1
|
New Prenylated Indole Homodimeric and Pteridine Alkaloids from the Marine-Derived Fungus Aspergillus austroafricanus Y32-2. Mar Drugs 2021; 19:md19020098. [PMID: 33572212 PMCID: PMC7916005 DOI: 10.3390/md19020098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/03/2023] Open
Abstract
Chemical investigation of secondary metabolites from the marine-derived fungus Aspergillus austroafricanus Y32-2 resulted in the isolation of two new prenylated indole alkaloid homodimers, di-6-hydroxydeoxybrevianamide E (1) and dinotoamide J (2), one new pteridine alkaloid asperpteridinate A (3), with eleven known compounds (4-14). Their structures were elucidated by various spectroscopic methods including HRESIMS and NMR, while their absolute configurations were determined by ECD calculations. Each compound was evaluated for pro-angiogenic, anti-inflammatory effects in zebrafish models and cytotoxicity for HepG2 human liver carcinoma cells. As a result, compounds 2, 4, 5, 7, 10 exhibited pro-angiogenic activity in a PTK787-induced vascular injury zebrafish model in a dose-dependent manner, compounds 7, 8, 10, 11 displayed anti-inflammatory activity in a CuSO4-induced zebrafish inflammation model, and compound 6 showed significant cytotoxicity against HepG2 cells with an IC50 value of 30 µg/mL.
Collapse
|
2
|
Fraley AE, Tran HT, Kelly SP, Newmister SA, Tripathi A, Kato H, Tsukamoto S, Du L, Li S, Williams RM, Sherman DH. Flavin-Dependent Monooxygenases NotI and NotI' Mediate Spiro-Oxindole Formation in Biosynthesis of the Notoamides. Chembiochem 2020; 21:2449-2454. [PMID: 32246875 PMCID: PMC7483341 DOI: 10.1002/cbic.202000004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/04/2020] [Indexed: 11/08/2022]
Abstract
The fungal indole alkaloids are a unique class of complex molecules that have a characteristic bicyclo[2.2.2]diazaoctane ring and frequently contain a spiro-oxindole moiety. While various strains produce these compounds, an intriguing case involves the formation of individual antipodes by two unique species of fungi in the generation of the potent anticancer agents (+)- and (-)-notoamide A. NotI and NotI' have been characterized as flavin-dependent monooxygenases that catalyze epoxidation and semi-pinacol rearrangement to form the spiro-oxindole center within these molecules. This work elucidates a key step in the biosynthesis of the notoamides and provides an evolutionary hypothesis regarding a common ancestor for production of enantiopure notoamides.
Collapse
Affiliation(s)
- Amy E Fraley
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 28104, USA
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Hong T Tran
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 28104, USA
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
| | - Samantha P Kelly
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 28104, USA
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
| | - Sean A Newmister
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 28104, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 28104, USA
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Hikaru Kato
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Robert M Williams
- Department of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, CO 80523, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 28104, USA
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150W. Medical Center Drive, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, 930N. University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Klas KR, Kato H, Frisvad JC, Yu F, Newmister SA, Fraley AE, Sherman DH, Tsukamoto S, Williams RM. Structural and stereochemical diversity in prenylated indole alkaloids containing the bicyclo[2.2.2]diazaoctane ring system from marine and terrestrial fungi. Nat Prod Rep 2019; 35:532-558. [PMID: 29632911 DOI: 10.1039/c7np00042a] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covering: up to February 2017 Various fungi of the genera Aspergillus, Penicillium, and Malbranchea produce prenylated indole alkaloids possessing a bicyclo[2.2.2]diazaoctane ring system. After the discovery of distinct enantiomers of the natural alkaloids stephacidin A and notoamide B, from A. protuberus MF297-2 and A. amoenus NRRL 35660, another fungi, A. taichungensis, was found to produce their diastereomers, 6-epi-stephacidin A and versicolamide B, as major metabolites. Distinct enantiomers of stephacidin A and 6-epi-stephacidin A may be derived from a common precursor, notoamide S, by enzymes that form a bicyclo[2.2.2]diazaoctane core via a putative intramolecular hetero-Diels-Alder cycloaddition. This review provides our current understanding of the structural and stereochemical homologies and disparities of these alkaloids. Through the deployment of biomimetic syntheses, whole-genome sequencing, and biochemical studies, a unified biogenesis of both the dioxopiperazine and the monooxopiperazine families of prenylated indole alkaloids constituted of bicyclo[2.2.2]diazaoctane ring systems is presented.
