1
|
Di Adamo J, Ollivier N, Cantel S, Diemer V, Melnyk O. Peptide Alkyl Thioester Synthesis from Advanced Thiols and Peptide Hydrazides. J Org Chem 2024; 89:13719-13724. [PMID: 39257180 DOI: 10.1021/acs.joc.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Peptide alkyl thioesters are versatile reagents in various synthetic applications, commonly generated from peptide hydrazides and thiols. However, a notable limitation is the need for a substantial excess of the thiol reagent, restricting the usage to simple thiols. Here, we introduce an adapted procedure that significantly enhances thioester production with just a minimal thiol excess, facilitating the use of advanced thiol nucleophiles.
Collapse
Affiliation(s)
- Julie Di Adamo
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59000, France
| | - Nathalie Ollivier
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59000, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247, Université de Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Vincent Diemer
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59000, France
| | - Oleg Melnyk
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59000, France
| |
Collapse
|
2
|
Bachelart T, Kumar S, Jouin A, Yousef M, Kieffer B, Torbeev V. Design, Synthesis and Catalytic Activity of Protein Containing Thiotyrosine as an Active Site Residue. Chembiochem 2024; 25:e202400148. [PMID: 38629812 DOI: 10.1002/cbic.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Native chemical ligation is a key reaction in the toolbox of chemical methods for the synthesis of native and modified proteins. The catalysis of ligation is commonly performed by using small aryl-thiol molecules added at high concentrations. In this work, we incorporated thiotyrosine, a non-canonical amino acid containing an aryl-thiol moiety, into a designed cyclic protein « sans queue ni tête ». Importantly, the protein environment reduced the pKa of the thiol group to 5.8-5.9, which is significantly lower than the previously reported value for thiotyrosine in a short peptide (pKa 6.4). Furthermore, we demonstrated the catalytic activity of this protein both as hydrolase and in native chemical ligation of peptides. These results will be useful for the development of efficient protein catalysts (enzymes) for protein synthesis and modification.
Collapse
Affiliation(s)
- Thomas Bachelart
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Shailesh Kumar
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Alexis Jouin
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Mo'ath Yousef
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 1258, University of Strasbourg, 67400, Illkirch, France
| | - Vladimir Torbeev
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| |
Collapse
|
3
|
Novacek A, Ugaz B, Stephanopoulos N. Templating Peptide Chemistry with Nucleic Acids: Toward Artificial Ribosomes, Cell-Specific Therapeutics, and Novel Protein-Mimetic Architectures. Biomacromolecules 2024; 25:3865-3876. [PMID: 38860980 DOI: 10.1021/acs.biomac.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In biology, nanomachines like the ribosome use nucleic acid templates to synthesize polymers in a sequence-specific, programmable fashion. Researchers have long been interested in using the programmable properties of nucleic acids to enhance chemical reactions via colocalization of reagents using complementary nucleic acid handles. In this review, we describe progress in using nucleic acid templates, handles, or splints to enhance the covalent coupling of peptides to other peptides or oligonucleotides. We discuss work in several areas: creating ribosome-mimetic systems, synthesizing bioactive peptides on DNA or RNA templates, linking peptides into longer molecules and bioactive antibody mimics, and scaffolding peptides to build protein-mimetic architectures. We close by highlighting the challenges that must be overcome in nucleic acid-templated peptide chemistry in two areas: making full-length, functional proteins from synthetic peptides and creating novel protein-mimetic architectures not possible through macromolecular folding alone.
Collapse
Affiliation(s)
- Alexandra Novacek
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| | - Bryan Ugaz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| |
Collapse
|
4
|
Otaka A. Development of Naturally Inspired Peptide and Protein Chemistry. Chem Pharm Bull (Tokyo) 2022; 70:748-764. [DOI: 10.1248/cpb.c22-00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
5
|
Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev 2022; 51:5691-5730. [PMID: 35726784 DOI: 10.1039/d1cs00991e] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a crucial regulator of protein and cellular function, yet, despite identifying an enormous number of phosphorylation sites, the role of most is still unclear. Each phosphoform, the particular combination of phosphorylations, of a protein has distinct and diverse biological consequences. Aberrant phosphorylation is implicated in the development of many diseases. To investigate their function, access to defined protein phosphoforms is essential. Materials obtained from cells often are complex mixtures. Recombinant methods can provide access to defined phosphoforms if site-specifically acting kinases are known, but the methods fail to provide homogenous material when several amino acid side chains compete for phosphorylation. Chemical and chemoenzymatic synthesis has provided an invaluable toolbox to enable access to previously unreachable phosphoforms of proteins. In this review, we selected important tools that enable access to homogeneously phosphorylated protein and discuss examples that demonstrate how they can be applied. Firstly, we discuss the synthesis of phosphopeptides and proteins through chemical and enzymatic means and their advantages and limitations. Secondly, we showcase illustrative examples that applied these tools to answer biological questions pertaining to proteins involved in signal transduction, control of transcription, neurodegenerative diseases and aggregation, apoptosis and autophagy, and transmembrane proteins. We discuss the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Tim Bilbrough
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Emanuele Piemontese
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
6
|
Strategies and open questions in solid-phase protein chemical synthesis. Curr Opin Chem Biol 2020; 58:1-9. [DOI: 10.1016/j.cbpa.2020.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
|
7
|
Arbour CA, Mendoza LG, Stockdill JL. Recent advances in the synthesis of C-terminally modified peptides. Org Biomol Chem 2020; 18:7253-7272. [PMID: 32914156 PMCID: PMC9508648 DOI: 10.1039/d0ob01417f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
C-Terminally modified peptides are important for the development and delivery of peptide-based pharmaceuticals because they impact peptide activity, stability, hydrophobicity, and membrane permeability. Additionally, the vulnerability of C-terminal esters to cleavage by endogenous esterases makes them excellent pro-drugs. Methods for post-SPPS C-terminal functionalization potentially enable access to libraries of modified peptides, facilitating tailoring of their solubility, potency, toxicity, and uptake pathway. Apparently minor structural changes can significantly impact the binding, folding, and pharmacokinetics of the peptide. This review summarizes developments in chemical methods for C-terminal modification of peptides published since the last review on this topic in 2003.
