1
|
Ur Rahman F, Shah AB, Muhammad M, khan E, Ataya FS, Batiha GES. Antioxidant, antibacterial, enzyme inhibition and fluorescence characteristics of unsymmetrical thiourea derivatives. Heliyon 2024; 10:e31563. [PMID: 38826706 PMCID: PMC11141368 DOI: 10.1016/j.heliyon.2024.e31563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
A series of six unsymmetrical thiourea derivatives, namely 1-cyclohexyl-3-(pyridin-2-yl) thiourea (1), 1-cyclohexyl-3-(3-methylpyridin-2-yl)thiourea (2), 1-cyclohexyl-3-(2,4-dimethylphenyl) thiourea (3), 1-(4-chlorophenyl)-3-cyclohexylthiourea (4), 1-(3-methylpyridin-2-yl)-3-phenylthiourea (5), and 1-(3-chlorophenyl)-3-phenylthiourea (6), were successfully synthesized via reaction between different amines with isothiocyanates under a non-catalytic environment. Structural elucidation of compounds (1-6) was performed using FT-IR and NMR (1H and 13C) spectroscopy. The infrared spectra displayed characteristic stretching vibrations, while the 13C NMR chemical shifts of the thiourea moiety (C[bond, double bond]S) were observed in the range of 179.1-181.4 ppm. The antioxidative and antimicrobial properties of the compounds were assessed, as well as their inhibitory effects on acetylcholinesterase and butyrylcholinesterase were evaluated. In order to analyze the fluorescence characteristics of each compound (1-6), the excitation (λex) and emission (λem) wavelengths were scanned within the range of 250-750 nm, with the solvent blank serving as a standard. It was observed that when dissolved in acetone, toluene, tetrahydrofuran, and ethyl acetate, these compounds exhibited emission peaks ranging from 367 to 581 nm and absorption peaks ranging from 275 to 432 nm.
Collapse
Affiliation(s)
- Faizan Ur Rahman
- Department of Chemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Ezzat khan
- Department of Chemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
2
|
Ziyaei Halimehjani A, Dağalan Z, Marjani Z, Gündüz F, Daştan A, Nişancı B. Catalyst/Metal/Solvent-Free Markovnikov Hydrothiolation of Unactivated Alkenes with Dithiocarbamic Acids. J Org Chem 2024; 89:5353-5362. [PMID: 38564378 DOI: 10.1021/acs.joc.3c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Catalyst-free Markovnikov-selective hydrothiolation of unactivated alkenes still remains a great challenge. Herein, we develop a catalyst/metal/solvent-free methodology for the Markovnikov hydrothiolation of unactivated alkenes with in situ prepared dithiocarbamic acids, providing a wide array of alkyl dithiocarbamates. A variety of terminal, internal, cyclic, and acyclic unactivated alkenes were applied successfully in this protocol. This three-component thiol-ene reaction can be considered as a new family of click reactions.
Collapse
Affiliation(s)
| | - Ziya Dağalan
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Zahra Marjani
- Faculty of Chemistry, Kharazmi University, 49 Mofateh Street, Tehran 15719-14911, Iran
| | - Figen Gündüz
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Arif Daştan
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Bilal Nişancı
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
3
|
Phaenok S, Nguyen LA, Soorukram D, Nguyen TTT, Retailleau P, Nguyen TB. Sulfur- and Amine- Promoted Multielectron Autoredox Transformation of Nitromethane: Multicomponent Access to Thiourea Derivatives. Chemistry 2024; 30:e202303703. [PMID: 37953668 DOI: 10.1002/chem.202303703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Thiourea derivatives are in-demand motifs in organic synthesis, medicinal chemistry and material science, yet redox methods for the synthesis that start from safe, simple, inexpensive and readily available feedstocks are scarce. In this article, we disclose the synthesis of these motifs using elemental sulfur and nitromethane as the starting materials. The method harnesses the multi-electron auto-redox property of nitromethane in the presence of sulfur and amines, delivering thiourea products without any added oxidant or reductant. Extension of this reaction to cyclizable amines and/or higher homologues of nitromethane led to a wide range of nitrogen heterocycles and thioamides. Operationally simple, the reactions are scalable, tolerate a wide range of functional groups, and can be employed for the direct functionalization of natural products. Mechanistically, the nitro group was found to act as an oxidant leaving group, being reduced to ammonia whereas sulfur, along with the role of a sulfur building block for the thiocarbonyl group, behaved as a complementary reductant, being oxidized to sulfate.