Collapse
Affiliation(s)
- Kimberly R Klas
- Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kai A, Kato H, Sherman DH, Williams RM, Tsukamoto S. Isolation of a new indoxyl alkaloid, Amoenamide B, from Aspergillus amoenus NRRL 35600: biosynthetic implications and correction of the structure of Speramide B. Tetrahedron Lett 2018; 50:4236-4240. [PMID: 30765898 DOI: 10.1016/j.tetlet.2018.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A new prenylated indoxyl alkaloid, Amoenamide B (1), was isolated from Aspergillus amoenus NRRL 35600 along with Asperochramide A (2). Although many prenylated oxyindole alkaloids, containing bicyclo[2.2.2]diazaoctane cores, have been isolated from the fungus of the genera Aspergillus and Penicillium to date, 1 is the fourth compound with the indoxyl unit containing the cores. During the structure elucidation of 1, we found that the planar structure matched to that of Speramide A (3), isolated from A. ochraceus KM007, but the reported structure of 3 was incorrect and turned out to be that of Taichunamide H (4), recently isolated from A. versicolor HDN11-84.
Collapse
Affiliation(s)
- Aika Kai
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Kumamoto, Japan
| | - Hikaru Kato
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Kumamoto, Japan
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Departments of Medicinal Chemistry, Microbiology & Immunology, and Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert M Williams
- Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, Colorado 80523, United States.,University of Colorado Cancer Center, Aurora, Colorado 80045, United States
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Kumamoto, Japan
| |
Collapse
|
5
|
Wen H, Liu X, Zhang Q, Deng Y, Zang Y, Wang J, Liu J, Zhou Q, Hu L, Zhu H, Chen C, Zhang Y. Three New Indole Diketopiperazine Alkaloids from Aspergillus ochraceus. Chem Biodivers 2018; 15:e1700550. [DOI: 10.1002/cbdv.201700550] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Huiling Wen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
- School of Pharmaceutical Sciences; Gannan Medical University; Ganzhou Jiangxi 341000 P. R. China
| | - Xiaorui Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Qing Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Yanfang Deng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Yi Zang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Linzhen Hu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine; College of Life Sciences; Hubei University; Wuhan 430062 P. R. China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| |
Collapse
|
6
|
Enantioselective inhibitory abilities of enantiomers of notoamides against RANKL-induced formation of multinuclear osteoclasts. Bioorg Med Chem Lett 2017; 27:4975-4978. [PMID: 29037945 DOI: 10.1016/j.bmcl.2017.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 11/24/2022]
Abstract
The marine-derived Aspergillus protuberus MF297-2 and the terrestrial A. amoenus NRRL 35600 produce enantiomeric prenylated indole alkaloids. Investigation of biological activities of the natural and synthetic derivatives revealed that (-)-enantiomers of notoamides A and B, 6-epi-notoamide T, and stephacidin A inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenic differentiation of murine RAW264 cells more strongly than their respective (+)-enantiomers. Among them, (-)-6-epi-notoamide T was the most potent inhibitor with an IC50 value of 1.7μM.
Collapse
|
7
|
Sugimoto K, Sadahiro Y, Kagiyama I, Kato H, Sherman DH, Williams RM, Tsukamoto S. Isolation of amoenamide A and five antipodal prenylated alkaloids from Aspergillus amoenus NRRL 35600. Tetrahedron Lett 2017; 58:2797-2800. [PMID: 29622844 DOI: 10.1016/j.tetlet.2017.05.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A new prenylated alkaloid, Amoenamide A (6), was isolated from the fungus Aspergillus amoenus NRRL 35600. Previously, 6 was postulated to be a precursor of Notoamide E4 (21) converted from Notoamide E (16), which was a key precursor of the prenylated indole alkaloids in the fungi of the genus Aspergillus. We previously succeeded in the isolation of two pairs of antipodes, Stephacidin A (1) and Notoamide B (2), from A. amoenus and A. protuberus MF297-2 and expected the presence of other antipodes in the culture of A. amoenus. We here report five new antipodes (7-11) along with a new metabolite (12), which was isolated as a natural compound for the first time, from A. amoenus.