Collapse
Affiliation(s)
- Christine A Arbour
- Wayne State University, Department of Chemistry, Detroit, Michigan, USA.
| | - Lawrence G Mendoza
- Wayne State University, Department of Chemistry, Detroit, Michigan, USA.
| | | |
Collapse
|
8
|
|
9
|
Nakatsu K, Yanase M, Hayashi G, Okamoto A. Fmoc-Compatible and C-terminal-Sequence-Independent Peptide Alkyl Thioester Formation Using Cysteinylprolyl Imide. Org Lett 2020; 22:4670-4674. [PMID: 32484687 DOI: 10.1021/acs.orglett.0c01450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report an Fmoc-compatible and external-thiol-free method of peptide C-terminus thioesterification with cysteinylprolyl imide. The newly synthesized structure, i.e., cysteinylprolyl-thiazolidinone, provided high conversion and sequence-independent fast kinetics (90 min) in the diketopiperazine thioester formation under relatively mild conditions: pH 6.0, 37 °C. Employing this thioesterification method, we synthesized histone H3.2 bearing K56 acetylation.
Collapse
Affiliation(s)
- Koki Nakatsu
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masafumi Yanase
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
10
|
Bouchenna J, Sénéchal M, Drobecq H, Stankovic-Valentin N, Vicogne J, Melnyk O. The Role of the Conserved SUMO-2/3 Cysteine Residue on Domain Structure Investigated Using Protein Chemical Synthesis. Bioconjug Chem 2019; 30:2684-2696. [PMID: 31532181 DOI: 10.1021/acs.bioconjchem.9b00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
While the semi or total synthesis of ubiquitin or polyubiquitin conjugates has attracted a lot of attention the past decade, the preparation of small ubiquitin-like modifier (SUMO) conjugates is much less developed. We describe hereinafter some important molecular features to consider when preparing SUMO-2/3 conjugates by chemical synthesis using the native chemical ligation and extended methods. In particular, we clarify the role of the conserved cysteine residue on SUMO-2/3 domain stability and properties. Our data reveal that SUMO-2 and -3 proteins behave differently from the Cys → Ala modification with SUMO-2 being less impacted than SUMO-3, likely due to a stabilizing interaction occurring in SUMO-2 between its tail and the SUMO core domain. While the Cys → Ala modification has no effect on the enzyme-catalyzed conjugation, it shows a deleterious effect on the enzyme-catalyzed deconjugation process, especially with the SUMO-3 conjugate. Whereas it is often stated that SUMO-2 and SUMO-3 are structurally and functionally indistinguishable, here we show that these proteins have specific structural and biochemical properties. This information is important to consider when designing and preparing SUMO-2/3 conjugates, and should help in making progress in the understanding of the specific role of SUMO-2 and/or SUMO-3 modifications on protein structure and function.
Collapse
Affiliation(s)
- Jennifer Bouchenna
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| | - Magalie Sénéchal
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| | - Hervé Drobecq
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| | - Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) , DKFZ - ZMBH Alliance, 69120 , Heidelberg , Germany
| | - Jérôme Vicogne
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| | - Oleg Melnyk
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| |
Collapse
|
11
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
12
|
Cargoët M, Diemer V, Snella B, Desmet R, Blanpain A, Drobecq H, Agouridas V, Melnyk O. Catalysis of Thiol-Thioester Exchange by Water-Soluble Alkyldiselenols Applied to the Synthesis of Peptide Thioesters and SEA-Mediated Ligation. J Org Chem 2018; 83:12584-12594. [PMID: 30230829 DOI: 10.1021/acs.joc.8b01903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Alkyl bis(2-selanylethyl)amines catalyze the synthesis of peptide thioesters or peptide ligation from bis(2-sulfanylethyl)amido (SEA) peptides. These catalysts are generated in situ by reduction of the corresponding cyclic diselenides by tris(2-carboxyethyl)phosphine. They are particularly efficient at pH 4.0 by accelerating the thiol-thioester exchange processes, which are otherwise rate-limiting at this pH. By promoting SEA-mediated reactions at mildly acidic pH, they facilitate the synthesis of complex peptides such as cyclic O-acyl isopeptides that are otherwise hardly accessible.
