- Hee-eun Song
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA
| | | | | | | | | | | |
Collapse
|
17
|
Bell TDM, Bhosale SV, Ghiggino KP, Langford SJ, Woodward CP. Synthesis and Photophysical Properties of a Conformationally Flexible Mixed Porphyrin Star-Pentamer. Aust J Chem 2009. [DOI: 10.1071/ch09142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The synthesis of a porphyrin star-pentamer bearing a free-base porphyrin core and four zinc(ii) metalloporphyrins, which are tethered by a conformationally flexible linker about the central porphyrin’s antipody, is described. The synthetic strategy is highlighted by the use of olefin cross metathesis to link the five chromophores together in a directed fashion in high yield. Photoexcitation into the Soret absorption band of the zinc porphyrin chromophores at 425 nm leads to a substantial enhancement of central free-base porphyrin fluorescence, indicating energy transfer from the photoexcited zinc porphyrin (outer periphery) to central free-base porphyrin. Time-resolved fluorescence decay profiles required three exponential decay components for satisfactory fitting. These are attributed to emission from the central free-base porphyrin and to two different rates of energy transfer from the zinc porphyrins to the free-base porphyrin. The faster of these decay components equates to an energy-transfer rate constant of 3.7 × 109 s–1 and an efficiency of 83%, whereas the other is essentially unquenched with respect to reported values for zinc porphyrin fluorescence decay times. The relative contribution of these two components to the initial fluorescence decay is ~3:2, similar to the 5:4 ratio of cis and trans geometric isomers present in the pentamer.
Collapse
|
18
|
Song HE, Kirmaier C, Taniguchi M, Diers JR, Bocian DF, Lindsey JS, Holten D. Determination of Ground-State Hole-Transfer Rates Between Equivalent Sites in Oxidized Multiporphyrin Arrays Using Time-Resolved Optical Spectroscopy. J Am Chem Soc 2008; 130:15636-48. [DOI: 10.1021/ja805673m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hee-eun Song
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - Masahiko Taniguchi
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - James R. Diers
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - David F. Bocian
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - Jonathan S. Lindsey
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Chemistry, University of California Riverside, Riverside, California 92521-0403
| |
Collapse
|
19
|
Muresan AZ, Thamyongkit P, Diers JR, Holten D, Lindsey JS, Bocian DF. Regiospecifically α-13C-Labeled Porphyrins for Studies of Ground-State Hole Transfer in Multiporphyrin Arrays. J Org Chem 2008; 73:6947-59. [DOI: 10.1021/jo8012836] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Z. Muresan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, Department of Chemistry, University of California, Riverside, California 92521-0403, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| | - Patchanita Thamyongkit
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, Department of Chemistry, University of California, Riverside, California 92521-0403, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| | - James R. Diers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, Department of Chemistry, University of California, Riverside, California 92521-0403, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| | - Dewey Holten
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, Department of Chemistry, University of California, Riverside, California 92521-0403, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, Department of Chemistry, University of California, Riverside, California 92521-0403, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| | - David F. Bocian
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, Department of Chemistry, University of California, Riverside, California 92521-0403, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| |
Collapse
|
20
|
Punidha S, Sinha J, Kumar A, Ravikanth M. First Triazole-Bridged Unsymmetrical Porphyrin Dyad via Click Chemistry. J Org Chem 2007; 73:323-6. [DOI: 10.1021/jo702018s] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sokkalingam Punidha
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - Jasmine Sinha
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|