1
|
Byerly-Duke J, Donovan A, O'Brien EA, Sharma KK, Ibrahim R, Stanley LM, VanVeller B. Complementary Strategies for Installation of Thioimidates into Peptide Backbones. J Org Chem 2024; 89:14755-14761. [PMID: 39364858 DOI: 10.1021/acs.joc.4c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Thioimidates are a precursor and synthetic branch point to access either thioamide or amidine isosteres of the native amide (peptide bond). Previous syntheses of thioimidate-containing peptides were prone to side reactivity and required slow, cumbersome steps that were difficult to monitor. We describe a more efficient approach to directly couple thioimidates onto the growing peptide chain. This work also outlines optimal conditions for thioimidate formation on solid support and identifies potential off-target sites for alkylation that impact the choice of protecting group.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron Donovan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Emily A O'Brien
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Krishna K Sharma
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Rida Ibrahim
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Sharma D, Chatterjee R, Dhayalan V, Dandela R. Metal-free oxidative coupling of aryl acetylene with elemental sulphur and amines: facile access to α-ketothioamides. Org Biomol Chem 2024; 22:5913-5917. [PMID: 38993016 DOI: 10.1039/d4ob00830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A simple and efficient oxidative coupling of aromatic alkynes with elemental sulphur and secondary amines has been reported. The iodine/DMSO system easily promoted the transformations, affording thioglyoxamides via C-S, C-O, and C-N bond formations. In this context, acetylenic C-H bond oxidation has occurred through iodination, leading to the desired products. Moreover, this metal-free, one-pot protocol is accomplished by using readily available starting materials, without external oxidants, and under aerobic conditions, providing a variety of α-ketothioamide compounds in moderate to good yields.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantapuri, Bhubaneswar-751013, Odisha, India
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantapuri, Bhubaneswar-751013, Odisha, India
| | - Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Puducherry, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantapuri, Bhubaneswar-751013, Odisha, India
| |
Collapse
|
3
|
Byerly-Duke J, O'Brien EA, Wall BJ, VanVeller B. Thioimidates provide general access to thioamide, amidine, and imidazolone peptide-bond isosteres. Methods Enzymol 2024; 698:27-55. [PMID: 38886036 DOI: 10.1016/bs.mie.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Thioamides, amidines, and heterocycles are three classes of modifications that can act as peptide-bond isosteres to alter the peptide backbone. Thioimidate protecting groups can address many of the problematic synthetic issues surrounding installation of these groups. Historically, amidines have received little attention in peptides due to limitations in methods to access them. The first robust and general procedure for the introduction of amidines into peptide backbones exploits the utility of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. Further, amidines formed on-resin can be reacted to form (4H)-imidazolone heteorcycles which have recently been shown to act as cis-amide isosteres. General methods for heterocyclic installation capable of geometrically restricting peptide conformation are also under-developed. This work is significant because it describes a generally applicable and divergent approach to access unexplored peptide designs and architectures.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Emily A O'Brien
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Brendan J Wall
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA, United States.
| |
Collapse
|
4
|
Byerly-Duke J, VanVeller B. Thioimidate Solutions to Thioamide Problems during Thionopeptide Deprotection. Org Lett 2024; 26:1452-1457. [PMID: 38341867 PMCID: PMC11031844 DOI: 10.1021/acs.orglett.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Thioamides have structural and chemical similarity to peptide bonds, offering valuable insights when probing peptide backbone interactions, but are prone to side reactions during solid-phase peptide synthesis (SPPS). Thioimidates have been demonstrated to be effective protecting groups for thioamides during peptide elongation. We further demonstrate how thioimidates can assist thioamides through the most yield-crippling step of thionopeptide deprotection, allowing for the first isolation of an important benchmark α-helical peptide that had previously eluded synthesis and isolation.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Abdollahi F, Ghaderi A. Copper‐catalyzed synthesis of
α
‐ketothioamides from ketones. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Fatemeh Abdollahi