Collapse
Affiliation(s)
- Marine Cargoët
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Vincent Diemer
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Benoît Snella
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Rémi Desmet
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Annick Blanpain
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Hervé Drobecq
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Vangelis Agouridas
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Oleg Melnyk
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| |
Collapse
|
13
|
Yan B, Shi W, Ye L, Liu L. Acyl donors for native chemical ligation. Curr Opin Chem Biol 2018; 46:33-40. [PMID: 29654943 DOI: 10.1016/j.cbpa.2018.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
Native chemical ligation (NCL) has become one of the most important methods in chemical syntheses of proteins. Recently, in order to expand its scope, considerable effort has been devoted to tuning the C-terminal acyl donor thioesters used in NCL. This article reviews the recent advances in the design of C-terminal acyl donors, their precursors and surrogates, and highlights some noteworthy progress that may lead the future direction of protein chemical synthesis.
Collapse
Affiliation(s)
- Bingjia Yan
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weiwei Shi
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Linzhi Ye
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Pira SL, El Mahdi O, Raibaut L, Drobecq H, Dheur J, Boll E, Melnyk O. Insight into the SEA amide thioester equilibrium. Application to the synthesis of thioesters at neutral pH. Org Biomol Chem 2018; 14:7211-6. [PMID: 27282651 DOI: 10.1039/c6ob01079b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The bis(2-sulfanylethyl)amide (SEA) N,S-acyl shift thioester surrogate has found a variety of useful applications in the field of protein total synthesis. Here we present novel insights into the SEA amide/thioester equilibrium in water which is an essential step in any reaction involving the thioester surrogate properties of the SEA group. We also show that the SEA amide thioester equilibrium can be efficiently displaced at neutral pH for accessing peptide alkylthioesters, i.e. the key components of the native chemical ligation (NCL) reaction.
Collapse
Affiliation(s)
- S L Pira
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - O El Mahdi
- Université Sidi Mohamed Ben Abdellah, Morocco
| | - L Raibaut
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - H Drobecq
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - J Dheur
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - E Boll
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - O Melnyk
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| |
Collapse
|
15
|
Middel S, Panse CH, Nawratil S, Diederichsen U. Native Chemical Ligation Directed by Photocleavable Peptide Nucleic Acid (PNA) Templates. Chembiochem 2017; 18:2328-2332. [PMID: 28987009 DOI: 10.1002/cbic.201700487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 11/10/2022]
Abstract
A novel peptide-peptide ligation strategy is introduced that has the potential to provide peptide libraries of linearly or branched coupled fragments and will be suited to introduce simultaneous protein modifications at different ligation sites. Ligation is assisted by templating peptide nucleic acid (PNA) strands, and therefore, ligation specificity is solely encoded by the PNA sequence. PNA templating, in general, allows for various kinds of covalent ligation reactions. As a proof of principle, a native chemical ligation strategy was elaborated. This PNA-templated ligation includes easy on-resin procedures to couple linkers and PNA to the respective peptides, and a traceless photocleavage of the linker/PNA oligomer after the ligation step. A 4,5-dimethoxy-2-nitrobenzaldehyde-based linker that allowed the photocleavable linkage of two bio-oligomers was developed.
Collapse
Affiliation(s)
- Stephen Middel
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Cornelia H Panse
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Swantje Nawratil
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
16
|
Miyajima R, Tsuda Y, Inokuma T, Shigenaga A, Imanishi M, Futaki S, Otaka A. Preparation of peptide thioesters from naturally occurring sequences using reaction sequence consisting of regioselective S-cyanylation and hydrazinolysis. Biopolymers 2017; 106:531-46. [PMID: 26501985 DOI: 10.1002/bip.22757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
Abstract
The vital roles of peptide/protein thioesters in protein chemistry, including chemical or semi-synthesis of proteins, have encouraged studies on the development of methods for the preparation of such chemical units. Biochemical protocols using intein or sortase have proved to be useful in protein chemistry as methods suitable for naturally occurring sequences, including recombinant proteins. Although chemical protocols are potential options for thioester preparation, only a few are applicable to naturally occurring sequences, because standard chemical protocols require an artificial chemical device for producing thioesters. In this context, the chemical preparation of thioesters based on a reaction sequence consisting of regioselective S-cyanylation and hydrazinolysis was investigated. Regioselective S-cyanylation, which is required for cysteine-containing thioesters, was achieved with the aid of a zinc-complex formation of a CCHH-type zinc-finger sequence. Free cysteine residues that are not involved in complex formation were selectively protected with a 6-nitroveratryl group followed by S-cyanylation of the zinc-binding cysteine. Hydrazinolysis of the resulting S-cyanopeptide and subsequent photo-removal of the 6-nitroveratryl group yielded the desired peptide hydrazide, which was then converted to the corresponding thioester. The generated thioester was successfully used in N-to-C-directed one-pot/sequential native chemical ligation using an N-sulfanylethylanilide peptide to give a 64-residue peptide toxin. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 531-546, 2016.
