1
|
Fei Y, Zhou Z, Ni Z, Peng X, Cui L, Zhou Z, Li X, Li C, Jia X, Li J. Chemoselective Construction of Polycyclic Heterocycles Containing a [6-6-5] or [7-6-5] Tricyclic Core Skeleton from a 2-Isocyanophenyl Propargylic Ester. Angew Chem Int Ed Engl 2024:e202414726. [PMID: 39215589 DOI: 10.1002/anie.202414726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Functionalized isocyanide chemistry represents an important research area in organic synthesis. A structurally unique 2-isocyanophenyl propargylic ester has been designed to incorporate the reactivity of isocyanide and propargylic ester functionalities. Thus, the reaction of 2-isocyanophenyl propargylic ester and 2-aminoaromatic aldimine facilitates the synthesis of a wide range of polycyclic benzo[b] indolo [3,2-h][1,6] naphthyridine derivatives. Furthermore, reaction with 2-hydroxyaromatic aldimine enables the divergent synthesis of both the aforementioned scaffolds and structurally distinct diazabenzo [f] naphtho[2,3,4-ij] azulenes featuring a [7-6-5] core skeleton. Experimental results and DFT calculations suggest that these transformations likely proceed by the in situ generation of a strained cyclopropenimine species followed by [3+2] cycloaddition. Next, switchable nucleophilic attack/ring expansion/aromatization and nucleophilic addition/ring expansion/elimination account for the observed selectivity.
Collapse
Affiliation(s)
- Youwen Fei
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zihao Zhou
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zihan Ni
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xin Peng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Cui
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zijun Zhou
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xinyao Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Chunju Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Xueshun Jia
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Jian Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Chandrasekaran R, Selvam K, Rajeshkumar T, Chinnusamy T, Maron L, Rasappan R. Anti-Selective Carbosilylation: Nickel-Catalyzed Multicomponent Reaction of Solid Me 3SiZnI. Angew Chem Int Ed Engl 2024; 63:e202318689. [PMID: 38547324 DOI: 10.1002/anie.202318689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/25/2024]
Abstract
The stereodefined and highly substituted vinylsilanes are essential building blocks for constructing complex organic molecules. Transition metal-mediated silylmetalation of alkynes was developed to overcome the limitations of conventional hydrosilylations; however, a very limited study was carried out to utilize transient vinylmetal species in cross-coupling reactions. Moreover, they produce syn-adduct, and the anti-selective cross-coupling is still unknown and highly desired. Silylzinc reagents are highly functional group tolerant, however, their synthesis from pyrophoric silyllithium and dissolved lithium salts hampers cross-coupling reactions. Our novel solid silylzinc reagents circumvent these constraints are employed in the anti-selective synthesis of vinylsilanes via a multi-component reaction involving Me3SiZnI, terminal alkynes, and activated alkyl halides. An intensive computational and experimental investigation of the mechanism reveals an equilibrium between the intermediate syn- and anti-adducts; the greater barrier at the single electron reduction of alkyl halides and the thermodynamic stability of the Ni(III) adduct determine the anti-selectivity.
Collapse
Affiliation(s)
- Revathi Chandrasekaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Keerthika Selvam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Tamilselvi Chinnusamy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
Cheng S, Yu T, Li J, Liang Y, Luo S, Zhu Q. Copper/Chiral Phosphoric-Acid-Catalyzed Intramolecular Reductive Isocyanide-Alkene (1 + 2) Cycloaddition: Enantioselective Construction of 2-Azabicyclo[3.1.0]hexanes. J Am Chem Soc 2024; 146:7956-7962. [PMID: 38471146 DOI: 10.1021/jacs.4c00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Enantioenriched 2-azabicyclo[3.1.0]hexanes are accessed from readily available allyl substituted α-isocyanoesters by intramolecular (1 + 2) cycloaddition with the olefinic moiety and isocyano carbon as the respective C2 and C1 units. Cyclopropanation is initiated by 1,1-hydrocupration of isocyanide followed by formimidoylcopper to copper α-aminocarbenoid equilibration and subsequent (1 + 2) cycloaddition. The unprecedented copper/chiral phosphoric acid (CPA) catalytic system can be operated in the presence of water under air, delivering a variety of 2-azabicyclo[3.1.0]hexanes containing an angular all-carbon quaternary stereocenter in good to excellent yields and enantioselectivity.