Collapse
Affiliation(s)
- Supasorn Phaenok
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198, Gif-sur-Yvette, France
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Le Anh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Thi Thanh Tam Nguyen
- Univ Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Dinh Thanh N, Ngoc Toan V, Thi Kim Giang N, Thi Kim Van H, Son Hai D, Minh Tri N, Ngoc Toan D. Synthesis, biological and molecular modelling for 1,3,4-thiadiazole sulfonyl thioureas: bacterial and fungal activity. RSC Med Chem 2023; 14:2751-2767. [PMID: 38107183 PMCID: PMC10718584 DOI: 10.1039/d3md00508a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Some substituted thioureas (6a-i) containing a 1,3,4-thiadiazole ring were synthesized by the reaction of the corresponding substituted 2-amino-1,3,4-thiadiazoles 3a-i with p-toluenesulfonyl isocyanate in a one-pot procedure. The antibacterial and antifungal activities of these sulfonyl thioureas were estimated using a minimum inhibitory concentration protocol. Almost all the thioureas exhibited remarkable antimicrobial activity. Amongst the studied compounds, thioureas 6a, 6c, 6h, and 6i were better inhibitors against the bacterium S. aureus, with MIC values of 0.78-3.125 μg mL-1. These compounds were also tested for their inhibition against S. aureus enzymes, including enzymes of DNA gyrase, DNA topoisomerase IV (Topo IV), and dihydrofolate reductase. Amongst the compounds, 6h was a strong inhibitor, with IC50 values of 1.22, 53.78, and 0.23, respectively. Induced fit docking calculations were performed to observe the binding efficiency and steric interactions of these compounds. The obtained results showed that compound 6h was compatible with the active sites of S. aureus DNA gyrase 2XCS. This ligand interacted with residues ASP1083 (chain D), MET1121 (chain B), ARG1122 (chain D), and also with HOH2035, HOH2089, HOH2110, HOH2162. Molecular dynamics simulation in a water solvent system showed that the active interactions with residues ASP083 and MET1121 (chain B), along with ASP1083, MET1121, and ARG1122 (chain D), played an important role in stabilizing complex 6h/2XCS in the active pocket.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
| | - Vu Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of New Technology, Military Institute of Science and Technology (Ministry of Military) 17 Hoang Sam, Cau Giay Ha Noi Viet Nam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong, Cau Giay Ha Noi Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Faculty of Chemical Technology, Viet Tri University of Industry Tien Kien, Lam Thao Phu Tho Viet Nam
| | - Do Son Hai
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong, Cau Giay Ha Noi Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong, Cau Giay Ha Noi Vietnam
| | - Duong Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Faculty of Chemistry, Thai Nguyen University of Education 20 Luong Ngoc Quyen Thai Nguyen Viet Nam
| |
Collapse
|
5
|
Nakakubo K, Biswas FB, Taniguchi T, Endo M, Sakai Y, Wong KH, Mashio AS, Nishimura T, Maeda K, Hasegawa H. Insight into stability of dithiocarbamate-modified adsorbents: Oxidation of dithiocarbamate. CHEMOSPHERE 2023; 343:140216. [PMID: 37748655 DOI: 10.1016/j.chemosphere.2023.140216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
We previously reported that monoalkyl dithiocarbamate-modified cellulose (DMC) exhibited excellent adsorption performance for arsenite (AsIII), cadmium (CdII), lead (PbII), gold (AuIII), silver (AgI), platinum (PtIV), and palladium (PdII). However, its adsorption capability for AsIII decreased by 96.4% after two weeks of storage at 40 °C under an air atmosphere. This decrease in adsorption ability could occur for other metals that dithiocarbamates can extract. In this study, we investigated the adsorption performance of DMC for various metals before and after storage and proposed a possible mechanism for this decrease. We found significant decreases in the adsorption abilities of PbII (11.4%), AgI (39.5%), PtIV (65.5%), and PdII (69.6%), whereas AuIII and CdII adsorption was largely retained, with decreases of 1.1% and 4.0%, respectively. FTIR analysis of the stored DMC revealed the formation of S-S bonds and the retention of dithiocarbamate peaks, indicating the formation of dithiocarbamate dimers (thiuram disulfides). To further support thiuram disulfide formation, dialkyl thiuram disulfides were tested for the adsorption of the seven employed metals. The metal adsorption behavior of dialkyl thiuram disulfides was almost identical to that of the stored adsorbent, ensuring thiuram disulfide formation. In conclusion, the loss of adsorption capability can be mainly attributable to the formation of thiuram disulfide.
Collapse
Affiliation(s)
- Keisuke Nakakubo
- National Institute of Advanced Industrial Science and Technology (AIST), Department of Energy and Environment, Environmental Management Research Institute, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | - Foni B Biswas
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Tsuyoshi Taniguchi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masaru Endo
- Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji-Shi, Hyogo, 671-1283, Japan
| | - Yuto Sakai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tatsuya Nishimura
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Katsuhiro Maeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
6
|
Do TH, Phaenok S, Soorukram D, Modjinou T, Grande D, Nguyen TTT, Nguyen TB. Synthesis of Thioureas, Thioamides, and Aza-Heterocycles via Dimethyl-Sulfoxide-Promoted Oxidative Condensation of Sulfur, Malonic Acids, and Amines. Org Lett 2023; 25:6322-6327. [PMID: 37606344 DOI: 10.1021/acs.orglett.3c02247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Malonic acid and derivatives have been well-known to undergo monodecarboxylation under relatively mild conditions and have been exclusively used as a C2 synthon. We report herein their new application as a C1 synthon via double decarboxylation promoted by sulfur and dimethyl sulfoxide. In the presence of amines as nucleophiles, a wide range of thioureas and thioamides as well as N-heterocycles were obtained in good to excellent yields under mild heating conditions.