Collapse
Affiliation(s)
- Rin Miyajima
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Yusuke Tsuda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Tsubasa Inokuma
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| |
Collapse
|
17
|
Abstract
The present review offers an overview of nonclassical (e.g., with no pre- or in situ activation of a carboxylic acid partner) approaches for the construction of amide bonds. The review aims to comprehensively discuss relevant work, which was mainly done in the field in the last 20 years. Organization of the data follows a subdivision according to substrate classes: catalytic direct formation of amides from carboxylic and amines ( section 2 ); the use of carboxylic acid surrogates ( section 3 ); and the use of amine surrogates ( section 4 ). The ligation strategies (NCL, Staudinger, KAHA, KATs, etc.) that could involve both carboxylic acid and amine surrogates are treated separately in section 5 .
Collapse
Affiliation(s)
- Renata Marcia de Figueiredo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Simon Suppo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| |
Collapse
|
18
|
Eto M, Naruse N, Morimoto K, Yamaoka K, Sato K, Tsuji K, Inokuma T, Shigenaga A, Otaka A. Development of an Anilide-Type Scaffold for the Thioester Precursor N-Sulfanylethylcoumarinyl Amide. Org Lett 2016; 18:4416-9. [PMID: 27529363 DOI: 10.1021/acs.orglett.6b02207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Sulfanylethylcoumarinyl amide (SECmide) peptide, which was initially developed for use in the fluorescence-guided detection of promoters of N-S acyl transfer, was successfully applied to a facile and side reaction-free protocol for N-S acyl-transfer-mediated synthesis of peptide thioesters. Additionally, 4-mercaptobenzylphosphonic acid (MBPA) was proven to be a useful catalyst for the SECmide or N-sulfanylethylanilide (SEAlide)-mediated NCL reaction.
Collapse
Affiliation(s)
- Mitsuhiro Eto
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima 770-8505, Japan
| | - Naoto Naruse
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima 770-8505, Japan
| | - Kyohei Morimoto
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima 770-8505, Japan
| | - Kosuke Yamaoka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima 770-8505, Japan
| | - Kohei Sato
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima 770-8505, Japan
| | - Kohei Tsuji
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima 770-8505, Japan
| | - Tsubasa Inokuma
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima 770-8505, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima 770-8505, Japan.,PRESTO, Japan Science and Technology Agency (JST) , Kawaguchi, Saitama 332-0012, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima 770-8505, Japan
| |
Collapse
|
19
|
Raibaut L, Cargoët M, Ollivier N, Chang YM, Drobecq H, Boll E, Desmet R, Monbaliu JCM, Melnyk O. Accelerating chemoselective peptide bond formation using bis(2-selenylethyl)amido peptide selenoester surrogates. Chem Sci 2016; 7:2657-2665. [PMID: 28660038 PMCID: PMC5477010 DOI: 10.1039/c5sc03459k] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
Given the potential of peptide selenoesters for protein total synthesis and the paucity of methods for the synthesis of these sensitive peptide derivatives, we sought to explore the usefulness of the bis(2-selenylethyl)amido (SeEA) group, i.e. the selenium analog of the bis(2-sulfanylethyl)amido (SEA) group, for accelerating peptide bond formation. A chemoselective exchange process operating in water was devised for converting SEA peptides into the SeEA ones. Kinetic studies show that SeEA ligation, which relies on an initial N,Se-acyl shift process, proceeds significantly faster than SEA ligation. This property enabled the design of a kinetically controlled three peptide segment assembly process based on the sequential use of SeEA and SEA ligation reactions. The method was validated by the total synthesis of hepatocyte growth factor K1 (85 AA) and biotinylated NK1 (180 AA) domains.
Collapse
Affiliation(s)
- Laurent Raibaut
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Marine Cargoët
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Nathalie Ollivier
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Yun Min Chang
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Hervé Drobecq
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Emmanuelle Boll
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Rémi Desmet
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis , Department of Chemistry , University of Liège , Building B6a, Room 3/16a, Sart-Tilman , B-4000 Liège , Belgium
| | - Oleg Melnyk
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| |
Collapse
|
20
|
Daunay S, Lebel R, Farescour L, Yadan JC, Erdelmeier I. Short protecting-group-free synthesis of 5-acetylsulfanyl-histidines in water: novel precursors of 5-sulfanyl-histidine and its analogues. Org Biomol Chem 2016; 14:10473-10480. [DOI: 10.1039/c6ob01870j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural and novel sulfur-containing amino acids are preparedviaa new regioselective one-pot two-step procedure.