Collapse
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yingxiang Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
4
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
5
|
Yamagishi H, Hitoshio K, Shimokawa J, Yorimitsu H. Sodium silylsilanolate as a precursor of silylcopper species. Chem Sci 2022; 13:4334-4340. [PMID: 35509465 PMCID: PMC9006920 DOI: 10.1039/d2sc00227b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/20/2022] [Indexed: 12/18/2022] Open
Abstract
Silylcoppers function as convenient and effective sources of silicon functional groups. Commonly used precursors for those species have been limited to certain symmetric disilanes and silylboranes. This fact renders the development of silylcopper precursors desirable so that more diverse silyl groups could be efficiently delivered. Here we extend the utility of sodium silylsilanolates as competent precursors of silylcoppers. A silanolate unit operates as an auxiliary to transfer a variety of silyl groups to the copper centre, which was demonstrated in the copper-catalysed hydrosilylation of internal alkynes, α,β-unsaturated ketones, and allenes. Our mechanistic studies through DFT calculation suggested that a copper silylsilanolate undergoes intramolecular oxidative addition of the Si–Si bond to the copper centre to generate a silylcopper, in contrast to the typical formal σ-bond metathesis mechanism for conventional disilanes or silylboranes and copper alkoxides. Accordingly, sodium silylsilanolate has been established as an expeditious precursor of a variety of silylcopper species. Sodium silylsilanolates are demonstrated as useful silylating reagents for copper-catalysed hydrosilylation of unsaturated bonds via the formation of reactive silylcopper species that can deliver a series of silyl groups.![]()
Collapse
Affiliation(s)
- Hiroki Yamagishi
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Kenshiro Hitoshio
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Jun Shimokawa
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
6
|
Liu J, Yang T, Yuan YH, Hu JY, Lin LB, Yang ML, Duan DZ, Gong GW, Xiao J, Wang XL. Acrocalyenes A and B, Two New Diterpenoids from Sinomenium acutum Associated Fungus Acrocalymma sp. Chem Biodivers 2022; 19:e202100946. [PMID: 35253972 DOI: 10.1002/cbdv.202100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
Abstract
We identified two new diterpenoidal acrocalyenes A (1) and B (2) through chemical investigation on Acrocalymma sp., a plant-associated fungus from the tender stem isolates of Sinomenium acutum collected from the Qinling Mountains, along with seven already-recognized compounds (3-9). The HR-ESI-TOF-MS and 1D/2D NMR data were utilized for structural elucidation of these compounds, and the single-crystal X-ray diffraction was employed for absolute configuration clarification of the novel acrocalyenes 1 and 2. Bioassays revealed that the cytotoxicities of compounds 2, 4, 6, 7, and 8 against three human carcinoma cells (RKO, HeLa and HCC-1806) were moderate to strong, with IC50 between 6.70-38.82 μM. These isolates were also evaluated for their fungal resistant potentials against Botrytis cinerea, Fusarium culmorum and Fusarium solani, in which 3 displayed significant inhibitory effects on all three phytopathogenic fungi, showing respective MIC of 50, 25 and 25 μM.
Collapse
Affiliation(s)
- Jie Liu
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, P. R. China
| | - Ting Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, P. R. China
| | - Ya-Hong Yuan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, P. R. China
| | - Jia-Yao Hu
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, P. R. China
| | - Li-Bin Lin
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, P. R. China
| | - Mei-Li Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, P. R. China
| | - Dong-Zhu Duan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, P. R. China
| | - Guo-Wei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, Guangdong, P. R. China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, P. R. China
| | - Xiao-Ling Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, P. R. China
| |
Collapse
|
7
|
Choi I, Müller V, Ackermann L. Ruthenium(II)-carboxylate-catalyzed C4/C6–H dual alkylations of indoles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Harish B, Yadav S, Suresh S. Design and application of intramolecular vinylogous Michael reaction for the construction of 2-alkenyl indoles. Chem Commun (Camb) 2021; 57:231-234. [PMID: 33300907 DOI: 10.1039/d0cc06564a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A base-mediated transformation based on a designed intramolecular vinylogous Michael addition (intra-VMA) is presented to access 3-substituted 2-alkenyl indole derivatives. The reaction represents the first example of the intra-VMA for the construction of indoles. A one-pot N-allylation of ortho-tosylamidocinnamates/congeners with γ-bromocrotonates followed by intra-VMA has been described to provide access to a diverse range of 2-alkenyl indole derivatives in reasonable to high yields. The synthetic value of the developed intra-VMA has been demonstrated by gram-scale synthesis of a representative indole derivative and also by the formal synthesis of MK-7246: a Merck's clinical CRTH2 antagonist.
Collapse
Affiliation(s)
- Battu Harish
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | | | | |
Collapse
|
9
|
Dong J, Wang L, Li H, Leng X, Guo X, Hu Z, Xu X. Self-cyclization vs. dimerization of o-alkenyl arylisocyanides: chemodivergent synthesis of quinolines and pyrrolo-fused diindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00132a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Solvent-dependent chemoselective MBH-type self-cyclization and dimerization of o-alkenyl arylisocyanides were developed for the efficient and chemodivergent synthesis of various 3-acylquinoline and pyrrolo-fused diindole frameworks.