Collapse
Affiliation(s)
- Trung Hieu Do
- Université Paris-Est Créteil, CNRS, Institut de Chimie et des Matériaux Paris-Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Supasorn Phaenok
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Tina Modjinou
- Université Paris-Est Créteil, CNRS, Institut de Chimie et des Matériaux Paris-Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Daniel Grande
- Université Paris-Est Créteil, CNRS, Institut de Chimie et des Matériaux Paris-Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Thi Thanh Tam Nguyen
- Université Paris-Est Créteil, CNRS, Institut de Chimie et des Matériaux Paris-Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Heidari S, Alavinia S, Ghorbani-Vaghei R. Green synthesis of thiourea derivatives from nitrobenzenes using Ni nanoparticles immobilized on triazine-aminopyridine-modified MIL-101(Cr) MOF. Sci Rep 2023; 13:12964. [PMID: 37563182 PMCID: PMC10415257 DOI: 10.1038/s41598-023-40190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Nanohybrid metal-organic frameworks (MOF) have recently been considered next-generation catalysts regarding their unique features like large surface-to-volume ratio, tailorable geometry, uniform pore sizes, and homogeneous distribution of active sites. In this report, we address the triazine-aminopyridine-modified 3D Cr-centred MOF MIL-101(Cr)-NH2 following a post-synthetic modification approach. The excellent chelating ability of triazine-aminopyridine was applied to immobilize Ni ions over the host matrix MOF. The as-synthesized material was physicochemically characterized using various analytical techniques like FT-IR, electron microscopy, EDS, elemental mapping, XRD, and ICP-OES. Subsequently, the material has been catalytically employed in synthesizing new thiourea derivatives by reacting to nitrobenzene derivatives and phenyl isocyanate. The catalyst was isolated by centrifugation and recycled in 6 consecutive runs without momentous loss of its reactivity.
Collapse
Affiliation(s)
- Sara Heidari
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 6517838683, Iran
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 6517838683, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 6517838683, Iran.
| |
Collapse
|
8
|
Thanh ND, Lan PH, Hai DS, Anh HH, Giang NTK, Van HTK, Toan VN, Tri NM, Toan DN. Thiourea derivatives containing 4-arylthiazoles and d-glucose moiety: design, synthesis, antimicrobial activity evaluation, and molecular docking/dynamics simulations. RSC Med Chem 2023; 14:1114-1130. [PMID: 37360390 PMCID: PMC10285754 DOI: 10.1039/d3md00010a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/15/2023] [Indexed: 06/28/2023] Open
Abstract
Some substituted glucose-conjugated thioureas containing 1,3-thiazole ring, 4a-h, were synthesized by the reaction of the corresponding substituted 2-amino-4-phenyl-1,3-thiazoles 2a-h with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isocyanate. The antibacterial and antifungal activities of these thiazole-containing thioureas were estimated using a minimum inhibitory concentration protocol. Among these compounds, 4c, 4g, and 4h were better inhibitors with MIC = 0.78-3.125 μg mL-1. These three compounds were also tested for their ability to inhibit S. aureus enzymes, including DNA gyrase, DNA topoisomerase IV (Topo IV), and dihydrofolate reductase, and compound 4h was found to be a strong inhibitor with IC50 = 1.25 ± 0.12, 67.28 ± 1.21, and 0.13 ± 0.05 μM, respectively. Induced-fit docking and MM-GBSA calculations were performed to observe the binding efficiencies and steric interactions of these compounds. The obtained results showed that compound 4h is compatible with the active site of S. aureus DNA gyrase 2XCS with four H-bond interactions with residues Ala1118, Met1121, and F:DC11 and also three interactions with F:DG10 (two interactions) and F:DC11 (one interaction). Molecular dynamics simulation in a water solvent system showed that ligand 4h had active interactions with enzyme 2XCS through residues Ala1083, Glu1088, Ala1118, Gly1117, and Met1121.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
| | - Pham Hong Lan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong Cau Giay Ha Noi Vietnam
| | - Do Son Hai
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong Cau Giay Ha Noi Vietnam
| | - Hoang Huu Anh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong Cau Giay Ha Noi Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Faculty of Chemical Technology, Viet Tri University of Industry Tien Kien Lam Thao Phu Tho Vietnam
| | - Vu Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of New Technology, Military Institute of Science and Technology (Ministry of Military) 17 Hoang Sam Cau Giay Ha Noi Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of New Technology, Military Institute of Science and Technology (Ministry of Military) 17 Hoang Sam Cau Giay Ha Noi Vietnam
| | - Duong Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Faculty of Chemistry, Thai Nguyen University of Education 20 Luong Ngoc Quyen Thai Nguyen Vietnam
| |
Collapse
|
9
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
10
|
Costa RK, Brancaglion GA, Pinheiro MP, Meira DA, da Silva BN, de V. Negrao CZ, de A. Gonçalves K, Rodrigues CT, Ambrósio AL, Guido RV, Pastre JC, Dias SM. Discovery of aminothiazole derivatives as a chemical scaffold for glutaminase inhibition. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
11
|
Javadzade T, Rzayeva I, Demukhamedova S, Akverdieva G, Farzaliyev V, Sujayev A, Chiragov F. Synthesis, structural analysis, DFT study, antioxidant activity of metal complexes of N-substituted thiourea. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Bhosle SD, Jadhav KA, Itage SV, Bandaru S, Bhosale RS, Yadav JS. Zn catalyzed a simple and convenient method for thiourea synthesis. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2126319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Siddhanath D. Bhosle
- Department of Chemistry, School of Science, Indrashil University, Mehsana, India
| | - Krishna A. Jadhav
- Department of Chemistry, School of Science, Indrashil University, Mehsana, India
| | - Shivanand V. Itage
- Department of Chemistry, School of Science, Indrashil University, Mehsana, India
| | - Sateesh Bandaru
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, People’s Republic of China
| | - Rajesh S. Bhosale
- Department of Chemistry, School of Science, Indrashil University, Mehsana, India
| | - Jhillu Singh Yadav
- Department of Chemistry, School of Science, Indrashil University, Mehsana, India
| |
Collapse
|
13
|
Aslam R, Serdaroglu G, Zehra S, Kumar Verma D, Aslam J, Guo L, Verma C, Ebenso EE, Quraishi M. Corrosion inhibition of steel using different families of organic compounds: Past and present progress. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Yiğit M, Celepci DB, Taslimi P, Yiğit B, Çetinkaya E, Özdemir İ, Aygün M, Gülçin İ. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorg Chem 2021; 120:105566. [PMID: 34974209 DOI: 10.1016/j.bioorg.2021.105566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023]
Abstract
A series of chiral and achiral cyclic seleno- and thiourea compounds bearing benzyl groups on N-atoms were prepared from enetetramines and appropriate Group VI elements in good yields. All the synthesized compounds were characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR spectroscopy, and the molecular and crystal structures of (R,R)-4b and (R,R)-5b were confirmed by the single-crystal X-ray diffraction method. These assayed for their activities against metabolic enzymes acetylcholinesterase, butyrylcholinesterase, and α-glycosidase. These selenourea and thiourea derivatives of chiral and achiral enetetramines effectively inhibit AChE and BChE with IC50 values in the range of 3.32-11.36 and 1.47-9.73 µM, respectively. Also, these compounds inhibited α-glycosidase enzyme with IC50 values varying between 1.37 and 8.53 µM. The results indicated that all the synthesized compounds exhibited excellent inhibitory activities against mentioned enzymes as compared with standard inhibitors. Representatively, the most potent compound against α-glycosidase enzyme, (S,S)-5b, was 12-times more potent than standard inhibitor acarbose; 7b and 8a as most potent compounds against cholinesterase enzymes, were around 5 and 13-times more potent than standard inhibitor tacrine against achethylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively.