Collapse
|
21
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
22
|
Boll E, Drobecq H, Ollivier N, Blanpain A, Raibaut L, Desmet R, Vicogne J, Melnyk O. One-pot chemical synthesis of small ubiquitin-like modifier protein-peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates. Nat Protoc 2015; 10:269-92. [PMID: 25591010 DOI: 10.1038/nprot.2015.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Small ubiquitin-like modifier (SUMO) post-translational modification (PTM) of proteins has a crucial role in the regulation of important cellular processes. This protocol describes the chemical synthesis of functional SUMO-peptide conjugates. The two crucial stages of this protocol are the solid-phase synthesis of peptide segments derivatized by thioester or bis(2-sulfanylethyl)amido (SEA) latent thioester functionalities and the one-pot assembly of the SUMO-peptide conjugate by a sequential native chemical ligation (NCL)/SEA native peptide ligation reaction sequence. This protocol also enables the isolation of a SUMO SEA latent thioester, which can be attached to a target peptide or protein in a subsequent step. It is compatible with 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, and it gives access to homogeneous, reversible and functional SUMO conjugates that are not easily produced using living systems. The synthesis of SUMO-peptide conjugates on a milligram scale takes 20 working days.
Collapse
Affiliation(s)
- Emmanuelle Boll
- Centre National de la Recherche Scientifique, Lille Institute of Biology, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Hervé Drobecq
- Centre National de la Recherche Scientifique, Lille Institute of Biology, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Nathalie Ollivier
- Centre National de la Recherche Scientifique, Lille Institute of Biology, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Annick Blanpain
- Centre National de la Recherche Scientifique, Lille Institute of Biology, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Laurent Raibaut
- Centre National de la Recherche Scientifique, Lille Institute of Biology, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Rémi Desmet
- Centre National de la Recherche Scientifique, Lille Institute of Biology, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Jérôme Vicogne
- Centre National de la Recherche Scientifique, Lille Institute of Biology, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Oleg Melnyk
- Centre National de la Recherche Scientifique, Lille Institute of Biology, Institut Pasteur de Lille, University of Lille, Lille, France
| |
Collapse
|
23
|
Boll E, Ebran JP, Drobecq H, El-Mahdi O, Raibaut L, Ollivier N, Melnyk O. Access to large cyclic peptides by a one-pot two-peptide segment ligation/cyclization process. Org Lett 2014; 17:130-3. [PMID: 25506740 DOI: 10.1021/ol503359w] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The use of the N-acetoacetyl protecting group for N-terminal cysteine residue enabled creation of an efficient and mild one-pot native chemical ligation/SEA ligation sequence giving access to large cyclic peptides.
Collapse
Affiliation(s)
- Emmanuelle Boll
- UMR CNRS 8161, Université de Lille, Pasteur Institute of Lille 59021 Lille, France
| | | | | | | | | | | | | |
Collapse
|
24
|
From protein total synthesis to peptide transamidation and metathesis: playing with the reversibility of N,S-acyl or N,Se-acyl migration reactions. Curr Opin Chem Biol 2014; 22:137-45. [DOI: 10.1016/j.cbpa.2014.09.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 11/23/2022]
|
25
|
Stanchev S, Zawada Z, Monincová L, Bednárová L, Slaninová J, Fučík V, Čeřovský V. Synthesis of lucifensin by native chemical ligation and characteristics of its isomer having different disulfide bridge pattern. J Pept Sci 2014; 20:725-35. [PMID: 24920043 DOI: 10.1002/psc.2663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022]
Abstract
The antimicrobial 40-amino-acid-peptide lucifensin was synthesized by native chemical ligation (NCL) using N-acylbenzimidazolinone (Nbz) as a linker group. NCL is a method in which a peptide bond between two discreet peptide chains is created. This method has been applied to the synthesis of long peptides and proteins when solid-phase synthesis is imcompatible. Two models of ligation were developed: [15+25] Ala-Cys and [19+21] His-Cys. The [19+21] His-Cys method gives lower yield because of the lower stability of 18-peptide-His-Nbz-CONH2 peptide, as suggested by density functional theory calculation. Acetamidomethyl-deprotection and subsequent oxidation of the ligated linear lucifensin gave a mixture of lucifensin isomers, which differed in the location of their disulfide bridges only. The dominant isomer showed unnatural pairing of cysteines [C1-6], [C3-5], and [C2-4], which limits its ability to form α-helical structure. The activity of isomeric lucifensin toward Bacillus subtilis, Staphylococcus aureus, and Micrococcus luteus was lower than that of the natural lucifensin. The desired product native lucifensin was prepared from this isomer using a one-pot reduction with dithiotreitol and subsequent air oxidation in slightly alkaline medium.
Collapse
Affiliation(s)
- Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
26
|
Qiu Y, Hemu X, Liu DX, Tam JP. Selective Bi-directional Amide Bond Cleavage ofN-Methylcysteinyl Peptide. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Ruff Y, Garavini V, Giuseppone N. Reversible native chemical ligation: a facile access to dynamic covalent peptides. J Am Chem Soc 2014; 136:6333-9. [PMID: 24717128 DOI: 10.1021/ja4129845] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The broad interest of using reversible covalent bonds in chemistry, in particular at its interfaces with biology and materials science, has been recently established through numerous examples in the literature. However, the challenging exchange of peptide fragments using a dynamic covalent peptide bond has not yet been achieved without enzymatic catalysis because of its high thermodynamic stability. Here we show that peptide fragments can be exchanged by a chemoselective and reversible native chemical ligation (NCL) which can take place at N-(methyl)-cysteine residues. This very mild reaction is efficient in aqueous solution, is buffered at physiological pH in the presence of dithiothreitol (DTT), and shows typical half-times of equilibration in the 10 h range.