Collapse
Affiliation(s)
- Jinhuan Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Lei Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Haoyue Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xinrong Leng
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xiaoyu Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhongyan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xianxiu Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
10
|
Wang J, Li D, Li J, Zhu Q. Advances in palladium-catalysed imidoylative cyclization of functionalized isocyanides for the construction of N-heterocycles. Org Biomol Chem 2021; 19:6730-6745. [PMID: 34259697 DOI: 10.1039/d1ob00864a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Palladium-catalysed isocyanide insertion reactions have witnessed great progress in recent years. In particular, imidoylative cyclization of functionalized isocyanides was successfully developed by taking advantage of the adjustable substituents on the isocyano group, opening a new avenue to access a variety of nitrogen-containing heterocycles. In this review article, we summarize the advances of functionalized isocyanide insertion reactions and highlight the breakthroughs of enantioselective palladium catalysed imidoylation reactions by using this strategy. Additionally, copper-catalysed cyclization reactions of functionalized isocyanides are briefly discussed.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and University of Chinese Academy of Sciences, Beijing 100049, China and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and University of Chinese Academy of Sciences, Beijing 100049, China and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
11
|
Vasudevan N, Wimmer E, Barré E, Cortés‐Borda D, Rodriguez‐Zubiri M, Felpin F. Direct C−H Arylation of Indole‐3‐Acetic Acid Derivatives Enabled by an Autonomous Self‐Optimizing Flow Reactor. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- N. Vasudevan
- Université de Nantes CNRS CEISAM UMR 6230 2 rue de la Houssinière 44322 Nantes France
| | - Eric Wimmer
- Université de Nantes CNRS CEISAM UMR 6230 2 rue de la Houssinière 44322 Nantes France
| | - Elvina Barré
- Université de Nantes CNRS CEISAM UMR 6230 2 rue de la Houssinière 44322 Nantes France
| | - Daniel Cortés‐Borda
- Université de Nantes CNRS CEISAM UMR 6230 2 rue de la Houssinière 44322 Nantes France
| | | | | |
Collapse
|
12
|
Suzuki A, Guo X, Lin Z, Yamashita M. Nucleophilic reactivity of the gold atom in a diarylborylgold(i) complex toward polar multiple bonds. Chem Sci 2020; 12:917-928. [PMID: 34163858 PMCID: PMC8179162 DOI: 10.1039/d0sc05478j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
A di(o-tolyl)borylgold complex was synthesized via the metathesis reaction of a gold alkoxide with tetra(o-tolyl)diborane(4). The resulting diarylborylgold complex exhibited a Lewis acidic boron center and a characteristic visible absorption that arises from its HOMO-LUMO excitation, which is narrower than that of a previously reported dioxyborylgold complex. The diarylborylgold complex reacted with isocyanide in a stepwise fashion to afford single- and double-insertion products and a C-C coupled product. Reactions of this diarylborylgold complex with C[double bond, length as m-dash]O/N double bond species furnished addition products under concomitant formation of Au-C and B-O/N bonds, which suggests nucleophilic reactivity of the gold metal center. DFT calculations provided details of the underlying reaction mechanism, which involves an initial coordination of the C[double bond, length as m-dash]O/N bond to the boron vacant p-orbital of the diarylboryl ligand followed by a migration of the gold atom from the tetracoordinate sp3-hybridized boron center, which is analogous to the reactivity of the conventional sp3-hybridized borate species. The DFT calculations also suggested a stepwise mechanism for the reaction of this diarylborylgold complex with isocyanide, which afforded three different reaction products depending on the applied reaction conditions.
Collapse
Affiliation(s)
- Akane Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Aichi Japan
| | - Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Aichi Japan
| |
Collapse
|
13
|
|
14
|
Li Q, Gong J, Li Y, Zhang R, Wang H, Zhang J, Yan H, Lam JWY, Sung HHY, Williams ID, Kwok RTK, Li MH, Wang J, Tang BZ. Unusual light-driven amplification through unexpected regioselective photogeneration of five-membered azaheterocyclic AIEgen. Chem Sci 2020; 12:709-717. [PMID: 34163804 PMCID: PMC8179000 DOI: 10.1039/d0sc04725b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/17/2020] [Indexed: 12/03/2022] Open
Abstract
Developing versatile synthetic methodologies with merits of simplicity, efficiency, and environment friendliness for five-membered heterocycles is of incredible importance to pharmaceutical and material science, as well as a huge challenge to synthetic chemistry. Herein, an unexpected regioselective photoreaction to construct a fused five-membered azaheterocycle with an aggregation-induced emission (AIE) characteristic is developed under mild conditions. The formation of the five-membered ring is both thermodynamically and kinetically favored, as justified by theoretical calculation and experimental evidence. Markedly, a light-driven amplification strategy is proposed and applied in selective mitochondria-targeted cancer cell recognition and fluorescent photopattern fabrication with improved resolution. The work not only delivers the first report on efficiently generating a fused five-membered azaheterocyclic AIE luminogen under mild conditions via photoreaction, but also offers deep insight into the essence of the photosynthesis of fused five-membered azaheterocyclic compounds.