Collapse
Affiliation(s)
- Murat Yiğit
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education, Adiyaman University, 02040 Adıyaman, Turkey.
| | - Duygu Barut Celepci
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Beyhan Yiğit
- Department of Chemistry, Faculty of Science and Art, Adiyaman University, 02040 Adıyaman, Turkey
| | - Engin Çetinkaya
- Department of Chemistry, Faculty of Science, Ege University, 35100 Bornova-İzmir, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey; Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey; Drug Application and Research Center, İnönü University, 44280 Malatya, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
15
|
Zhu X, Xu M, Sun J, Guo D, Zhang Y, Zhou S, Wang S. Hydroamination and Hydrophosphination of Isocyanates/Isothiocyanates under Catalyst‐Free Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiancui Zhu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 China
| | - Mengchen Xu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 China
| | - Jinrong Sun
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 China
| | - Dianjun Guo
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 China
| | - Yiwei Zhang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 China
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 China
- Anhui Laboratory of Clean Catalytic Engineering Anhui Laboratory of Functional Complexes for Materials Chemistry and Application College of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu Anhui 241002 China
| |
Collapse
|
16
|
Thiourea Derivatives, Simple in Structure but Efficient Enzyme Inhibitors and Mercury Sensors. Molecules 2021; 26:molecules26154506. [PMID: 34361659 PMCID: PMC8347686 DOI: 10.3390/molecules26154506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 11/16/2022] Open
Abstract
In this study six unsymmetrical thiourea derivatives, 1-isobutyl-3-cyclohexylthiourea (1), 1-tert-butyl-3-cyclohexylthiourea (2), 1-(3-chlorophenyl)-3-cyclohexylthiourea (3), 1-(1,1-dibutyl)-3-phenylthiourea (4), 1-(2-chlorophenyl)-3-phenylthiourea (5) and 1-(4-chlorophenyl)-3-phenylthiourea (6) were obtained in the laboratory under aerobic conditions. Compounds 3 and 4 are crystalline and their structure was determined for their single crystal. Compounds 3 is monoclinic system with space group P21/n while compound 4 is trigonal, space group R3:H. Compounds (1–6) were tested for their anti-cholinesterase activity against acetylcholinesterase and butyrylcholinesterase (hereafter abbreviated as, AChE and BChE, respectively). Potentials (all compounds) as sensing probes for determination of deadly toxic metal (mercury) using spectrofluorimetric technique were also investigated. Compound 3 exhibited better enzyme inhibition IC50 values of 50, and 60 µg/mL against AChE and BChE with docking score of −10.01, and −8.04 kJ/mol, respectively. The compound also showed moderate sensitivity during fluorescence studies.
Collapse
|
17
|
Young JD, Ma MT, Eykyn TR, Atkinson RA, Abbate V, Cilibrizzi A, Hider RC, Blower PJ. Dipeptide inhibitors of the prostate specific membrane antigen (PSMA): A comparison of urea and thiourea derivatives. Bioorg Med Chem Lett 2021; 42:128044. [PMID: 33865971 DOI: 10.1016/j.bmcl.2021.128044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 11/22/2022]
Abstract
Glutamate carboxypeptidase II (GCP(II)), also known as the prostate-specific membrane antigen (PSMA), is a transmembrane zinc(II) metalloenzyme overexpressed in prostate cancer. Inhibitors of this receptor are used to target molecular imaging agents and molecular radiotherapy agents to prostate cancer and if the affinity of inhibitors for GCP(II)/PSMA could be improved, targeting might also improve. Compounds containing the dipeptide OH-Lys-C(O)-Glu-OH (compound 3), incorporating a urea motif, have high affinity for GCP(II)/PSMA. We hypothesized that substituting the zinc-coordinating urea group for a thiourea group, thus incorporating a sulfur atom, could facilitate stronger binding to zinc(II) within the active site, and thus improve affinity for GCP(II)/PSMA. A structurally analogous urea and thiourea pair (HO-Glu-C(O)-Glu-OH - compound 5 and HO-Glu-C(S)-Glu-OH - compound 6) were synthesized and the inhibitory concentration (IC50) of each compound measured with a cell-based assay, allowing us to refute the hypothesis: the thiourea analogue showed 100-fold weaker binding to PSMA than the urea analogue.