- Department of Chemistry, College of Sciences University of Hormozgan Bandar Abbas Iran
| | - Arash Ghaderi
- Department of Chemistry, College of Sciences University of Hormozgan Bandar Abbas Iran
| |
Collapse
|
6
|
Tian H, Guo F, Chen X. Csp3–H Bond Functionalization of α-Bromo Ketones for the Synthesis of α-Keto Thioamides Using Elemental Sulfur. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802209010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
8
|
Poor MA, Darehkordi A, Anary-Abbasinejad M, Sodkouieh SM. Synthesis of a New Biologically Active α-Ketothioamide Quinolone Derivatives. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahboobe Amirani Poor
- Department of Chemistry, Faculty of Science; Vali-e-Asr University of Rafsanjan; Rafsanjan 77176 Iran
| | - Ali Darehkordi
- Department of Chemistry, Faculty of Science; Vali-e-Asr University of Rafsanjan; Rafsanjan 77176 Iran
| | | | | |
Collapse
|
9
|
Recent advances in the preparation of Fmoc-SPPS-based peptide thioester and its surrogates for NCL-type reactions. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0381-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Abstract
The present review offers an overview of nonclassical (e.g., with no pre- or in situ activation of a carboxylic acid partner) approaches for the construction of amide bonds. The review aims to comprehensively discuss relevant work, which was mainly done in the field in the last 20 years. Organization of the data follows a subdivision according to substrate classes: catalytic direct formation of amides from carboxylic and amines ( section 2 ); the use of carboxylic acid surrogates ( section 3 ); and the use of amine surrogates ( section 4 ). The ligation strategies (NCL, Staudinger, KAHA, KATs, etc.) that could involve both carboxylic acid and amine surrogates are treated separately in section 5 .
Collapse
Affiliation(s)
- Renata Marcia de Figueiredo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Simon Suppo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| |
Collapse
|
11
|
Prabhu G, Nagendra G, Sagar NR, Pal R, Guru Row TN, Sureshbabu VV. A Facile Synthesis of 1,5-Disubstituted Tetrazole Peptidomimetics by Desulfurization/Electrocyclization of Thiopeptides. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Girish Prabhu
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| | - Govindappa Nagendra
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| | - N. R. Sagar
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| | - Rumpa Pal
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560 012 India
| | - Tayur N. Guru Row
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560 012 India
| | - Vommina V. Sureshbabu
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| |
Collapse
|
12
|
Li HZ, Xue WJ, Yin GD, Wu AX. A multipathway coupled domino strategy: I2-mediated oxidative thionation for direct synthesis of thiobenzamides from miscellaneous substrates. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Pardo A, Hogenauer TJ, Cai Z, Vellucci JA, Castillo EM, Dirk CW, Franz AH, Michael K. Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters. Chembiochem 2015; 16:1884-1889. [DOI: 10.1002/cbic.201500266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 01/16/2023]
|
14
|
Saeidian H, Vahdati-Khajehi S, Bazghosha H, Mirjafary Z. Na2S-mediated thionation: an efficient access to secondary and tertiary α-ketothioamides via Willgerodt–Kindler reaction of readily available arylglyoxals with amines. J Sulphur Chem 2014. [DOI: 10.1080/17415993.2014.955026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hamid Saeidian
- Department of Science, Payame Noor University (PNU), PO Box: 19395-4697, Tehran, Iran
| | - Saleh Vahdati-Khajehi
- Department of Science, Payame Noor University (PNU), PO Box: 19395-4697, Tehran, Iran
| | - Homeira Bazghosha
- Department of Science, Payame Noor University (PNU), PO Box: 19395-4697, Tehran, Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Li HZ, Xue WJ, Wu AX. Direct synthesis of α-ketothioamides from aryl methyl ketones and amines via I2-promoted sp3 C–H functionalization. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Wu J, An G, Lin S, Xie J, Zhou W, Sun H, Pan Y, Li G. Solution-phase-peptide synthesis via the group-assisted purification (GAP) chemistry without using chromatography and recrystallization. Chem Commun (Camb) 2014; 50:1259-61. [PMID: 24336500 DOI: 10.1039/c3cc48509a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The solution phase synthesis of N-protected amino acids and peptides has been achieved through the Group-Assisted Purification (GAP) chemistry by avoiding disadvantages of other methods in regard to the difficult scale-up, expenses of solid and soluble polymers, etc. The GAP synthesis can reduce the use of solvents, silica gels, energy and manpower. In addition, the GAP auxiliary can be conveniently recovered for re-use and is environmentally friendly and benign, and substantially reduces waste production in academic labs and industry.