Collapse
Affiliation(s)
- Qiyao Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Junyi Gong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ying Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jianquan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - He Yan
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Min-Hui Li
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris Paris 75005 France
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
- Center for Aggregation-induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
15
|
Zhang X, Zhu P, Zhang R, Li X, Yao T. Visible-Light-Induced Decarboxylative Cyclization of 2-Alkenylarylisocyanides with α-Oxocarboxylic Acids: Access to 2-Acylindoles. J Org Chem 2020; 85:9503-9513. [PMID: 32600039 DOI: 10.1021/acs.joc.0c00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient and practical protocol for visible-light-induced decarboxylative cyclization of 2-alkenylarylisocyanides with α-oxocarboxylic acids has been developed, which afforded a broad range of 2-acylindoles in moderate to good yields. The reaction proceeds through a cascade of acyl radical addition/cyclization reactions under irradiation of an Ir3+ photoredox catalyst without external oxidants and features simple operation, scalability, a broad substrate scope, and good functional group tolerance.
Collapse
Affiliation(s)
- Xiaofei Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Peiyuan Zhu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ruihong Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tuanli Yao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
16
|
Larin EM, Loup J, Polishchuk I, Ross RJ, Whyte A, Lautens M. Enantio- and diastereoselective conjugate borylation/Mannich cyclization. Chem Sci 2020; 11:5716-5723. [PMID: 34094079 PMCID: PMC8159378 DOI: 10.1039/d0sc02421j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Strategies to capitalize on enolate intermediates generated from stereoselective conjugate borylation to α,β-unsaturated carbonyl systems are surprisingly rare despite the ubiquity of Michael acceptors, and the potential to generate valuable scaffolds bearing multiple stereocenters. Herein, we report a mild and stereoselective copper-catalyzed conjugate borylation/Mannich cyclization reaction. This strategy is feasible with a broad range of Michael acceptors, and can be leveraged to generate versatile borylated tetrahydroquinoline scaffolds bearing three contiguous stereocenters. The synthetic potential of these complex heterocycles has been explored through a series of derivatization studies. Copper-catalyzed enantio- and diastereoselective conjugate borylation across Michael acceptors, with subsequent Mannich-type cyclization, was utilized to construct tetrahydroquinoline scaffolds containing three contiguous stereocenters.![]()
Collapse
Affiliation(s)
- Egor M Larin
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Joachim Loup
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Iuliia Polishchuk
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Rachel J Ross
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Andrew Whyte
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
17
|
Sendra J, Manzano R, Reyes E, Vicario JL, Fernández E. Catalytic Stereoselective Borylative Transannular Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jana Sendra
- Department Química Física i InorgànicaUniversity Rovira i Virgili C/ Marcel⋅lí Domingo s/n Spain
- Department of Organic Chemistry IIUniversity of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Ruben Manzano
- Department of Organic Chemistry IIUniversity of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Efraim Reyes
- Department of Organic Chemistry IIUniversity of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Jose L. Vicario
- Department of Organic Chemistry IIUniversity of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Elena Fernández
- Department Química Física i InorgànicaUniversity Rovira i Virgili C/ Marcel⋅lí Domingo s/n Spain
| |
Collapse
|
18
|
Sendra J, Manzano R, Reyes E, Vicario JL, Fernández E. Catalytic Stereoselective Borylative Transannular Reactions. Angew Chem Int Ed Engl 2020; 59:2100-2104. [PMID: 31730740 DOI: 10.1002/anie.201913438] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 11/09/2022]
Abstract
Medium-sized carbocycles containing an α,β-unsaturated ketone moiety as Michael acceptor site and a ketone moiety as internal electrophilic site are ideal substrates to conduct Cu(I)-catalyzed conjugated borylation followed by electrophilic intramolecular trapping that results into a pioneer transannular borylative ring closing reaction. The relative configuration of three adjacent stereocenters is controlled, giving access to a single diastereoisomer for a wide range of substrates tested. Moreover, when a chiral ligand is incorporated, the reaction provides enantioenriched polycyclic products with up to 99 % ee.
