1
|
Konaklieva MI, Plotkin BJ. Activity of Organoboron Compounds against Biofilm-Forming Pathogens. Antibiotics (Basel) 2024; 13:929. [PMID: 39452196 PMCID: PMC11504661 DOI: 10.3390/antibiotics13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Bacteria have evolved and continue to change in response to environmental stressors including antibiotics. Antibiotic resistance and the ability to form biofilms are inextricably linked, requiring the continuous search for alternative compounds to antibiotics that affect biofilm formation. One of the latest drug classes is boron-containing compounds. Over the last several decades, boron has emerged as a prominent element in the field of medicinal chemistry, which has led to an increasing number of boron-containing compounds being considered as potential drugs. The focus of this review is on the developments in boron-containing organic compounds (BOCs) as antimicrobial/anti-biofilm probes and agents.
Collapse
Affiliation(s)
- Monika I. Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, USA
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA;
| |
Collapse
|
2
|
Rodrigues MV, Kis P, Xavier KB, Ventura MR. Synthesis and potential of Autoinducer‐2 and analogs to manipulate inter‐species Quorum Sensing. Isr J Chem 2023. [DOI: 10.1002/ijch.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Miguel V. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Peter Kis
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
- Institute of Chemistry Slovak Academy of Sciences 845 38 Bratislava Slovakia
| | | | - M. Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| |
Collapse
|
3
|
Kiyotaki K, Kayukawa T, Imayoshi A, Tsubaki K. Total Syntheses of FR-901235, Auxarthrones A-D, and Lamellicolic Anhydride. Org Lett 2020; 22:9220-9224. [PMID: 33196202 DOI: 10.1021/acs.orglett.0c03401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In our previous study, an unusual rearrangement reaction was discovered whereby dinaphthyl ketones with three hydroxy groups at restricted positions were transformed into a phenalenone ring and a benzene ring. Using the rearrangement as a key reaction, the first total syntheses of FR-901235 and auxarthrones A-D from an unstable triketone common intermediate are described. Furthermore, lamellicolic anhydride was synthesized from the triketone. This conversion is part of the putative biosynthetic pathway and was achieved experimentally for the first time.
Collapse
Affiliation(s)
- Kotaro Kiyotaki
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522 Japan
| | - Takuto Kayukawa
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522 Japan
| | - Ayumi Imayoshi
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522 Japan
| | - Kazunori Tsubaki
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522 Japan
| |
Collapse
|
4
|
Tsuchikama K. [Novel Chemical Linkers for Next-generation Antibody-drug Conjugates(ADCs)]. YAKUGAKU ZASSHI 2019; 139:209-219. [PMID: 30713230 DOI: 10.1248/yakushi.18-00169-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates (ADCs), monoclonal antibodies conjugated with highly potent drugs (payloads) through chemical linkers, are an emerging class of therapeutic agents for cancer chemotherapy. Their clinical success has been demonstrated by the 4 ADCs already approved by the U.S. Food and Drug Administration (FDA), and more than 60 promising ADCs now in clinical trials. Further advancement of this novel molecular platform could potentially revolutionize current strategies and regimens for treating cancers. The linker structure and antibody-linker conjugation modality critically contribute to ADC homogeneity, circulation stability, pharmacokinetic profiles, tolerability, and overall treatment efficacy. Despite extensive efforts to improve these parameters, most ADC linkers used to date possess linear structures, and therefore accommodate only single payloads. The clinical potential of branched ADC linkers, enabling the installation of two payload molecules, remains unexplored because of the lack of efficient conjugation methods. In addition, according to a recent report, the stability of enzymatically cleavable linkers in mouse circulation is another crucial factor for the successful evaluation of ADCs in preclinical studies. In this review, I present my research group's effort to develop both branched linkers and efficient conjugation methods for constructing dual-loading ADCs with high homogeneity and enhanced potency. I also present a novel tripeptide ADC linker with enhanced stability in mouse circulation. Multidisciplinary experience, approaches, and collaboration are key to successfully advancing our ADC research programs. I herein describe how my experience in the U.S. has helped to develop and manage complex biomedical research projects in a small academic laboratory setting.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston
| |
Collapse
|
5
|
Collins KC, Tsuchikama K, Lowery CA, Zhu J, Janda KD. Dissecting AI-2-mediated quorum sensing through C5-analogue synthesis and biochemical analysis. Tetrahedron 2016; 72:3593-3598. [PMID: 27340303 DOI: 10.1016/j.tet.2015.08.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autoinducer-2 (AI-2)-mediated quorum sensing (QS) is utilised for both intra- and inter-species communication by a wide variety of bacteria. An understanding of the mechanism of this communication has the potential to elucidate new targets for antibacterial therapeutics. Herein, we report the synthesis of DPD analogues with modified dynamic equilibria and the evaluation of their behaviour in Gram-negative bacteria. None of the compounds showed modulation of QS in S. Typhimurium, and although no antagonism of V. harveyi was observed, chloro-analogue C5-Cl-DPD showed modest agonism in this marine bacterium. This raises the possibility that access to a cyclic form of DPD may not be required for AI-2-mediated QS in V. harveyi.