Collapse
Affiliation(s)
- Jennifer D Young
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Thomas R Eykyn
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom.
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom.
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom.
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
18
|
Odularu AT, Ajibade PA, Oyedeji OO, Mbese JZ, Puschmann H. Synthesis and crystal structure of N,N′-bis(4-chlorophenyl)thiourea N, N-dimethylformamide. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
This study is about the synthesis of N,N′-bis(4-chlorophenyl)thiourea N,N-dimethylformamide (C16H17Cl2N3OS) compound. Single crystals of the compound were obtained by slow evaporation of N,N′-bis(4-chlorophenyl)thiourea (C13H10Cl2N2S) in N,N-dimethylformamide (C3H7NO; DMF) through recrystallization under mild condition. Important classical N–H⋯O links the two molecules together. Results revealed that C16H17Cl2N3OS crystallized in the monoclinic space group P21/c with the respective cell parameters of a = 92,360 (4) Å, b = 7.2232 (3) Å, 25.2555 (11) Å, β = 91.376 (3), α = γ = 90°, V = 1684.40 (12) Å3, T = 119.94 (13) K and Z = 4 and Z′ = 1.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , South Africa
| | - Peter A. Ajibade
- Department of Chemistry, School of Chemistry and Physics, University of KwaZulu-Natal , Pietermaritzburg Campus , Scottsville 3209 , South Africa
| | - Opeoluwa O. Oyedeji
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , South Africa
| | - Johannes Z. Mbese
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , South Africa
| | - Horst Puschmann
- Chemistry Department, Durham University , Dublin , United Kingdom
| |
Collapse
|
19
|
Continuous-Flow Synthesis of Thioureas, Enabled by Aqueous Polysulfide Solution. Molecules 2021; 26:molecules26020303. [PMID: 33435580 PMCID: PMC7827778 DOI: 10.3390/molecules26020303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
We have developed the continuous-flow synthesis of thioureas in a multicomponent reaction starting from isocyanides, amidines, or amines and sulfur. The aqueous polysulfide solution enabled the application of sulfur under homogeneous and mild conditions. The crystallized products were isolated by simple filtration after the removal of the co-solvent, and the sulfur retained in the mother liquid. Presenting a wide range of thioureas synthesized by this procedure confirms the utility of the convenient continuous-flow application of sulfur.
Collapse
|
20
|
Németh AG, Szabó R, Domján A, Keserű GM, Ábrányi‐Balogh P. Chromatography-Free Multicomponent Synthesis of Thioureas Enabled by Aqueous Solution of Elemental Sulfur. ChemistryOpen 2021; 10:16-27. [PMID: 33377316 PMCID: PMC7780808 DOI: 10.1002/open.202000250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
The development of a new three-component chromatography-free reaction of isocyanides, amines and elemental sulfur allowed us the straightforward synthesis of thioureas in water. Considering a large pool of organic and inorganic bases, we first optimized the preparation of aqueous polysulfide solution from elemental sulfur. Using polysulfide solution, we were able to omit the otherwise mandatory chromatography, and to isolate the crystalline products directly from the reaction mixture by a simple filtration, retaining the sulfur in the solution phase. A wide range of thioureas synthesized in this way confirmed the reasonable substrate and functional group tolerance of our protocol.
Collapse
Affiliation(s)
- András Gy. Németh
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Renáta Szabó
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Attila Domján
- NMR Research LaboratoryResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Péter Ábrányi‐Balogh
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
21
|
Bagherzadeh N, Sardarian AR, Inaloo ID. Green and efficient synthesis of thioureas, ureas, primary O-thiocarbamates, and carbamates in deep eutectic solvent/catalyst systems using thiourea and urea. NEW J CHEM 2021. [DOI: 10.1039/d1nj01827b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and general catalysis process was developed for the direct preparation of various primary O-thiocarbamates/carbamates as well as monosubstituted thioureas/ureas by using thiourea/urea as biocompatible thiocarbonyl (carbonyl) sources.
Collapse
|
22
|
Mishra KB, Rajkhowa S, Tiwari VK. An expeditious one-pot synthesis of thiourea derivatives of carbohydrates from sugar azides. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1822997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kunj B. Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology, Jorhat, India
| | - Vinod K. Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
23
|
Zn, Cd and Hg complexes with unsymmetric thiourea derivatives; syntheses, free radical scavenging and enzyme inhibition essay. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Steppeler F, Iwan D, Wojaczyńska E, Wojaczyński J. Chiral Thioureas-Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules 2020; 25:E401. [PMID: 31963671 PMCID: PMC7024223 DOI: 10.3390/molecules25020401] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/23/2023] Open
Abstract
For almost 20 years, thioureas have been experiencing a renaissance of interest with the emerged development of asymmetric organocatalysts. Due to their relatively high acidity and strong hydrogen bond donor capability, they differ significantly from ureas and offer, appropriately modified, great potential as organocatalysts, chelators, drug candidates, etc. The review focuses on the family of chiral thioureas, presenting an overview of the current state of knowledge on their synthesis and selected applications in stereoselective synthesis and drug development.
Collapse
Affiliation(s)
- Franz Steppeler
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland; (F.S.); (D.I.)
| | - Dominika Iwan
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland; (F.S.); (D.I.)