Collapse
Affiliation(s)
- Jana Sendra
- Department Química Física i Inorgànica, University Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, Spain.,Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Ruben Manzano
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Efraim Reyes
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Jose L Vicario
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Elena Fernández
- Department Química Física i Inorgànica, University Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, Spain
| |
Collapse
|
19
|
Collet JW, Roose TR, Ruijter E, Maes BUW, Orru RVA. Base Metal Catalyzed Isocyanide Insertions. Angew Chem Int Ed Engl 2020; 59:540-558. [DOI: 10.1002/anie.201905838] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Bert U. W. Maes
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
20
|
Yang M, Meng XH, Wang Z, Gong Y, Zhao YL. Rhodium/copper-cocatalyzed coupling-cyclization of o-alkenyl arylisocyanides with vinyl azides: one-pot synthesis of α-carbolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00994f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel rhodium/copper-cocatalyzed coupling–cyclization reaction of o-alkenyl arylisocyanides with vinyl azides has been developed. The reaction provides a new route to α-carbolines by the formation of two C–C bonds, one C–N bond and two aromatic rings in a single step.
Collapse
Affiliation(s)
- Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yue Gong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
21
|
Collet JW, Roose TR, Ruijter E, Maes BUW, Orru RVA. Base Metal Catalyzed Isocyanide Insertions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Bert U. W. Maes
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
22
|
Čubiňák M, Edlová T, Polák P, Tobrman T. Indolylboronic Acids: Preparation and Applications. Molecules 2019; 24:E3523. [PMID: 31569441 PMCID: PMC6803883 DOI: 10.3390/molecules24193523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022] Open
Abstract
Indole derivatives are associated with a variety of both biological activities and applications in the field of material chemistry. A number of different strategies for synthesizing substituted indoles by means of the reactions of indolylboronic acids with electrophilic compounds are considered the methods of choice for modifying indoles because indolylboronic acids are easily available, stable, non-toxic and new reactions using indolylboronic acids have been described in the literature. Thus, the aim of this review is to summarize the methods available for the preparation of indolylboronic acids as well as their chemical transformations. The review covers the period 2010-2019.
Collapse
Affiliation(s)
- Marek Čubiňák
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Tereza Edlová
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Peter Polák
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
23
|
Wilkinson JR, Nuyen CE, Carpenter TS, Harruff SR, Van Hoveln R. Copper-Catalyzed Carbon–Silicon Bond Formation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02762] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jake R. Wilkinson
- Department of Chemistry and Physics, Indiana State University, Terre Haute, Indiana 47809, United States
| | - Courtney E. Nuyen
- Department of Chemistry and Physics, Indiana State University, Terre Haute, Indiana 47809, United States
| | - Trent S. Carpenter
- Department of Chemistry and Physics, Indiana State University, Terre Haute, Indiana 47809, United States
| | - Stephan R. Harruff
- Department of Chemistry and Physics, Indiana State University, Terre Haute, Indiana 47809, United States
| | - Ryan Van Hoveln
- Department of Chemistry and Physics, Indiana State University, Terre Haute, Indiana 47809, United States
| |
Collapse
|
24
|
Cao Z, Zhu JB, Wang L, Liao S, Tang Y. A Synthesis of Multifunctionalized Indoles from [3 + 2] Annulation of 2-Bromocyclopropenes with Anilines. Org Lett 2019; 21:4097-4100. [DOI: 10.1021/acs.orglett.9b01276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhu Cao
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Jian-Bo Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Lijia Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Saihu Liao
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
25
|
Yang Z, Jiang K, Chen YC, Wei Y. Copper-Catalyzed Dihydroquinolinone Synthesis from Isocyanides and O-Benzoyl Hydroxylamines. J Org Chem 2019; 84:3725-3734. [DOI: 10.1021/acs.joc.9b00262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Yang
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Kun Jiang
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ying-Chun Chen
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ye Wei
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
26
|
Cross-coupling reactions by cooperative Pd/Cu or Ni/Cu catalysis based on the catalytic generation of organocopper nucleophiles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Zhao G, Bignon J, Levaique H, Dubois J, Alami M, Provot O. One-Pot Synthesis of 2-Styrylindoles from Ortho-Substituted Chloroenynes. J Org Chem 2018; 83:15323-15332. [DOI: 10.1021/acs.joc.8b02563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Guangkuan Zhao
- Univ. Paris-Sud,
BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue
Contre Le Cancer, F-92296 Châtenay-Malabry, France
| | - Jerôme Bignon
- CIBI Platform, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS avenue de la terrasse, F-91198 Gif sur Yvette, France
| | - Helène Levaique
- CIBI Platform, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS avenue de la terrasse, F-91198 Gif sur Yvette, France
| | - Joëlle Dubois
- CIBI Platform, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS avenue de la terrasse, F-91198 Gif sur Yvette, France
| | - Mouad Alami
- Univ. Paris-Sud,
BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue
Contre Le Cancer, F-92296 Châtenay-Malabry, France
| | - Olivier Provot
- Univ. Paris-Sud,
BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue
Contre Le Cancer, F-92296 Châtenay-Malabry, France
| |
Collapse
|
28
|
Vidyasagar A, Shi J, Kreitmeier P, Reiser O. Bromo- or Methoxy-Group-Promoted Umpolung Electron Transfer Enabled, Visible-Light-Mediated Synthesis of 2-Substituted Indole-3-glyoxylates. Org Lett 2018; 20:6984-6989. [DOI: 10.1021/acs.orglett.8b02725] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adiyala Vidyasagar
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Jinwei Shi
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Peter Kreitmeier
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
29
|
Gomes GDP, Loginova Y, Vatsadze SZ, Alabugin IV. Isonitriles as Stereoelectronic Chameleons: The Donor-Acceptor Dichotomy in Radical Additions. J Am Chem Soc 2018; 140:14272-14288. [PMID: 30270623 DOI: 10.1021/jacs.8b08513] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C-H/C-C bonds at the radical carbon eclipses the isonitrile N-C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals ("the tyranny of tin"). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by "chameleonic" supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry.