Collapse
Affiliation(s)
- Karen C Collins
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kyoji Tsuchikama
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Colin A Lowery
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jie Zhu
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Sim J, Yoon I, Yun H, An H, Suh YG. Divergent synthetic route to new cyclopenta[c]pyran iridoids: syntheses of jatamanin A, F, G and J, gastrolactone and nepetalactone. Org Biomol Chem 2016; 14:1244-51. [PMID: 26647357 DOI: 10.1039/c5ob02147b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six natural iridoids including jatamanin A, F, G and J, gastrolactone and nepetalactone have been synthesized via the efficient transformation of a core cyclopenta[c]pyran intermediate. Key features of the syntheses include the stereoselective construction of the core cyclopenta[c]pyran skeleton of the iridoid lactones via a Pd(0)-catalyzed intramolecular allylic alkylation, and the facile transformation of the common intermediate into natural iridoids.
Collapse
Affiliation(s)
- Jaehoon Sim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | | | | | | | | |
Collapse
|
7
|
Phippen BL, Oliver JD. Clinical and environmental genotypes of Vibrio vulnificus display distinct, quorum-sensing-mediated, chitin detachment dynamics. Pathog Dis 2015; 73:ftv072. [PMID: 26377182 DOI: 10.1093/femspd/ftv072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2015] [Indexed: 12/15/2022] Open
Abstract
The ability for bacteria to attach to and detach from various substrata is important for colonization, survival and transitioning to new environments. An opportunistic human pathogen, Vibrio vulnificus, can cause potentially fatal septicemia after ingestion of undercooked seafood. Based on genetic polymorphisms, strains of this species are subtyped into clinical (C) and environmental (E) genotypes. Vibrio vulnificus readily associates with chitin, thus we investigated chitin detachment dynamics in these disparate genotypes. We found that C-genotypes detach significantly more than E-genotypes after 24 hours in aerobic as well as anaerobic conditions. Furthermore, expression of genes involved in type IV pilin production was significantly downregulated in C-genotypes compared to E-genotypes, suggesting an importance in detachment. Interestingly, gbpA, a gene that has been shown to be important in host colonization in V. cholerae, was upregulated in the C-genotypes during detachment. Additionally, we found that C-genotypes detached to a greater extent, and produced more quorum-sensing (QS) autoinducer-2 molecules relative to E-genotypes, which suggests a role for QS in detachment. These findings suggest that for V. vulnificus, QS-mediated detachment may be a potential mechanism for transitioning into a human host for C-genotypes, while facilitating E-genotype maintenance in the estuarine environment.
Collapse
Affiliation(s)
- Britney L Phippen
- Biological Sciences, UNCC, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - James D Oliver
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Adler L, Alter T, Sharbati S, Gölz G. Phenotypes of Campylobacter jejuni luxS mutants are depending on strain background, kind of mutation and experimental conditions. PLoS One 2014; 9:e104399. [PMID: 25093839 PMCID: PMC4122453 DOI: 10.1371/journal.pone.0104399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022] Open
Abstract
Since the discovery that Campylobacter (C.) jejuni produces Autoinducer 2 (AI-2), various studies have been conducted to explore the function and role of AI-2 in C. jejuni. However, the interpretation of these analyses has been complicated by differences in strain backgrounds, kind of mutation and culture conditions used. Furthermore, all research on AI-2 dependent phenotypes has been conducted with AI-2 synthase (luxS) mutants. This mutation also leads to a disruption of the activated-methyl-cycle. Most studies lack sufficient complementation resulting in not knowing whether phenotypes of luxS mutants depend on disrupted metabolism or lack of AI-2. Additionally, no AI-2 receptor has been found yet. All this contributes to an intensive discussion about the exact role of AI-2 in C. jejuni. Therefore, we examined the impact of different experiment settings on three different C. jejuni luxS mutants on growth and motility (37°C and 42°C). Our study showed that differing phenotypes of C. jejuni luxS mutants depend on strain background, mutation strategy and culture conditions. Furthermore, we complemented experiments with synthetic AI-2 or homocysteine as well as the combination of both. Complementation with AI-2 and AI-2+homocysteine significantly increased the cell number of C. jejuni NCTC 11168ΔluxS in stationary phase compared to the non-complemented C. jejuni NCTC 11168ΔluxS mutant. Genetic complementation of both C. jejuni 81-176 luxS mutants resulted in wild type comparable growth curves. Also swarming ability could be partially complemented. While genetic complementation restored swarming abilities of C. jejuni 81-176ΔluxS, it did not fully restore the phenotype of C. jejuni 81-176::luxS, which indicates that compensatory mutations in other parts of the chromosome and/or potential polar effects may appear in this mutant strain. Also with neither synthetic complementation, the phenotype of the wild type-strains was achieved, suggesting yet another reason for differing phenotypes other than communication and methionine metabolism for C. jejuni luxS mutants.