Collapse
Affiliation(s)
- Jianbin Wu
- Institute of Chemistry & BioMedical Sciences (ICBMS), Nanjing University, Nanjing 210093, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chemical synthesis of proteins using N-sulfanylethylanilide peptides, based on N-S acyl transfer chemistry. Top Curr Chem (Cham) 2014; 363:33-56. [PMID: 25467538 DOI: 10.1007/128_2014_586] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Native chemical ligation (NCL), which features the use of peptide thioesters, is among the most reliable ligation protocols in chemical protein synthesis. Thioesters have conventionally been synthesized using tert-butyloxycarbonyl (Boc)-based solid-phase peptide synthesis (SPPS); however, the increasing use of 9-fluorenylmethyloxycarbonyl (Fmoc) SPPS requires an efficient preparative protocol for thioesters which is fully compatible with Fmoc chemistry. We have addressed this issue by mimicking the naturally occurring thioester-forming step seen in intein-mediated protein splicing of the intein-extein system, using an appropriate chemical device to induce N-S acyl transfer reaction, avoiding the problems associated with Fmoc strategies. We have developed N-sulfanylethylanilide (SEAlide) peptides, which can be synthesized by standard Fmoc SPPS and converted to the corresponding thioesters through treatment under acidic conditions. Extensive examination of SEAlide peptides showed that the amide-type SEAlide peptides can be directly and efficiently involved in NCL via thioester species in the presence of phosphate salts, even under neutral conditions. The presence or absence of phosphate salts provided kinetically controllable chemoselectivity in NCL for SEAlide peptides. This allowed SEAlide peptides to be used in both one-pot/N-to-C-directed sequential NCL under kinetically controlled conditions, and the convergent coupling of large peptide fragments, which facilitated the chemical synthesis of proteins over about 100 residues. The use of SEAlide peptides, enabling sequential NCL operated under kinetically controlled conditions, and the convergent coupling, were used for the total chemical synthesis of a 162-residue monoglycosylated GM2-activator protein (GM2AP) analog.
Collapse
|
18
|
Eftekhari-Sis B, Vahdati-Khajeh S, Amini SM, Zirak M, Saraei M. Willgerodt–Kindler reaction of arylglyoxals with amines and sulfur in aqueous media: a simple and efficient synthesis of α-ketothioamides. J Sulphur Chem 2013. [DOI: 10.1080/17415993.2012.757614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bagher Eftekhari-Sis
- a Department of Chemistry , University of Maragheh , PO Box 55181-83111, Maragheh , Iran
| | - Saleh Vahdati-Khajeh
- a Department of Chemistry , University of Maragheh , PO Box 55181-83111, Maragheh , Iran
| | - S. Motahhareh Amini
- a Department of Chemistry , University of Maragheh , PO Box 55181-83111, Maragheh , Iran
| | - Maryam Zirak
- b Department of Chemistry , Payame Noor University , PO Box 19395-3697, Tehran , Iran
| | - Mahnaz Saraei
- b Department of Chemistry , Payame Noor University , PO Box 19395-3697, Tehran , Iran
| |
Collapse
|
19
|
Hemantha HP, Narendra N, Sureshbabu VV. Total chemical synthesis of polypeptides and proteins: chemistry of ligation techniques and beyond. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
|
21
|
|
22
|
Otaka A, Sato K, Ding H, Shigenaga A. One-Pot/Sequential Native Chemical Ligation UsingN-Sulfanylethylanilide Peptide. CHEM REC 2012; 12:479-90. [DOI: 10.1002/tcr.201200007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Indexed: 01/05/2023]
|
23
|
|
24
|
Sakamoto K, Sato K, Shigenaga A, Tsuji K, Tsuda S, Hibino H, Nishiuchi Y, Otaka A. Synthetic Procedure for N-Fmoc Amino Acyl-N-Sulfanylethylaniline Linker as Crypto-Peptide Thioester Precursor with Application to Native Chemical Ligation. J Org Chem 2012; 77:6948-58. [DOI: 10.1021/jo3011107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ken Sakamoto
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | - Kohei Sato
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | - Akira Shigenaga
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | - Kohei Tsuji
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | - Shugo Tsuda
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
- Saito Research Center, Peptide Institute, Inc., 7-2-9 Saito Ibaraki, Osaka
567-0085, Japan
| | - Hajime Hibino
- Saito Research Center, Peptide Institute, Inc., 7-2-9 Saito Ibaraki, Osaka
567-0085, Japan
| | - Yuji Nishiuchi
- Saito Research Center, Peptide Institute, Inc., 7-2-9 Saito Ibaraki, Osaka