Collapse
Affiliation(s)
- Gabriel Dos Passos Gomes
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32309 , United States
| | - Yulia Loginova
- Department of Organic Chemistry, Faculty of Chemistry , Lomonosov Moscow State University , 1-3 Leninskiye Gory , Moscow 119991 , Russia
| | - Sergey Z Vatsadze
- Department of Organic Chemistry, Faculty of Chemistry , Lomonosov Moscow State University , 1-3 Leninskiye Gory , Moscow 119991 , Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32309 , United States
| |
Collapse
|
30
|
Chen J, Guo J, Lu Z. Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800314] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianhui Chen
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou, Zhejiang 325035 China
- Department of chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Jun Guo
- Department of chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Zhan Lu
- Department of chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| |
Collapse
|
31
|
Kang U, Ryu SM, Lee D, Seo EK. Chemical Constituents of the Leaves of Brassica oleracea var. acephala. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2542-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Liu Y, Chen XL, Zeng FL, Sun K, Qu C, Fan LL, An ZL, Li R, Jing CF, Wei SK, Qu LB, Yu B, Sun YQ, Zhao YF. Phosphorus Radical-Initiated Cascade Reaction To Access 2-Phosphoryl-Substituted Quinoxalines. J Org Chem 2018; 83:11727-11735. [DOI: 10.1021/acs.joc.8b01657] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang 464000, China
| | - Xiao-Lan Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Fan-Lin Zeng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chen Qu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lu-Lu Fan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Long An
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chun-Feng Jing
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Kai Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan-Qiang Sun
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Fen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| |
Collapse
|
33
|
O’Brien CJ, Droege DG, Jiu AY, Gandhi SS, Paras NA, Olson SH, Conrad J. Photoredox Cyanomethylation of Indoles: Catalyst Modification and Mechanism. J Org Chem 2018; 83:8926-8935. [PMID: 29940725 PMCID: PMC6097937 DOI: 10.1021/acs.joc.8b01146] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The direct cyanomethylation of indoles at the 2- or 3-position was achieved via photoredox catalysis. The versatile nitrile synthon is introduced as a radical generated from bromoacetonitrile, a photocatalyst, and blue LED as a light source. The mechanism of the reaction is explored by determination of the Stern-Volmer quenching constants. By combining photophysical data and mass spectrometry to follow the catalyst decomposition, the catalyst ligands were tuned to enable synthetically useful yields of radical coupling products. A range of indole substrates with alkyl, aryl, halogen, ester, and ether functional groups participate in the reaction, affording products in 16-90% yields. The reaction allows the rapid construction of synthetically useful cyanomethylindoles, products that otherwise require several synthetic steps.
Collapse
Affiliation(s)
- Connor J. O’Brien
- Institute for Neurodegenerative Diseases (IND), Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco,
California, 94158, United States
| | - Daniel G. Droege
- Institute for Neurodegenerative Diseases (IND), Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco,
California, 94158, United States
| | - Alexander Y. Jiu
- Institute for Neurodegenerative Diseases (IND), Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco,
California, 94158, United States
| | - Shivaani S. Gandhi
- Institute for Neurodegenerative Diseases (IND), Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco,
California, 94158, United States
| | - Nick A. Paras
- Institute for Neurodegenerative Diseases (IND), Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco,
California, 94158, United States
| | - Steven H. Olson
- Institute for Neurodegenerative Diseases (IND), Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco,
California, 94158, United States
| | - Jay Conrad
- Institute for Neurodegenerative Diseases (IND), Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco,
California, 94158, United States
| |
Collapse
|
34
|
Men Y, Hu Z, Dong J, Xu X, Tang B. Formal [1 + 2 + 3] Annulation: Domino Access to Carbazoles and Indolocarbazole Alkaloids. Org Lett 2018; 20:5348-5352. [PMID: 30110173 DOI: 10.1021/acs.orglett.8b02266] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A new formal [1 + 2 + 3] annulation of o-alkenyl arylisocyanides with α, β-unsaturated ketones under metal-, base-, and acid-free conditions is disclosed. This domino reaction provides a general protocol for the efficient and practical synthesis of a wide range of carbazole derivatives from readily available starting materials in a single operation. Furthermore, this methodology was used as the key step in a protecting-group-free synthesis of indolocarbazole alkaloids arcyriaflavin A and racemosin B.