Collapse
Affiliation(s)
- Linda Adler
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Interspecific quorum sensing mediates the resuscitation of viable but nonculturable vibrios. Appl Environ Microbiol 2014; 80:2478-83. [PMID: 24509922 DOI: 10.1128/aem.00080-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Entry and exit from dormancy are essential survival mechanisms utilized by microorganisms to cope with harsh environments. Many bacteria, including the opportunistic human pathogen Vibrio vulnificus, enter a form of dormancy known as the viable but nonculturable (VBNC) state. VBNC cells can resuscitate when suitable conditions arise, yet the molecular mechanisms facilitating resuscitation in most bacteria are not well understood. We discovered that bacterial cell-free supernatants (CFS) can awaken preexisting dormant vibrio populations within oysters and seawater, while CFS from a quorum sensing mutant was unable to produce the same resuscitative effect. Furthermore, the quorum sensing autoinducer AI-2 could induce resuscitation of VBNC V. vulnificus in vitro, and VBNC cells of a mutant unable to produce AI-2 were unable to resuscitate unless the cultures were supplemented with exogenous AI-2. The quorum sensing inhibitor cinnamaldehyde delayed the resuscitation of wild-type VBNC cells, confirming the importance of quorum sensing in resuscitation. By monitoring AI-2 production by VBNC cultures over time, we found quorum sensing signaling to be critical for the natural resuscitation process. This study provides new insights into the molecular mechanisms stimulating VBNC cell exit from dormancy, which has significant implications for microbial ecology and public health.
Collapse
|
10
|
Jakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:43-110. [PMID: 24581389 DOI: 10.1016/b978-0-12-800261-2.00002-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is now clear that the most common oral diseases, dental caries and periodontitis, are caused by mixed-species communities rather than by individual pathogens working in isolation. Oral streptococci are central to these disease processes since they are frequently the first microorganisms to colonize oral surfaces and they are numerically the dominant microorganisms in the human mouth. Numerous interactions between oral streptococci and other bacteria have been documented. These are thought to be critical for the development of mixed-species oral microbial communities and for the transition from oral health to disease. Recent metagenomic studies are beginning to shed light on the co-occurrence patterns of streptococci with other oral bacteria. Refinements in microscopy techniques and biofilm models are providing detailed insights into the spatial distribution of streptococci in oral biofilms. Targeted genetic manipulation is increasingly being applied for the analysis of specific genes and networks that modulate interspecies interactions. From this work, it is clear that streptococci produce a range of extracellular factors that promote their integration into mixed-species communities and enable them to form social networks with neighboring taxa. These "community integration factors" include coaggregation-mediating adhesins and receptors, small signaling molecules such as peptides or autoinducer-2, bacteriocins, by-products of metabolism including hydrogen peroxide and lactic acid, and a range of extracellular enzymes. Here, we provide an overview of various types of community interactions between oral streptococci and other microorganisms, and we consider the possibilities for the development of new technologies to interfere with these interactions to help control oral biofilms.
Collapse
Affiliation(s)
- Nicholas S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Sufian A Yassin
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Small molecule inhibitors of AI-2 signaling in bacteria: state-of-the-art and future perspectives for anti-quorum sensing agents. Int J Mol Sci 2013; 14:17694-728. [PMID: 23994835 PMCID: PMC3794749 DOI: 10.3390/ijms140917694] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023] Open
Abstract
Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules.
