1
|
Glavaš M, Gitlin-Domagalska A, Ptaszyńska N, Starego D, Freza S, Dębowski D, Helbik-Maciejewska A, Łęgowska A, Gilon C, Rolka K. Synthesis of Novel Arginine Building Blocks with Increased Lipophilicity Compatible with Solid-Phase Peptide Synthesis. Molecules 2023; 28:7780. [PMID: 38067510 PMCID: PMC10708530 DOI: 10.3390/molecules28237780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Arginine, due to the guanidine moiety, increases peptides' hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide charge by lipophilic, enzyme-sensitive alkoxycarbonyl groups. Unfortunately, such a modification of a guanidine moiety has not been reported to date and turned out to be challenging. Here, we present a new, optimized strategy to obtain arginine building blocks with increased lipophilicity that were successfully utilized in the solid-phase peptide synthesis of novel arginine vasopressin prodrugs.
Collapse
Affiliation(s)
- Mladena Glavaš
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Dominika Starego
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Sylwia Freza
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Aleksandra Helbik-Maciejewska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Chaim Gilon
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel;
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| |
Collapse
|
2
|
Fortuna A, Gonçalves-Pereira R, Costa PJ, Jorda R, Vojáčková V, Gonzalez G, Heise NV, Csuk R, Oliveira MC, Xavier NM. Synthesis and Exploitation of the Biological Profile of Novel Guanidino Xylofuranose Derivatives. ChemMedChem 2022; 17:e202200180. [PMID: 35576106 DOI: 10.1002/cmdc.202200180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Indexed: 11/07/2022]
Abstract
The synthesis and biological evaluation of novel guanidino sugars as isonucleoside analogs is described. 5-Guanidino xylofuranoses containing 3- O -saturated/unsaturated hydrocarbon or aromatic-containing moieties were accessed from 5-azido xylofuranoses via reduction followed by guanidinylation with N , N '-bis( tert -butoxycarbonyl)- N ''-triflylguanidine. Molecules comprising novel types of isonucleosidic structures including 5-guanidino 3- O -methyl-branched N -benzyltriazole isonucleosides and a guanidinomethyltriazole 3'- O -dodecyl xylofuranos-5'-yl isonucleoside were accessed. The guanidinomethyltriazole derivative and a 3- O -dodecyl ( N -Boc)guanidino xylofuranose were revealed as selective inhibitors of acetylcholinesterase ( K i = 22.87 and 7.49 µM, respectively). The latter also showed moderate antiproliferative effects in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells. An aminomethyltriazole 5'-isonucleoside was the most potent molecule with low micromolar GI 50 values in both cells (GI 50 = 6.33 μM, 8.45 μM), similar to that of the drug 5-fluorouracil in MCF-7 cells. Moreover, the most bioactive compounds showed low toxicity in human fibroblasts, further indicating their interest as promising lead molecules.
Collapse
Affiliation(s)
- Andreia Fortuna
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal
| | - Rita Gonçalves-Pereira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
| | - Paulo J Costa
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal
| | - Radek Jorda
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Veronika Vojáčková
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Gabriel Gonzalez
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Niels V Heise
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120, Halle (Saale), Germany
| | - René Csuk
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120, Halle (Saale), Germany
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Nuno M Xavier
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
3
|
Santana AG, González CC. Tandem Radical Fragmentation/Cyclization of Guanidinylated Monosaccharides Grants Access to Medium-Sized Polyhydroxylated Heterocycles. Org Lett 2020; 22:8492-8495. [PMID: 33074675 DOI: 10.1021/acs.orglett.0c03091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fragmentation of anomeric alkoxyl radicals (ARF) and the subsequent cyclization promoted by hypervalent iodine provide an excellent method for the synthesis of guanidino-sugars. The methodology described herein is one of the few existing general methodologies for the formation of medium-sized exo- and endoguanidine-containing heterocycles presenting a high degree of oxygenation in their structure.
Collapse
Affiliation(s)
- Andrés G Santana
- Instituto de Productos Naturales y Agrobiología del C.S.I.C., Avenida Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Concepción C González
- Instituto de Productos Naturales y Agrobiología del C.S.I.C., Avenida Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
4
|
Sangwan R, Khanam A, Mandal PK. An Overview on the Chemical
N
‐Functionalization of Sugars and Formation of
N
‐Glycosides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rekha Sangwan
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road 226 031 Lucknow India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| |
Collapse
|
5
|
Tahir S, Badshah A, Hussain RA. Guanidines from ‘toxic substances’ to compounds with multiple biological applications – Detailed outlook on synthetic procedures employed for the synthesis of guanidines. Bioorg Chem 2015; 59:39-79. [DOI: 10.1016/j.bioorg.2015.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/25/2022]
|
6
|
Hale KJ, Hough L, Manaviazar S, Calabrese A. Rules and Stereoelectronic Guidelines for the Anionic Nucleophilic Displacement of Furanoside and Furanose O-Sulfonates. Org Lett 2015; 17:1738-41. [DOI: 10.1021/acs.orglett.5b00511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karl J. Hale
- The School of Chemistry & Chemical Engineering and the Centre for Cancer Research and Cell Biology (CCRCB), the Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Leslie Hough
- The School of Chemistry & Chemical Engineering and the Centre for Cancer Research and Cell Biology (CCRCB), the Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Soraya Manaviazar
- The School of Chemistry & Chemical Engineering and the Centre for Cancer Research and Cell Biology (CCRCB), the Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Andrew Calabrese
- The School of Chemistry & Chemical Engineering and the Centre for Cancer Research and Cell Biology (CCRCB), the Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| |
Collapse
|
7
|
Rauf MK, Imtiaz-ud-Din, Badshah A. Novel approaches to screening guanidine derivatives. Expert Opin Drug Discov 2013; 9:39-53. [PMID: 24261559 DOI: 10.1517/17460441.2013.857308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Compounds containing guanidine moiety, originating both from natural and synthetic sources, have found potential applications in both synthetic and medicinal chemistry. Indeed, guanidine functionality can be found in many natural and pharmaceutical products as well as in cosmetic ingredients produced by synthetic methods. AREAS COVERED This review covers the latest developments in the research undertaken for the therapeutic application of newly synthesized guanidine derivatives including: small peptides and peptidomimetics. This article encompasses the selected literature published in the last three decades with a focus on the novel approaches for screening of lead drug candidates with their pharmacological action. EXPERT OPINION Guanidines, as they are both organically based and also hydrophilic in nature, have undergone a mammoth amount of screening and testing to discover promising lead structures with a CN3 core, appropriate for potential future drug development. The compounds have the potential to be neurodegenerative therapeutic options, as well as: anti-inflammatory, anti-protozoal, anti-HIV, chemotherapeutic, anti-diabetic agents and so on. It is true that guanidine-based compounds of natural sources also, like synthetic and virtually designed drugs, have been of significant interest and have the potential to be useful therapeutic options in the future. As for now, however, there is not sufficient data to support their use in a number of the suggested areas, and further studies are required.