Collapse
Affiliation(s)
- Yang Men
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China.,Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis , Northeast Normal University , Changchun 130024 , China
| | - Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China
| | - Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China
| |
Collapse
|
35
|
Heckman LM, He Z, Jamison TF. Synthesis of Highly Substituted 2-Arylindoles via Copper-Catalyzed Coupling of Isocyanides and Arylboronic Acids. Org Lett 2018; 20:3263-3267. [DOI: 10.1021/acs.orglett.8b01132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Laurel M. Heckman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhi He
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy F. Jamison
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Yamazaki K, Tajima Y, Tada H, Kobayashi Y, Miyamoto Y, Ohkubo T, Ohba M. Synthesis of 2,3-Disubstituted Indoles by Alkylative and Arylative Cyclization of 2-Alkenylphenylisocyanides with Grignard Reagents. HETEROCYCLES 2018. [DOI: 10.3987/com-17-13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Evoniuk CJ, Gomes GDP, Ly M, White FD, Alabugin IV. Coupling Radical Homoallylic Expansions with C–C Fragmentations for the Synthesis of Heteroaromatics: Quinolines from Reactions of o-Alkenylarylisonitriles with Aryl, Alkyl, and Perfluoroalkyl Radicals. J Org Chem 2017; 82:4265-4278. [DOI: 10.1021/acs.joc.7b00262] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher J. Evoniuk
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Gabriel dos Passos Gomes
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Michelle Ly
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frankie D. White
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V. Alabugin
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
38
|
Hojoh K, Ohmiya H, Sawamura M. Synthesis of α-Quaternary Formimides and Aldehydes through Umpolung Asymmetric Copper Catalysis with Isocyanides. J Am Chem Soc 2017; 139:2184-2187. [PMID: 28125781 DOI: 10.1021/jacs.6b12881] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regio- and enantioselective copper-catalyzed three-component coupling of isocyanides, hydrosilanes, and γ,γ-disubstituted allylic phosphates/chlorides to afford chiral α-quaternary formimides was enabled by the combined use of our original chiral naphthol-carbene ligand as a functional Cu-supporting ligand and LiOtBu as a stoichiometric Lewis base for Si. The formimides were readily converted to α-quaternary aldehydes.
Collapse
Affiliation(s)
- Kentaro Hojoh
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Hirohisa Ohmiya
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| |
Collapse
|
39
|
Patra A, Mukherjee S, Das TK, Jain S, Gonnade RG, Biju AT. N-Heterocyclic-Carbene-Catalyzed Umpolung of Imines. Angew Chem Int Ed Engl 2017; 56:2730-2734. [DOI: 10.1002/anie.201611268] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Atanu Patra
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| | - Subrata Mukherjee
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| | - Tamal Kanti Das
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| | - Shailja Jain
- Physical/Materials Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
| | - Rajesh G. Gonnade
- Centre for Materials Characterization; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
| | - Akkattu T. Biju
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| |
Collapse
|
40
|
Patra A, Mukherjee S, Das TK, Jain S, Gonnade RG, Biju AT. N-Heterocyclic-Carbene-Catalyzed Umpolung of Imines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Atanu Patra
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| | - Subrata Mukherjee
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| | - Tamal Kanti Das
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| | - Shailja Jain
- Physical/Materials Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
| | - Rajesh G. Gonnade
- Centre for Materials Characterization; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
| | - Akkattu T. Biju
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020 India
| |
Collapse
|
41
|
Kubota K, Iwamoto H, Ito H. Formal nucleophilic borylation and borylative cyclization of organic halides. Org Biomol Chem 2017; 15:285-300. [DOI: 10.1039/c6ob02369j] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in borylations of organic halides, including both transition-metal-catalyzed and metal-free methods are summarized. Borylative cyclization is also discussed.
Collapse
Affiliation(s)
- K. Kubota
- Division of Applied Chemistry and Frontier Chemistry Centre (FCC)
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - H. Iwamoto
- Division of Applied Chemistry and Frontier Chemistry Centre (FCC)
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - H. Ito
- Division of Applied Chemistry and Frontier Chemistry Centre (FCC)
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
42
|
Chen Z, Wang X. A Pd-catalyzed, boron ester-mediated, reductive cross-coupling of two aryl halides to synthesize tricyclic biaryls. Org Biomol Chem 2017; 15:5790-5796. [DOI: 10.1039/c7ob01237c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct cross-coupling of two different aryl halides in the presence of a palladium catalyst and boron ester was developed to synthesize tricyclic biaryls in one step.