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland; (F.S.); (D.I.)
| | - Jacek Wojaczyński
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50 383 Wrocław, Poland;
| |
Collapse
|
25
|
Chemical modification of expanded glass aggregate with N-Benzoyl-N′-(4-methylphenyl) thiourea (TTU) for the adsorptive removal of Cr(III) ion. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Zaorska E, Hutsch T, Gawryś-Kopczyńska M, Ostaszewski R, Ufnal M, Koszelewski D. Evaluation of thioamides, thiolactams and thioureas as hydrogen sulfide (H2S) donors for lowering blood pressure. Bioorg Chem 2019; 88:102941. [DOI: 10.1016/j.bioorg.2019.102941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023]
|
27
|
van den Bruinhorst A, Raes S, Maesara SA, Kroon MC, Esteves ACC, Meuldijk J. Hydrophobic eutectic mixtures as volatile fatty acid extractants. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Roopesh Kumar L, Panduranga V, Vishwanatha TM, Shekharappa, Sureshbabu VV. Synthesis of thioureido peptidomimetics employing alkyl azides and dithiocarbamates. Org Biomol Chem 2019. [PMID: 29528353 DOI: 10.1039/c8ob00239h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An unprecedented approach for the assembly of thioureido peptidomimetics is developed employing alkyl azides and dithiocarbamates. Dithiocarbamates react with alkyl azides with the liberation of N2 and elemental sulfur thereby leading to thiourea in a traceless manner. Thioureido peptidomimetics are thus furnished in good yields with no epimerization. This process is mild, free from the use of a base, scalable and step economic. The practicability of this methodology has been highlighted by the synthesis of N,N'-orthogonally protected thioureido peptidomimetics.
Collapse
Affiliation(s)
- L Roopesh Kumar
- Room No. 109, Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Dr. B. R. Ambedkar Veedhi, Bangalore University, Bangalore, 560001, India.
| | | | | | | | | |
Collapse
|
29
|
Dutta S, Mondal M, Ghosh T, Saha A. Unprecedented thiocarbamidation of nitroarenes: a facile one-pot route to unsymmetrical thioureas. Org Chem Front 2019. [DOI: 10.1039/c8qo00752g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A one-pot synthesis of unsymmetrical thiourea compounds was achieved by the reaction of nitroarenes with in situ generated dithiocarbamate anions.
Collapse
Affiliation(s)
- Soumya Dutta
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Manas Mondal
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Tubai Ghosh
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Amit Saha
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|
30
|
Ding C, Wang S, Sheng Y, Dai Q, Zhao Y, Liang G, Song Z. One-step construction of unsymmetrical thioureas and oxazolidinethiones from amines and carbon disulfide via a cascade reaction sequence. RSC Adv 2019; 9:26768-26772. [PMID: 35528578 PMCID: PMC9070531 DOI: 10.1039/c9ra04540f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/17/2019] [Indexed: 12/29/2022] Open
Abstract
A versatile and efficient route for the preparation of unsymmetrical thioureas and oxazolidinethiones from amines and carbon disulfide has been achieved via a cascade reaction sequence.
Collapse
Affiliation(s)
- Chaochao Ding
- Chemical Biology Research Center at School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Shaoli Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Yaoguang Sheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Qian Dai
- Chemical Biology Research Center at School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Yunjie Zhao
- Chemical Biology Research Center at School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Zengqiang Song
- Chemical Biology Research Center at School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|
31
|
Wagh GD, Pathare SP, Akamanchi KG. Sulfated-Tungstate-Catalyzed Synthesis of Ureas/Thioureas via Transamidation and Synthesis of Forchlorofenuron. ChemistrySelect 2018. [DOI: 10.1002/slct.201800954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ganesh D. Wagh
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Matunga; Mumbai India 400019
| | - Sagar P. Pathare
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Matunga; Mumbai India 400019
| | - Krishnacharya G. Akamanchi
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Matunga; Mumbai India 400019
| |
Collapse
|
32
|
Ranjbari MA, Tavakol H. Theoretical study of the possible mechanisms for the synthesis of dialkyl thiourea from dithiocarbamate. HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hossein Tavakol
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| |
Collapse
|
33
|
Dalal DS, Patil DR, Tayade YA. β‐Cyclodextrin: A Green and Efficient Supramolecular Catalyst for Organic Transformations. CHEM REC 2018; 18:1560-1582. [DOI: 10.1002/tcr.201800016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Dipak S. Dalal
- Department of Organic Chemistry, School of Chemical SciencesNorth Maharashtra University Jalgaon – 425 001 (M. S.) India
| | - Dipak R. Patil
- Department of Organic Chemistry, School of Chemical SciencesNorth Maharashtra University Jalgaon – 425 001 (M. S.) India
| | - Yogesh A. Tayade
- Department of Organic Chemistry, School of Chemical SciencesNorth Maharashtra University Jalgaon – 425 001 (M. S.) India
| |
Collapse
|
34
|
Ziyaei Halimehjani A, Klepetářová B, Beier P. Synthesis of novel dithiocarbamates and xanthates using dialkyl azodicarboxylates: S N bond formation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Wu SL, Gao X. Copper-Catalyzed Aerobic Oxidative Reaction of C 60 with Aliphatic Primary Amines and CS 2. J Org Chem 2018; 83:2125-2130. [PMID: 29377694 DOI: 10.1021/acs.joc.7b03061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel type of fullerene derivatives, [60]fullerothiazolidinethiones (2), were obtained from the copper-catalyzed aerobic oxidative reaction of C60 with aliphatic primary amines and CS2 in 4:1 v/v DMF and o-DCB. The obtained products were fully characterized with the X-ray single-crystal diffraction and spectroscopic methods. Control experiment with maleic anhydride, an analogue to C60, also afforded thiazolidinethione product, but via a mechanism different from that of C60 judging from the structure difference between the two types of thiazolidinethione compounds, demonstrating the unique reactivity of C60.