Collapse
Affiliation(s)
- Kayo Sugimoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Kumamoto, Japan
| | - Yusaku Sadahiro
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Kumamoto, Japan
| | - Ippei Kagiyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Kumamoto, Japan
| | - Hikaru Kato
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Kumamoto, Japan
| | - David H Sherman
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, The University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Robert M Williams
- Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, Colorado 80523, United States.,University of Colorado Cancer Center, Aurora, Colorado 80045
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Kumamoto, Japan
| |
Collapse
|
8
|
Abstract
This review provides a summary of recent research advances in elucidating the biosynthesis of fungal indole alkaloids. The different strategies used to incorporate and derivatize the indole/indoline moieties in various families of fungal indole alkaloids will be discussed, including tryptophan-containing nonribosomal peptides, polyketide-nonribosomal peptide hybrids, and alkaloids derived from other indole building blocks. This review also includes a discussion regarding the downstream modifications that generate chemical and structural diversity among indole alkaloids.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90096, USA.
| | | | | |
Collapse
|
9
|
Khalil ZG, Huang XC, Raju R, Piggott AM, Capon RJ. Shornephine A: structure, chemical stability, and P-glycoprotein inhibitory properties of a rare diketomorpholine from an Australian marine-derived Aspergillus sp. J Org Chem 2014; 79:8700-5. [PMID: 25158286 PMCID: PMC4168782 DOI: 10.1021/jo501501z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Chemical analysis of an Australian
marine sediment-derived Aspergillus sp. (CMB-M081F)
yielded the new diketomorpholine
(DKM) shornephine A (1) together with two known and one
new diketopiperazine (DKP), 15b-β-hydroxy-5-N-acetyladreemin (2), 5-N-acetyladreemin
(3), and 15b-β-methoxy-5-N-acetyladreemin
(4), respectively. Structure elucidation of 1–4 was achieved by detailed spectroscopic analysis,
supported by chemical degradation and derivatization, and biosynthetic
considerations. The DKM (1) underwent a facile (auto)
acid-mediated methanolysis to yield seco-shornephine
A methyl ester (1a). Our mechanistic explanation of this
transformation prompted us to demonstrate that the acid-labile and
solvolytically unstable DKM scaffold can be stabilized by N-alkylation. Furthermore, we demonstrate that at 20 μM
shornephine A (1) is a noncytotoxic inhibitor of P-glycoprotein-mediated
drug efflux in multidrug-resistant human colon cancer cells.
Collapse
Affiliation(s)
- Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland , St. Lucia, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
10
|
Johnson KF, Van Zeeland R, Stanley LM. Palladium-catalyzed synthesis of N-tert-prenylindoles. Org Lett 2013; 15:2798-801. [PMID: 23714013 DOI: 10.1021/ol4011344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Palladium-catalyzed N-tert-prenylations of indoles, tricarbonylchromium-activated indoles, and indolines that occur in high yields (up to 94%) with high tert-prenyl-to-n-prenyl selectivity (up to 12:1) are reported.
