1
|
Zhou Y, Jiang Q, Cheng Y, Hu M, Duan XH, Liu L. Photoredox-Catalyzed Acylchlorination of α-CF 3 Alkenes with Acyl Chloride and Application as Masked Access to β-CF 3-enones. Org Lett 2024; 26:2656-2661. [PMID: 38526445 DOI: 10.1021/acs.orglett.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
We disclose a photocatalytic strategy that simultaneously addresses the construction of trifluoromethylated quaternary carbon centers and the preparation of β-CF3-enones through radical difunctionalization of α-CF3 alkenes with acyl chlorides. This method is characterized by its broad functional group compatibility, high efficiency, and atom economy. The versatility of this transformation is poised to broaden the applications of α-CF3 alkenes, providing new pathways for the rapid assembly of structurally diverse fluorinated compounds.
Collapse
Affiliation(s)
- Youkang Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qi Jiang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangyang Cheng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Li Y, Dong D, Chen L, Du H, Zhao C, Bai X, Chen L, Li Y, Zeng X, Dixneuf PH, Zhang M. Selective Access to Functional Fluoroenones via Palladium-Catalyzed Selenofluoroalkylacylation of Terminal Alkynes. Org Lett 2024; 26:906-911. [PMID: 38240526 DOI: 10.1021/acs.orglett.3c04191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The trifluoromethylacyl group (-COCF3) is an important motif and widely studied in catalysis, medicinal chemistry, and materials science. Herein, a novel palladium-catalyzed selenofluoroalkylacylation of terminal alkynes with commercially available fluoroalkyl anhydride and diorganyl diselenides to afford β-seleno and aryl/alkyl disubstituted enones under mild conditions is disclosed. In addition, selenodifluoroacetylations and selenoperfluoroacetylations are also suitable for this reaction. Mechanistic studies reveal that this reaction proceeds via an oxidative radical-polar crossover process.
Collapse
Affiliation(s)
- Ya Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Dian Dong
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Lintong Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Hongxuan Du
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Cong Zhao
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Xiaoyan Bai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Lu Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Xianghua Zeng
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | | | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| |
Collapse
|
3
|
Kani R, Inuzuka T, Kubota Y, Funabiki K. Synthesis of 1‐Trifluoromethylated Propargyl Alcohols by Two Successive Reactions of Cyclopentylmagnesium Bromide in a One‐Pot Manner. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ryunosuke Kani
- Department of Chemistry and Biomolecular Science Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis Life Science Research Center Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
4
|
Zhang K, Rombach D, Nötel NY, Jeschke G, Katayev D. Radical Trifluoroacetylation of Alkenes Triggered by a Visible-Light-Promoted C-O Bond Fragmentation of Trifluoroacetic Anhydride. Angew Chem Int Ed Engl 2021; 60:22487-22495. [PMID: 34289531 PMCID: PMC8518413 DOI: 10.1002/anie.202109235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 01/30/2023]
Abstract
We report a mild and operationally simple trifluoroacylation strategy of olefines, that utilizes trifluoroacetic anhydride as a low‐cost and readily available reagent. This light‐mediated process is fundamentally different from conventional methodologies and occurs through a trifluoroacyl radical mechanism promoted by a photocatalyst, which triggers a C−O bond fragmentation. Mechanistic studies (kinetic isotope effects, spectroelectrochemistry, optical spectroscopy, theoretical investigations) highlight the evidence of a fleeting CF3CO radical under photoredox conditions. The trifluoroacyl radical can be stabilized under CO atmosphere, delivering the trifluoroacetylation product with higher chemical efficiency. Furthermore, the method can be turned into a trifluoromethylation protocol by simply changing the reaction parameters. Beyond simple alkenes, this method allows for chemo‐ and regioselective functionalization of small‐molecule drugs and common pharmacophores.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - David Rombach
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Nicolas Yannick Nötel
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Dmitry Katayev
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.,Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
5
|
Radical Trifluoroacetylation of Alkenes Triggered by a Visible‐Light‐Promoted C–O Bond Fragmentation of Trifluoroacetic Anhydride. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Yamazaki T, Nakajima Y, Iida M, Kawasaki-Takasuka T. Facile preparation and conversion of 4,4,4-trifluorobut-2-yn-1-ones to aromatic and heteroaromatic compounds. Beilstein J Org Chem 2021; 17:132-138. [PMID: 33520000 PMCID: PMC7814177 DOI: 10.3762/bjoc.17.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022] Open
Abstract
The concise preparation of 4,4,4-trifluorobut-2-yn-1-ones by the oxidation of the readily accessible corresponding propargylic alcohols as well as their utilization as Michael acceptors for the construction of aromatic and heteroaromatic compounds are reported.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| | - Yoh Nakajima
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| | - Minato Iida
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| |
Collapse
|
7
|
Chaudhary B, Kulkarni N, Saiyed N, Chaurasia M, Desai S, Potkule S, Sharma S. β
‐Trifluoromethyl
α
,
β
‐unsaturated Ketones: Efficient Building Blocks for Diverse Trifluoromethylated Molecules. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bharatkumar Chaudhary
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Nehanaz Saiyed
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Meenakshi Chaurasia