Collapse
|
8
|
Sączewski F, Balewski Ł. Biological activities of guanidine compounds, 2008 - 2012 update. Expert Opin Ther Pat 2013; 23:965-95. [PMID: 23617396 DOI: 10.1517/13543776.2013.788645] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Compounds incorporating guanidine moiety have found many practical applications in diverse areas of chemistry, such as nucleophilic organocatalysis, anion recognition and coordination chemistry. Moreover, guanidine functional group is found in natural products, pharmaceuticals and cosmetic ingredients produced by synthetic methods. Thus, knowledge of their biological activities and therapeutic uses is of utmost importance for researchers involved in drug discovery processes. AREAS COVERED In this review the authors highlight the continued development and therapeutic applications of newly synthesized guanidine-containing compounds including small peptides and peptidomimetics incorporating arginine. The review presents patents and patent applications filed in the years 2008 - 2012 with emphasis placed on new mechanisms of pharmacological action of guanidine derivatives. EXPERT OPINION While guanidines are often thought of as strong organic bases and compounds hydrophilic in nature, over the last 4 years there has been an enormous increase in discovery of new promising lead structures with guanidine core, suitable for development of potential drugs acting at central nervous system, anti-inflammatory agents, anti-diabetic and chemotherapeutic agents as well as cosmetics.
Collapse
Affiliation(s)
- Franciszek Sączewski
- Medical University of Gdańsk, Department of Chemical Technology of Drugs, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland.
| | | |
Collapse
|
9
|
Kim JH, Resende R, Wennekes T, Chen HM, Bance N, Buchini S, Watts AG, Pilling P, Streltsov VA, Petric M, Liggins R, Barrett S, McKimm-Breschkin JL, Niikura M, Withers SG. Mechanism-based covalent neuraminidase inhibitors with broad-spectrum influenza antiviral activity. Science 2013; 340:71-5. [PMID: 23429702 DOI: 10.1126/science.1232552] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza antiviral agents play important roles in modulating disease severity and in controlling pandemics while vaccines are prepared, but the development of resistance to agents like the commonly used neuraminidase inhibitor oseltamivir may limit their future utility. We report here on a new class of specific, mechanism-based anti-influenza drugs that function through the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme, and we confirm this mode of action with structural and mechanistic studies. These compounds function in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro. The similarity of their structure to that of the natural substrate and their mechanism-based design make these attractive antiviral candidates.
Collapse
Affiliation(s)
- Jin-Hyo Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bionda N, Cudic P. Solid-phase guanidinylation of peptidyl amines compatible with standard Fmoc-chemistry: formation of monosubstituted guanidines. Methods Mol Biol 2013; 1081:151-165. [PMID: 24014439 DOI: 10.1007/978-1-62703-652-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
With the growing importance of peptides and peptidomimetics as potential therapeutic agents, a continuous synthetic interest has been shown for their modification to provide more stable and bioactive analogs. Among many approaches, peptide/peptidomimetic guanidinylation offers access to analogs possessing functionality with strong basic properties, capable of forming stable intermolecular H-bonds, charge pairing, and cation-π interactions. Therefore, guanidinium functional group is considered as an important pharmacophoric element. Although a number of methods for solid-phase guanidinylation reactions exist, only a few are fully compatible with standard Fmoc solid-phase peptide chemistry.In this chapter we summarize the solid-phase guanidinylation methods fully compatible with standard Fmoc-synthetic methodology. This includes use of direct guanidinylating reagents such as 1-H-pyrazole-1-carboxamidine and triflylguanidine, and guanidinylation with di-protected thiourea derivatives in combination with promoters such as Mukaiyama's reagent, N-iodosuccinimide, and N,N'-diisopropylcarbodiimide.
Collapse
Affiliation(s)
- Nina Bionda
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | |
Collapse
|
11
|
Berlinck RGS, Trindade-Silva AE, Santos MFC. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2012; 29:1382-406. [PMID: 22991131 DOI: 10.1039/c2np20071f] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The chemistry and biology of organic natural guanidines are reviewed, including the isolation, structure determination, synthesis, biosynthesis and biological activities of alkaloids, non-ribosomal peptides, guanidine-bearing terpenes, polyketides and shikimic acid derivatives from natural sources.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| | | | | |
Collapse
|
12
|
Chen CH, Tung CL, Sun CM. Microwave-assisted synthesis of highly functionalized guanidines on soluble polymer support. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|