Collapse
Affiliation(s)
- Yves Ruff
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | | | | |
Collapse
|
28
|
Boll E, Drobecq H, Ollivier N, Raibaut L, Desmet R, Vicogne J, Melnyk O. A novel PEG-based solid support enables the synthesis of >50 amino-acid peptide thioesters and the total synthesis of a functional SUMO-1 peptide conjugate. Chem Sci 2014. [DOI: 10.1039/c3sc53509f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bis(2-sulfanylethyl)amino PEG resin gives access to large peptide thioester segments and to functional SUMO-1 conjugates.
Collapse
Affiliation(s)
- Emmanuelle Boll
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Hervé Drobecq
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Nathalie Ollivier
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Laurent Raibaut
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Rémi Desmet
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Jérome Vicogne
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Oleg Melnyk
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| |
Collapse
|
29
|
Rasale DB, Maity I, Das AK. In situ generation of redox active peptides driven by selenoester mediated native chemical ligation. Chem Commun (Camb) 2014; 50:11397-400. [DOI: 10.1039/c4cc03835e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox active peptides synthesized via selenoester mediated native chemical ligation with a propensity to self-assemble in aqueous medium. A gel–sol transition of self-assembled peptide in a reducing environment makes it a versatile candidate for the development of functional biomaterials.
Collapse
Affiliation(s)
| | - Indrajit Maity
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 452017, India
| | - Apurba K. Das
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 452017, India
| |
Collapse
|
30
|
Chemical synthesis of proteins using N-sulfanylethylanilide peptides, based on N-S acyl transfer chemistry. Top Curr Chem (Cham) 2014; 363:33-56. [PMID: 25467538 DOI: 10.1007/128_2014_586] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Native chemical ligation (NCL), which features the use of peptide thioesters, is among the most reliable ligation protocols in chemical protein synthesis. Thioesters have conventionally been synthesized using tert-butyloxycarbonyl (Boc)-based solid-phase peptide synthesis (SPPS); however, the increasing use of 9-fluorenylmethyloxycarbonyl (Fmoc) SPPS requires an efficient preparative protocol for thioesters which is fully compatible with Fmoc chemistry. We have addressed this issue by mimicking the naturally occurring thioester-forming step seen in intein-mediated protein splicing of the intein-extein system, using an appropriate chemical device to induce N-S acyl transfer reaction, avoiding the problems associated with Fmoc strategies. We have developed N-sulfanylethylanilide (SEAlide) peptides, which can be synthesized by standard Fmoc SPPS and converted to the corresponding thioesters through treatment under acidic conditions. Extensive examination of SEAlide peptides showed that the amide-type SEAlide peptides can be directly and efficiently involved in NCL via thioester species in the presence of phosphate salts, even under neutral conditions. The presence or absence of phosphate salts provided kinetically controllable chemoselectivity in NCL for SEAlide peptides. This allowed SEAlide peptides to be used in both one-pot/N-to-C-directed sequential NCL under kinetically controlled conditions, and the convergent coupling of large peptide fragments, which facilitated the chemical synthesis of proteins over about 100 residues. The use of SEAlide peptides, enabling sequential NCL operated under kinetically controlled conditions, and the convergent coupling, were used for the total chemical synthesis of a 162-residue monoglycosylated GM2-activator protein (GM2AP) analog.
Collapse
|
31
|
Abstract
The chemical synthesis of peptides or small proteins is often an important step in many research projects and has stimulated the development of numerous chemical methodologies. The aim of this review is to give a substantial overview of the solid phase methods developed for the production or purification of polypeptides. The solid phase peptide synthesis (SPPS) technique has facilitated considerably the access to short peptides (<50 amino acids). However, its limitations for producing large homogeneous peptides have stimulated the development of solid phase covalent or non-covalent capture purification methods. The power of the native chemical ligation (NCL) reaction for protein synthesis in aqueous solution has also been adapted to the solid phase by the combination of novel linker technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester surrogate chemistries. This review details pioneering studies and the most recent publications related to the solid phase chemical synthesis of large peptides and proteins.