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Surbhi Desai
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Sagar Potkule
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Satyasheel Sharma
- Department of Natural Products National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| |
Collapse
|
8
|
Xu X, He Y, Zhou J, Li X, Zhu B, Chang J. Organocatalytic Asymmetric Michael Addition of Pyrazol-5-ones to β-Trifluoromethyl-α,β-unsaturated Ketones: Stereocontrolled Construction of Vicinal Quaternary and Tertiary Stereocenters. J Org Chem 2019; 85:574-584. [DOI: 10.1021/acs.joc.9b02676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinyao Xu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanmin He
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jingqi Zhou
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xinjuan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bo Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
9
|
Boreux A, Lambion A, Campeau D, Sanita M, Coronel R, Riant O, Gagosz F. Gold-catalyzed synthesis of β-trifluoromethylated α,β-unsaturated ketones from CF3-substituted propargylic carboxylates and their reactivity in Diels-Alder reactions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Sieng B, Maldonado MF, Romagnoli C, Amedjkouh M. One-Pot Alkynylation of Azaaryl Aldehydes and Spontaneous Base-Free Rearrangement into Enone Esters: an Autoinductive Mechanism. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bora Sieng
- Department of Chemistry; University of Oslo; Postboks 1033 Blindern 0315 Oslo Norge
| | | | - Carlo Romagnoli
- Department of Chemistry; University of Oslo; Postboks 1033 Blindern 0315 Oslo Norge
| | - Mohamed Amedjkouh
- Department of Chemistry; University of Oslo; Postboks 1033 Blindern 0315 Oslo Norge
| |
Collapse
|
11
|
Hamada Y, Kawasaki-Takasuka T, Yamazaki T. Base-promoted isomerization of CF 3-containing allylic alcohols to the corresponding saturated ketones under metal-free conditions. Beilstein J Org Chem 2017; 13:1507-1512. [PMID: 28845194 PMCID: PMC5550803 DOI: 10.3762/bjoc.13.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/09/2017] [Indexed: 11/23/2022] Open
Abstract
Following to the computational expectation, our previously reported intriguing 1,3-proton shift of 4,4,4-trifluorobut-2-yn-1-ols was successfully extended to the 4,4,4-trifluorobut-2-en-1-ol system under metal-free conditions to afford the corresponding saturated ketones in high to excellent chemical yields using such a convenient and easy-to-handle base as DBU at the toluene refluxing temperature, and utilization of the corresponding optically active substrates unambiguously demonstrated that this transformation proceeded in a highly stereoselective fashion.
Collapse
Affiliation(s)
- Yoko Hamada
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| | - Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan
| |
Collapse
|
12
|
Jiang Q, Guo T, Yu Z. Copper-Catalyzed Asymmetric Borylation: Construction of a Stereogenic Carbon Center Bearing Both CF 3 and Organoboron Functional Groups. J Org Chem 2017; 82:1951-1960. [PMID: 28116903 DOI: 10.1021/acs.joc.6b02772] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper-catalyzed borylation of β-trifluoromethyl-α,β-unsaturated ketones was efficiently achieved by means of bis(pinacolato)diboron (B2pin2), affording the enantioenriched products in good yields with high enantioselectivities. CuI and (R,S)-Josiphos consist of the most efficient catalyst system under mild conditions. In the absence of the chiral ligand, the reactions could be performed more efficiently to form β-ketone derivatives which were directly borylated and indirectly trifluoromethylated at the β-carbon atom of the α,β-unsaturated ketone substrates. The present protocol provides a promising method to access a stereogenic carbon center bearing both CF3 and organoboron functional groups.
Collapse
Affiliation(s)
- Quanbin Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Tenglong Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 354 Fenglin Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
13
|
Tresse C, Guissart C, Schweizer S, Bouhoute Y, Chany AC, Goddard ML, Blanchard N, Evano G. Practical Methods for the Synthesis of Trifluoromethylated Alkynes: Oxidative Trifluoromethylation of Copper Acetylides and Alkynes. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400057] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Ikeda A, Omote M, Nomura S, Tanaka M, Tarui A, Sato K, Ando A. Oxidative 3,3,3-trifluoropropylation of arylaldehydes. Beilstein J Org Chem 2013; 9:2417-21. [PMID: 24367408 PMCID: PMC3869248 DOI: 10.3762/bjoc.9.279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022] Open
Abstract
A reaction between (E)-trimethyl(3,3,3-trifluoroprop-1-en-1-yl)silane (1) and arylaldehydes 2 was triggered by fluoride anions to afford aryl 3,3,3-trifluoropropyl ketones 3 in moderate to good yield. A mechanistic study of this reaction indicated that it occurred via an allyl alkoxide (4). A subsequent 1,3-proton shift of the benzylic proton of 4 forms 3. This reaction involves oxidative 3,3,3-trifluoropropylation of an arylaldehyde to afford 4,4,4-trifluoro-1-arylbutan-1-one.
Collapse
Affiliation(s)
- Akari Ikeda
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shiho Nomura
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Miyuu Tanaka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Atsushi Tarui
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Akira Ando
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
15
|
Features of the base-catalyzed reaction of 1-vinyl-4,5-dihydro-1H-benzo[g]indole-2-carbaldehyde with phenylacetylene. Chem Heterocycl Compd (N Y) 2012. [DOI: 10.1007/s10593-012-1061-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Antiñolo A, Carrillo-Hermosilla F, Cadierno V, García-Álvarez J, Otero A. Microwave-Assisted Meyer-Schuster Rearrangement of Propargylic Alcohols Catalyzed by the Oxovanadate Complex [V(O)Cl(OEt)2]. ChemCatChem 2011. [DOI: 10.1002/cctc.201100239] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|