Collapse
Affiliation(s)
- Kirsten F Johnson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
11
|
Abstract
This review covers the literature published in 2011 for marine natural products, with 870 citations (558 for the period January to December 2011) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1152 for 2011), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Stephen W. Laws
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg,
Virginia 23187, United States
| | - Jonathan R. Scheerer
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg,
Virginia 23187, United States
| |
Collapse
|
13
|
|
14
|
Ishikura M, Abe T, Choshi T, Hibino S. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat Prod Rep 2013; 30:694-752. [DOI: 10.1039/c3np20118j] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
|
16
|
Jurjevic Z, Peterson SW, Horn BW. Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 2012; 3:59-79. [PMID: 23155501 PMCID: PMC3399103 DOI: 10.5598/imafungus.2012.03.01.07] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/07/2012] [Indexed: 11/30/2022] Open
Abstract
β-tubulin, calmodulin, internal transcribed spacer and partial lsu-rDNA, RNA polymerase 2, DNA replication licensing factor Mcm7, and pre-rRNA processing protein Tsr1 were amplified and sequenced from numerous isolates belonging to Aspergillus sect. versicolor. The isolates were analyzed phylogenetically using the concordance model to establish species boundaries. Aspergillus austroafricanus, A. creber, A. cvjetkovicii, A. fructus, A. jensenii, A. puulaauensis, A. subversicolor, A. tennesseensis and A. venenatus are described as new species and A. amoenus, A. protuberus,A. sydowii, A. tabacinus and A. versicolor are accepted as distinct species on the basis of molecular and phenotypic differences. PCR primer pairs used to detect A. versicolor in sick building syndrome studies have a positive reaction for all of the newly described species except A. subversicolor.
Collapse
Affiliation(s)
- Zeljko Jurjevic
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077
| | | | | |
Collapse
|
17
|
Finefield JM, Sherman DH, Kreitman M, Williams RM. Enantiomeric natural products: occurrence and biogenesis. Angew Chem Int Ed Engl 2012; 51:4802-36. [PMID: 22555867 PMCID: PMC3498912 DOI: 10.1002/anie.201107204] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Indexed: 01/07/2023]
Abstract
In nature, chiral natural products are usually produced in optically pure form-however, occasionally both enantiomers are formed. These enantiomeric natural products can arise from a single species or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers; however, many fascinating puzzles and stereochemical anomalies still remain.
Collapse
|
18
|
Finefield JM, Sherman DH, Kreitman M, Williams RM. Enantiomere Naturstoffe: Vorkommen und Biogenese. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107204] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Li S, Finefield JM, Sunderhaus JD, McAfoos TJ, Williams RM, Sherman DH. Biochemical characterization of NotB as an FAD-dependent oxidase in the biosynthesis of notoamide indole alkaloids. J Am Chem Soc 2011; 134:788-91. [PMID: 22188465 DOI: 10.1021/ja2093212] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Notoamides produced by Aspergillus spp. bearing the bicyclo[2.2.2]diazaoctane core structure with unusual structural diversity represent a compelling system to understand the biosynthesis of fungal prenylated indole alkaloids. Herein, we report the in vitro characterization of NotB, which catalyzes the indole 2,3-oxidation of notoamide E (13), leading to notoamides C (11) and D (12) through an apparent pinacol-like rearrangement. This unique enzymatic reaction with high substrate specificity, together with the information derived from precursor incorporation experiments using [(13)C](2)-[(15)N](2) quadruply labeled notoamide S (10), demonstrates 10 as a pivotal branching point in notoamide biosynthesis.
Collapse
Affiliation(s)
- Shengying Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kato H, Nakamura Y, Finefield JM, Umaoka H, Nakahara T, Williams RM, Tsukamoto S. Study on the biosynthesis of the notoamides: Pinacol-type rearrangement of the isoprenyl unit in deoxybrevianamide E and 6-hydroxydeoxybrevianamide E. Tetrahedron Lett 2011; 52:6923-6926. [PMID: 22140281 DOI: 10.1016/j.tetlet.2011.10.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two reverse-prenylated indole alkaloids, deoxybrevianamide E and 6-hydroxydeoxybrevianamide E, are proposed as biosynthetic precursors for advanced metabolites isolated from the marine-derived Aspergillus sp. In order to uncover the role of the alkaloids in the biosynthetic pathway, the feeding experiments of the [(13)C](2)-[(15)N]-labeled deoxybrevianamide E and 6-hydroxydeoxybrevianamide E were performed to afford the metabolites, which were produced by oxidation and successive pinacol-type rearrangement of the isoprenyl units.
Collapse
Affiliation(s)
- Hikaru Kato
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | | | | | | | | | | | | |
Collapse
|