Collapse
|
32
|
Guan X, Chaffey PK, Zeng C, Tan Z. New Methods for Chemical Protein Synthesis. Top Curr Chem (Cham) 2014; 363:155-92. [DOI: 10.1007/128_2014_599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Ollivier N, Raibaut L, Blanpain A, Desmet R, Dheur J, Mhidia R, Boll E, Drobecq H, Pira SL, Melnyk O. Tidbits for the synthesis ofbis(2-sulfanylethyl)amido (SEA) polystyrene resin, SEA peptides and peptide thioesters. J Pept Sci 2013; 20:92-7. [DOI: 10.1002/psc.2580] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Nathalie Ollivier
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| | - Laurent Raibaut
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| | - Annick Blanpain
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| | - Rémi Desmet
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| | - Julien Dheur
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| | - Reda Mhidia
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| | - Emmanuelle Boll
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| | - Hervé Drobecq
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| | - Silvain L. Pira
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| | - Oleg Melnyk
- UMR CNRS 8161; Pasteur Institute of Lille, Univ. Lille Nord de France; 1 rue du Pr Calmette 59021 Lille France
| |
Collapse
|
34
|
Raibaut L, Seeberger P, Melnyk O. Bis(2-sulfanylethyl)amido Peptides Enable Native Chemical Ligation at Proline and Minimize Deletion Side-Product Formation. Org Lett 2013; 15:5516-9. [DOI: 10.1021/ol402678a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Laurent Raibaut
- UMR CNRS 8161, Pasteur Institute of Lille, 59021 Lille, France
| | | | - Oleg Melnyk
- UMR CNRS 8161, Pasteur Institute of Lille, 59021 Lille, France
| |
Collapse
|
35
|
Pira SL, Boll E, Melnyk O. Synthesis of Peptide Thioacids at Neutral pH Using Bis(2-sulfanylethyl)amido Peptide Precursors. Org Lett 2013; 15:5346-9. [DOI: 10.1021/ol402601j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvain L. Pira
- UMR CNRS 8161, Pasteur Institute of Lille 59021 Lille, France
| | - Emmanuelle Boll
- UMR CNRS 8161, Pasteur Institute of Lille 59021 Lille, France
| | - Oleg Melnyk
- UMR CNRS 8161, Pasteur Institute of Lille 59021 Lille, France
| |
Collapse
|
36
|
Liu F, Mayer JP. An Fmoc Compatible, O to S Shift-Mediated Procedure for the Preparation of C-Terminal Thioester Peptides. J Org Chem 2013; 78:9848-56. [DOI: 10.1021/jo4015112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fa Liu
- Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - John P. Mayer
- Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| |
Collapse
|
37
|
Palacio C, Connon SJ. C-5′-Substituted Cinchona Alkaloid Derivatives Catalyse the First Highly Enantioselective Dynamic Kinetic Resolutions of Azlactones by Thiolysis. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
El-Mahdi O, Melnyk O. α-Oxo aldehyde or glyoxylyl group chemistry in peptide bioconjugation. Bioconjug Chem 2013; 24:735-65. [PMID: 23578008 DOI: 10.1021/bc300516f] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the 1990s, α-oxo aldehyde or glyoxylic acid chemistry has inspired a vast array of synthetic tools for tailoring peptide or protein structures, for developing peptides endowed with novel physicochemical properties or biological functions, for assembling a large diversity of bioconjugates or hybrid materials, or for designing peptide-based micro or nanosystems. This past decade, important developments have enriched the α-oxo aldehyde synthetic tool box in peptide bioconjugation chemistry and explored novel applications. The aim of this review is to give a large overview of this creative field.
Collapse
Affiliation(s)
- Ouafâa El-Mahdi
- Université Sidi Mohamed Ben Abdellah, Faculté Polydisciplinaire de Taza, Morocco
| | | |
Collapse
|
39
|
Miralles G, Verdié P, Puget K, Maurras A, Martinez J, Subra G. Microwave-mediated reduction of disulfide bridges with supported (tris(2-carboxyethyl)phosphine) as resin-bound reducing agent. ACS COMBINATORIAL SCIENCE 2013; 15:169-73. [PMID: 23438263 DOI: 10.1021/co300104k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the synthesis and use of a new supported reagent consisting in tris(2-carboxyethyl)phosphine (TCEP) immobilized on hydrophilic PEG based resin beads. Used in conjunction with a 5 min microwave (MW) irradiation, "supported TCEP" reduced disulfide bridges in free thiols in peptides having two or more cysteine residues. Separation of reaction products from reducing agent was easily performed by simple filtration.
Collapse
Affiliation(s)
- Guillaume Miralles
- Institut des
Biomolécules
Max Mousseron IBMM, UMR 5247, Université Montpellier 1, Université Montpellier 2, CNRS, 15 avenue
Charles Flahault 34000 Montpellier, France
| | - Pascal Verdié
- Institut des
Biomolécules
Max Mousseron IBMM, UMR 5247, Université Montpellier 1, Université Montpellier 2, CNRS, 15 avenue
Charles Flahault 34000 Montpellier, France
| | - Karine Puget
- Genepep SA, Les Coteaux
Saint Roch, 12 Rue du Fer à Cheval, 34430 St
Jean de Védas, France
| | - Amélie Maurras
- Genepep SA, Les Coteaux
Saint Roch, 12 Rue du Fer à Cheval, 34430 St
Jean de Védas, France
| | - Jean Martinez
- Institut des
Biomolécules
Max Mousseron IBMM, UMR 5247, Université Montpellier 1, Université Montpellier 2, CNRS, 15 avenue
Charles Flahault 34000 Montpellier, France
| | - Gilles Subra
- Institut des
Biomolécules
Max Mousseron IBMM, UMR 5247, Université Montpellier 1, Université Montpellier 2, CNRS, 15 avenue
Charles Flahault 34000 Montpellier, France
| |
Collapse
|
40
|
Raibaut L, Vicogne J, Leclercq B, Drobecq H, Desmet R, Melnyk O. Total synthesis of biotinylated N domain of human hepatocyte growth factor. Bioorg Med Chem 2013; 21:3486-94. [PMID: 23523386 DOI: 10.1016/j.bmc.2013.02.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 01/03/2023]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is the high affinity ligand of MET tyrosine kinase receptor. We report here the total synthesis of a biotinylated analogue of human HGF/SF N domain. Functionally, N domain is part of the HGF/SF high affinity binding site for MET and also the main HGF/SF binding site for heparin. The 97 Aa linear chain featuring a C-terminal biotin group was assembled in high yield using an N-to-C one-pot three segments assembly strategy relying on a sequential Native Chemical Ligation (NCL)/bis(2-sulfanylethyl)amido (SEA) native peptide ligation process. The folded protein displayed the native disulfide bond pattern and showed the ability to bind heparin.