Collapse
Affiliation(s)
- Zhilong Chen
- Center for Integrative Chemical Biology and Drug Discovery
- Division of Chemical Biology and Medicinal Chemistry
- Eshelman School of Pharmacy
- University of North Carolina at Chapel Hill
- Chapel Hill
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery
- Division of Chemical Biology and Medicinal Chemistry
- Eshelman School of Pharmacy
- University of North Carolina at Chapel Hill
- Chapel Hill
| |
Collapse
|
43
|
Harish B, Subbireddy M, Suresh S. N-Heterocyclic carbene (NHC)-catalysed atom economical construction of 2,3-disubstituted indoles. Chem Commun (Camb) 2017; 53:3338-3341. [DOI: 10.1039/c6cc10292a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
N-Heterocyclic carbene (NHC)-catalysed atom economical synthesis of a wide range of 2-substituted indole-3-acetic acid derivatives has been disclosed.
Collapse
Affiliation(s)
- Battu Harish
- Organic and Biomolecular Chemistry Division
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
- Hyderabad 500 007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Manyam Subbireddy
- Organic and Biomolecular Chemistry Division
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
- Hyderabad 500 007
- India
| | - Surisetti Suresh
- Organic and Biomolecular Chemistry Division
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
- Hyderabad 500 007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
44
|
Gomes GDP, Evoniuk CJ, Ly M, Alabugin IV. Changing the path of least resistance, or access to endo-dig products via a sequence of three exo-trig transition states: electronic effects in homoallyic ring expansion cascades of alkenyl isonitriles. Org Biomol Chem 2017; 15:4135-4143. [DOI: 10.1039/c7ob00527j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substituent effects reshape the potential energy surfaces for radical homoallylic expansion/fragmentation cascades that transform alkenyl isonitriles into N-heteroaromatics
Collapse
Affiliation(s)
| | | | - Michelle Ly
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| |
Collapse
|
45
|
Xiong Z, Liang D, Luo S. Palladium-catalyzed β-selective C(sp2)–H carboxamidation of enamides by isocyanide insertion: synthesis of N-acyl enamine amides. Org Chem Front 2017. [DOI: 10.1039/c7qo00049a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of N-acyl enamine amides via palladium-catalyzed alkene C–H activation and isocyanide insertion has been developed.
Collapse
Affiliation(s)
- Zhuang Xiong
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| | - Dongdong Liang
- Department of Pharmaceutical Sciences
- University of Maryland School of Pharmacy
- Baltimore
- USA
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| |
Collapse
|
46
|
Abstract
This review demonstrates the metal-catalyzed incorporation of isocyanides into C–H functionalization to establish complicated reactions utilizing synergistic effects.
Collapse
Affiliation(s)
- Bingrui Song
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
- China
| | - Bin Xu
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
47
|
Ishikawa R, Iwasawa R, Takiyama Y, Yamauchi T, Iwanaga T, Takezaki M, Watanabe M, Teramoto N, Shimasaki T, Shibata M. Synthesis of 1,2-Bis(2-aryl-1H-indol-3-yl)ethynes via 5-exo-Digonal Double Cyclization Reactions of 1,4-Bis(2-isocyanophenyl)buta-1,3-diyne with Aryl Grignard Reagents. J Org Chem 2016; 82:652-663. [DOI: 10.1021/acs.joc.6b02668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rino Ishikawa
- Department
of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryosuke Iwasawa
- Department
of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yuichiro Takiyama
- Department
of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Tomokazu Yamauchi
- Department
of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Tetsuo Iwanaga
- Department
of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Makoto Takezaki
- Department
of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Motonori Watanabe
- International
Institute for Carbon-Neutral Energy Research (I2CNER), Molecular Photoconversion Devices Division, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naozumi Teramoto
- Department
of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Toshiaki Shimasaki
- Department
of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Mitsuhiro Shibata
- Department
of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
48
|
Affiliation(s)
- Elena Buñuel
- Departamento de Química Orgánica; Facultad de Ciencias; Universidad Autónoma de Madrid; Av. Francisco Tomás y Valiente 7, Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Departamento de Química Orgánica; Facultad de Ciencias; Universidad Autónoma de Madrid; Av. Francisco Tomás y Valiente 7, Cantoblanco 28049 Madrid Spain
| |
Collapse
|
49
|
Seo HA, Cheon CH. Synthesis of 2-Vinylindole-3-Acetic Acid Derivatives via Cyanide-Catalyzed Imino-Stetter Reaction. J Org Chem 2016; 81:7917-23. [DOI: 10.1021/acs.joc.6b01621] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong-Ahn Seo
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
50
|
Wu YD, Ma JR, Shu WM, Zheng KL, Wu AX. Base-promoted domino reaction for the synthesis of 2,3-disubstituted indoles from 2-aminobenzaldehyde/2-amino aryl ketones, tosylhydrazine, and aromatic aldehydes. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|