567-0085, Japan
- Department
of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Otaka
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
25
|
Batjargal S, Wang YJ, Goldberg JM, Wissner RF, Petersson EJ. Native chemical ligation of thioamide-containing peptides: development and application to the synthesis of labeled α-synuclein for misfolding studies. J Am Chem Soc 2012; 134:9172-82. [PMID: 22468862 PMCID: PMC3415603 DOI: 10.1021/ja2113245] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thioamide modifications of the peptide backbone are used to perturb secondary structure, to inhibit proteolysis, as photoswitches, and as spectroscopic labels. Thus far, their incorporation has been confined to single peptides synthesized on solid phase. We have generated thioamides in C-terminal thioesters or N-terminal Cys fragments and examined their compatibility with native chemical ligation conditions. Most sequence variants can be coupled in good yields with either TCEP or DTT as the reductant, though some byproducts are observed with prolonged TCEP incubations. Furthermore, we find that thioamides are compatible with thiazolidine protection of an N-terminal Cys, so that multiple ligations can be used to construct larger proteins. Since the acid-lability of the thioamide prohibits on-resin thioester synthesis using Boc chemistry, we devised a method for the synthesis of thioamide peptides with a masked C-terminal thioester that is revealed in situ. Finally, we have shown that thioamidous peptides can be coupled to expressed protein fragments to generate large proteins with backbone thioamide labels by synthesizing labeled versions of the amyloid protein α-synuclein for protein folding studies. In a proof-of-principle experiment, we demonstrated that quenching of fluorescence by thioamides can be used to track conformational changes during aggregation of labeled α-synuclein.
Collapse
Affiliation(s)
- Solongo Batjargal
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323 USA
| | - Yanxin J. Wang
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323 USA
| | - Jacob M. Goldberg
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323 USA
| | - Rebecca F. Wissner
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323 USA
| | - E. James Petersson
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323 USA
| |
Collapse
|
26
|
Murakami M, Okamoto R, Izumi M, Kajihara Y. Chemical synthesis of an erythropoietin glycoform containing a complex-type disialyloligosaccharide. Angew Chem Int Ed Engl 2012; 51:3567-72. [PMID: 22307754 DOI: 10.1002/anie.201109034] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Indexed: 01/19/2023]
Affiliation(s)
- Masumi Murakami
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043 Japan
| | | | | | | |
Collapse
|
27
|
Murakami M, Okamoto R, Izumi M, Kajihara Y. Chemical Synthesis of an Erythropoietin Glycoform Containing a Complex-type Disialyloligosaccharide. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Macmillan D, Adams A, Premdjee B. Shifting Native Chemical Ligation into Reverse through N→S Acyl Transfer. Isr J Chem 2011; 51:885-899. [PMID: 22347724 PMCID: PMC3277902 DOI: 10.1002/ijch.201100084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/27/2011] [Indexed: 11/06/2022]
Abstract
Peptide thioester synthesis by N→S acyl transfer is being intensively explored by many research groups the world over. Reasons for this likely include the often straightforward method of precursor assembly using Fmoc-based chemistry and the fundamentally interesting acyl migration process. In this review we introduce recent advances in this exciting area and discuss, in more detail, our own efforts towards the synthesis of peptide thioesters through N→S acyl transfer in native peptide sequences. We have found that several peptide thioesters can be readily prepared and, what's more, there appears to be ample opportunity for further development and discovery.
Collapse
Affiliation(s)
- Derek Macmillan
- Christopher Ingold Laboratories, Department of Chemistry, University College London20 Gordon Street, London WC1H 0AJ, UK phone: +44 (0)20 7679 4684 e-mail:
| | - Anna Adams
- Christopher Ingold Laboratories, Department of Chemistry, University College London20 Gordon Street, London WC1H 0AJ, UK phone: +44 (0)20 7679 4684 e-mail:
| | - Bhavesh Premdjee
- Christopher Ingold Laboratories, Department of Chemistry, University College London20 Gordon Street, London WC1H 0AJ, UK phone: +44 (0)20 7679 4684 e-mail:
| |
Collapse
|