Collapse
Affiliation(s)
- Sheng-Li Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Xiang Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
36
|
Yavari I, Khajeh-Khezri A, Halvagar MR. A synthesis of thioxo[3.3.3]propellanes from acenaphthoquinone-malononitrile adduct, primary amines and CS 2 in water. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
El-Hiti GA, Smith K, Hegazy AS, Alshammari MB, Kariuki BM. 1-(2-Bromo-4-methylphenyl)-3,3-dimethylthiourea. IUCRDATA 2018. [DOI: 10.1107/s2414314618000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The bromomethylphenyl and dimethylthiourea groups of the molecule of the title compound, C10H13BrN2S, are inclined to one another at an interplanar angle of 55.13 (6)°. In the crystal, molecules are stacked along thebaxis and intermolecular N—H...S contacts form chains of molecules along [010].
Collapse
|
38
|
Ahmed Arafa WA, Ibrahim HM. A sustainable strategy for the synthesis of bis-2-iminothiazolidin-4-ones utilizing novel series of asymmetrically substituted bis-thioureas as viable precursors. RSC Adv 2018; 8:10516-10521. [PMID: 35540444 PMCID: PMC9078912 DOI: 10.1039/c8ra01253a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/01/2018] [Indexed: 01/17/2023] Open
Abstract
A series of bis-thioureas was synthesized as viable precursors for the design of bis-2-iminothiazolidin-4-ones utilizing the ultrasonic irradiation as a sustainable energy source.
Collapse
|
39
|
A green, isocyanide-based three-component reaction approach for the synthesis of multisubstituted ureas and thioureas. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Drabowicz J, Kudzin MH, Kudzin ZH, Pokora-Sobczak P. High-performance liquid chromatographic enantioseparation of N-aryl-thioureidoalkylphosphonates and thiourylenedi(alkylphosphonates) on polysaccharide-based chiral stationary phases. Chirality 2017; 30:131-140. [PMID: 29272065 DOI: 10.1002/chir.22794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/25/2017] [Indexed: 11/07/2022]
Abstract
The first successful enantioseparation of representative O,O-diphenyl-N-arylthioureidoalkylphosphonates, (±)-Ptc-ValP (OPh)2 & (±)-Ptc-LeuP (OPh)2 and thiourylenedi(isobutyl phosphonate), Tcm[ValP (OPh)2 ]2 on analytical and semipreparative scale was achieved by high-performance liquid chromatography using polysaccharide-based chiral stationary phases (CPs). Atc-AAP (OPh)2 was obtained using modified tricomponent condensations of the corresponding aldehydes, N-arylthiourea and triphenyl phosphite whereas Tcm[ValP (OPh)2 ]2 by the condensations of aldehydes, thiourea, and triphenyl phosphite. The prepared, racemic (±)-Atc-AAP (OPh)2 [(±)-Ptc-ValP (OPh)2 , (±)-Ptc-LeuP (OPh)2 , (±)-Ptc-PglyP (OPh)2 and (±)-Ntc-PglyP (OPh)2 ] and racemic (±)-Tcm[AAP (OPh)2 ]2 [(±)-Tcm[NvaP (OPh)2 ]2 & (±)-Tcm[ValP (OPh)2 ]2 ] were adequately characterized and used for chromatographic separations on high-performance liquid chromatography-chiral stationary phases. The best results were obtained for (±)-Ptc-ValP (OPh)2 , (±)-Ptc-LeuP (OPh)2 and (±)-Tcm[ValP (OPh)2 ]2 .
Collapse
Affiliation(s)
- Józef Drabowicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Warsaw, Poland
- Department of Chemistry and Environment Protection, Jan Dlugosz University, Czestochowa, Poland
| | | | | | | |
Collapse
|
41
|
Jangale AD, Dalal DS. Green synthetic approaches for biologically relevant organic compounds. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1369544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Asha D. Jangale
- School of Chemical Sciences, North Maharashtra University, Jalgaon, India
| | - Dipak S. Dalal
- School of Chemical Sciences, North Maharashtra University, Jalgaon, India
| |
Collapse
|
42
|
Azizi N, Farhadi E. Rapid and highly efficient synthesis of thioureas in biocompatible basic choline hydroxide. J Sulphur Chem 2017. [DOI: 10.1080/17415993.2017.1327591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Najmedin Azizi
- Department of Green Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Elham Farhadi
- Department of Green Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
43
|
Tan W, Wei J, Jiang X. Thiocarbonyl Surrogate via Combination of Sulfur and Chloroform for Thiocarbamide and Oxazolidinethione Construction. Org Lett 2017; 19:2166-2169. [PMID: 28388051 DOI: 10.1021/acs.orglett.7b00819] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient and practical thiocarbonyl surrogate via combination of sulfur and chloroform has been developed. A variety of thiocarbamides and oxazolidinethiones have been established, including chiral thiourea catalysts and chiral oxazolidinethione auxiliaries with high selectivity. Meanwhile, pesticides Diafenthiuron (an acaricide), ANTU (a rodenticide), and Chloromethiuron (an insecticide) were practically synthesized through this method in gram scale. Dicholorocarbene, as the key intermediate, was further confirmed via a carbene-trapping control experiment.