Collapse
Affiliation(s)
- Laurent Raibaut
- UMR CNRS 8161 Univ Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr Calmette, Lille 59021, France
| | | | | | | | | | | |
Collapse
|
41
|
Thomas F. Fmoc-based peptide thioester synthesis with self-purifying effect: heading to native chemical ligation in parallel formats. J Pept Sci 2013; 19:141-7. [DOI: 10.1002/psc.2494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Franziska Thomas
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
42
|
Raibaut L, Adihou H, Desmet R, Delmas AF, Aucagne V, Melnyk O. Highly efficient solid phase synthesis of large polypeptides by iterative ligations of bis(2-sulfanylethyl)amido (SEA) peptide segments. Chem Sci 2013. [DOI: 10.1039/c3sc51824h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
43
|
|
44
|
|
45
|
Otaka A, Sato K, Ding H, Shigenaga A. One-Pot/Sequential Native Chemical Ligation UsingN-Sulfanylethylanilide Peptide. CHEM REC 2012; 12:479-90. [DOI: 10.1002/tcr.201200007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Indexed: 01/05/2023]
|
46
|
Sakamoto K, Sato K, Shigenaga A, Tsuji K, Tsuda S, Hibino H, Nishiuchi Y, Otaka A. Synthetic Procedure for N-Fmoc Amino Acyl-N-Sulfanylethylaniline Linker as Crypto-Peptide Thioester Precursor with Application to Native Chemical Ligation. J Org Chem 2012; 77:6948-58. [DOI: 10.1021/jo3011107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ken Sakamoto
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | - Kohei Sato
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | - Akira Shigenaga
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | - Kohei Tsuji
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | - Shugo Tsuda
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
- Saito Research Center, Peptide Institute, Inc., 7-2-9 Saito Ibaraki, Osaka
567-0085, Japan
| | - Hajime Hibino
- Saito Research Center, Peptide Institute, Inc., 7-2-9 Saito Ibaraki, Osaka
567-0085, Japan
| | - Yuji Nishiuchi
- Saito Research Center, Peptide Institute, Inc., 7-2-9 Saito Ibaraki, Osaka
567-0085, Japan
- Department
of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Otaka
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
47
|
Boll E, Dheur J, Drobecq H, Melnyk O. Access to Cyclic or Branched Peptides Using Bis(2-sulfanylethyl)amido Side-Chain Derivatives of Asp and Glu. Org Lett 2012; 14:2222-5. [DOI: 10.1021/ol300528r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emmanuelle Boll
- CNRS UMR 8161, Université Lille Nord de France, Institut Pasteur de Lille, 59021, Lille, France
| | - Julien Dheur
- CNRS UMR 8161, Université Lille Nord de France, Institut Pasteur de Lille, 59021, Lille, France
| | - Hervé Drobecq
- CNRS UMR 8161, Université Lille Nord de France, Institut Pasteur de Lille, 59021, Lille, France
| | - Oleg Melnyk
- CNRS UMR 8161, Université Lille Nord de France, Institut Pasteur de Lille, 59021, Lille, France
| |
Collapse
|
48
|
Rodríguez-Docampo Z, Quigley C, Tallon S, Connon SJ. The Dynamic Kinetic Resolution of Azlactones with Thiol Nucleophiles Catalyzed by Arylated, Deoxygenated Cinchona Alkaloids. J Org Chem 2012; 77:2407-14. [DOI: 10.1021/jo202662d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zaida Rodríguez-Docampo
- School of Chemistry, Centre for Synthesis and Chemical
Biology, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Cormac Quigley
- School of Chemistry, Centre for Synthesis and Chemical
Biology, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Sean Tallon
- School of Chemistry, Centre for Synthesis and Chemical
Biology, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Stephen J. Connon
- School of Chemistry, Centre for Synthesis and Chemical
Biology, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
49
|
Murakami M, Okamoto R, Izumi M, Kajihara Y. Chemical synthesis of an erythropoietin glycoform containing a complex-type disialyloligosaccharide. Angew Chem Int Ed Engl 2012; 51:3567-72. [PMID: 22307754 DOI: 10.1002/anie.201109034] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Indexed: 01/19/2023]
Affiliation(s)
- Masumi Murakami
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043 Japan
| | | | | | | |
Collapse
|
50
|
Murakami M, Okamoto R, Izumi M, Kajihara Y. Chemical Synthesis of an Erythropoietin Glycoform Containing a Complex-type Disialyloligosaccharide. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|