Collapse
Affiliation(s)
- Wei Tan
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Jianpeng Wei
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
44
|
Kožurková M, Sabolová D, Kristian P. A review on acridinylthioureas and its derivatives: biological and cytotoxic activity. J Appl Toxicol 2017; 37:1132-1139. [PMID: 28370171 DOI: 10.1002/jat.3464] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/07/2022]
Abstract
Acridines possess two characteristics that have led many researchers to consider the agents interesting targets for future development as potential farmacophores: the planar acridine skeleton, which is able to intercalate into DNA, and the intense fluorescence of the agents. This review offers a study of the multifunctional character of acridines and the synthesis of novel acridine derivatives, with particular focus being placed on isothiocyanates and their congeners, e.g. thioureas, isothioureas, quaternary ammonium salts and platinum/gold conjugates. The review provides an overview of the structure, spectral properties, DNA binding and biological activity of acridinylthiourea congeners. These acridinylthiourea derivatives display significant cytotoxic activities against different types of cancer cell lines at micromolar concentrations. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mária Kožurková
- Department of Biochemisty, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova 11, Košice, Slovak Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, Hradec Kralove, Czech Republic
| | - Danica Sabolová
- Department of Biochemisty, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova 11, Košice, Slovak Republic
| | - Pavol Kristian
- Department of Organic Chemistry, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova 11, Košice, Slovak Republic
| |
Collapse
|
45
|
Arshadi S, Vessally E, Edjlali L, Hosseinzadeh-Khanmiri R, Ghorbani-Kalhor E. N-Propargylamines: versatile building blocks in the construction of thiazole cores. Beilstein J Org Chem 2017; 13:625-638. [PMID: 28487756 PMCID: PMC5389205 DOI: 10.3762/bjoc.13.61] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/06/2017] [Indexed: 11/23/2022] Open
Abstract
Thiazoles and their hydrogenated analogues are not only key structural units in a wide variety of natural products but they also constitute important building blocks in medicinal chemistry. Therefore, the synthesis of these compounds using new protocols is always interesting. It is well known that N-propargylamines can undergo a number of cyclization reactions to produce various nitrogen-containing heterocycles. In this review, we highlight the most important developments on the synthesis of thiazole and its derivatives starting from N-propargylamines. This review will be helpful in the development of improved methods for the synthesis of natural and biologically important compounds.
Collapse
Affiliation(s)
- S Arshadi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - E Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - L Edjlali
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - E Ghorbani-Kalhor
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
46
|
Üngören ŞH, Sırça F. Novel self-condensation of ammonium dithiocarbamates leading to symmetrical substituted thioureas. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2016.1223075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Şevket Hakan Üngören
- Department of Chemistry, Faculty of Arts and Sciences, Bozok University, Yozgat, Turkey
| | - Fatih Sırça
- Department of Chemistry, Faculty of Arts and Sciences, Bozok University, Yozgat, Turkey
| |
Collapse
|
47
|
El-Hiti GA, Smith K, Alshammari MB, Hegazy AS, Kariuki BM. Crystal structure of 3-(4-chlorophenyl)-1,1-dimethylthiourea, C 9H 11ClN 2S. Z KRIST-NEW CRYST ST 2017. [DOI: 10.1515/ncrs-2016-0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C9H11ClN2S, monoclinic, Pc (no. 7), a = 14.8440(4) Å, b = 7.2002(2) Å, c = 10.0920(2) Å, β = 99.733(2)°, V = 1063.10(5) Å3, Z = 4, R
gt(F) = 0.0399, wR
ref(F
2) = 0.1099, T = 296(2) K.
Collapse
Affiliation(s)
- Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Keith Smith
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia
| | - Amany S. Hegazy
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
48
|
El-Hiti GA, Smith K, Hegazy AS, Hayal Alotaibi M, Kariuki BM. Crystal structure of 3-(2-bromophenyl)-1,1-dimethylthiourea, C 9H 11BrN 2S. Z KRIST-NEW CRYST ST 2017. [DOI: 10.1515/ncrs-2016-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C9H11BrN2S, orthorhombic, P212121 (no. 19), a = 7.5187(3) Å, b = 8.0634(3) Å, c = 17.5320(6) Å, V = 1062.90(7) Å3, Z = 4, R
gt(F) = 0.0216, wR
ref(F
2) = 0.0536, T = 296(2) K.
Collapse
Affiliation(s)
- Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Keith Smith
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| | - Amany S. Hegazy
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
49
|
Singh K, Sharma S. An isocyanide based multi-component reaction under catalyst- and solvent-free conditions for the synthesis of unsymmetrical thioureas. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.11.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Li Z, Chen Y, Yin Y, Wang Z, Sun X. Convenient Synthesis of Unsymmetrical N,N′-disubstituted Thioureas in Water. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14760947474916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple and convenient two-step method has been developed and used to synthesise 25 (4 of which are novel) unsymmetrical N,N′-disubstituted thioureas in water. Alkylamines or variously substituted arylamines reacted smoothly with phenyl chlorothionoformate at room temperature to form thiocarbamates, which were then reacted with another alkyl- or arylamine in water at reflux to afford the unsymmetrical N,N′-disubstituted thioureas in good to excellent yields. Mild conditions, simple work-up, high yields as well as using water as solvent are the major advantages of the method.
Collapse
Affiliation(s)
- Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Yuan Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Yue Yin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Zhiming Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P.R. China
| |
Collapse
|