Collapse
|
12
|
Tsuchikama K, Zhu J, Lowery CA, Kaufmann GF, Janda KD. C4-alkoxy-HPD: a potent class of synthetic modulators surpassing nature in AI-2 quorum sensing. J Am Chem Soc 2012; 134:13562-4. [PMID: 22866957 DOI: 10.1021/ja305532y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria have developed cell-to-cell communication mechanisms, termed quorum sensing (QS), that regulate bacterial gene expression in a cell population-dependent manner. Autoinducer-2 (AI-2), a class of QS signaling molecules derived from (4S)-4,5-dihydroxy-2,3-pentanedione (DPD), has been identified in both Gram-negative and Gram-positive bacteria. Despite considerable interest in the AI-2 QS system, the biomolecular communication used by distinct bacterial species still remains shrouded. Herein, we report the synthesis and evaluation of a new class of DPD analogues, C4-alkoxy-5-hydroxy-2,3-pentanediones, termed C4-alkoxy-HPDs. Remarkably, two of the analogues were more potent QS agonists than the natural ligand, DPD, in Vibrio harveyi. The findings presented extend insights into ligand-receptor recognition/signaling in the AI-2 mediated QS system.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- The Skaggs Institute for Chemical Biology and Department of Chemistry, and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
13
|
Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 2012; 37:156-81. [PMID: 22712853 DOI: 10.1111/j.1574-6976.2012.00345.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 02/06/2023] Open
Abstract
Success in nature depends upon an ability to perceive and adapt to the surrounding environment. Bacteria are not an exception; they recognize and constantly adjust to changing situations by sensing environmental and self-produced signals, altering gene expression accordingly. Autoinducer-2 (AI-2) is a signal molecule produced by LuxS, an enzyme found in many bacterial species and thus proposed to enable interspecies communication. Two classes of AI-2 receptors and many layers and interactions involved in downstream signalling have been identified so far. Although AI-2 has been implicated in the regulation of numerous niche-specific behaviours across the bacterial kingdom, interpretation of these results is complicated by the dual role of LuxS in signalling and the activated methyl cycle, a crucial central metabolic pathway. In this article, we present a comprehensive review of the discovery and early characterization of AI-2, current developments in signal detection, transduction and regulation, and the major studies investigating the phenotypes regulated by this molecule. The development of novel tools should help to resolve many of the remaining questions in the field; we highlight how these advances might be exploited in AI-2 quorum quenching, treatment of diseases, and the manipulation of beneficial behaviours caused by polyspecies communities.
Collapse
|
14
|
Gamby S, Roy V, Guo M, Smith JAI, Wang J, Stewart JE, Wang X, Bentley WE, Sintim HO. Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem Biol 2012; 7:1023-30. [PMID: 22433054 DOI: 10.1021/cb200524y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been intensive efforts to find small molecule antagonists for bacterial quorum sensing (QS) mediated by the "universal" QS autoinducer, AI-2. Previous work has shown that linear and branched acyl analogues of AI-2 can selectively modulate AI-2 signaling in bacteria. Additionally, LsrK-dependent phosphorylated analogues have been implicated as the active inhibitory form against AI-2 signaling. We used these observations to synthesize an expanded and diverse array of AI-2 analogues, which included aromatic as well as cyclic C-1-alkyl analogues. Species-specific analogues that disrupted AI-2 signaling in Escherichia coli and Salmonella typhimurium were identified. Similarly, analogues that disrupted QS behaviors in Pseudomonas aeruginosa were found. Moreover, we observed a strong correlation between LsrK-dependent phosphorylation of these acyl analogues and their ability to suppress QS. Significantly, we demonstrate that these analogues can selectively antagonize QS in single bacterial strains in a physiologically relevant polymicrobial culture.
Collapse
Affiliation(s)
- Sonja Gamby
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Varnika Roy
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Min Guo
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Jacqueline A. I. Smith
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Jingxin Wang
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Jessica E. Stewart
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Xiao Wang
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - William E. Bentley
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| |
Collapse
|
15
|
Abstract
Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this 'social structure' of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| |
Collapse
|
16
|
A pro-drug approach for selective modulation of AI-2-mediated bacterial cell-to-cell communication. SENSORS 2012; 12:3762-72. [PMID: 22737036 PMCID: PMC3376627 DOI: 10.3390/s120303762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/26/2012] [Accepted: 03/15/2012] [Indexed: 01/08/2023]
Abstract
The universal quorum sensing autoinducer, AI-2, is utilized by several bacteria. Analogs of AI-2 have the potential to modulate bacterial behavior. Selectively quenching the communication of a few bacteria, in the presence of several others in an ecosystem, using analogs of AI-2 is non-trivial due to the ubiquity of AI-2 processing receptors in many bacteria that co-exist. Herein, we demonstrate that when an AI-2 analog, isobutyl DPD (which has been previously shown to be a quorum sensing, QS, quencher in both Escherichia coli and Salmonella typhimurium) is modified with ester groups, which get hydrolyzed once inside the bacterial cells, only QS in E. coli, but not in S. typhimurium, is inhibited. The origin of this differential QS inhibition could be due to differences in analog permeation of the bacterial membranes or ester hydrolysis rates. Such differences could be utilized to selectively target QS in specific bacteria amongst a consortium of other species that also use AI-2 signaling.
Collapse
|
17
|
Clevenger KD, Fast W. "Clicking" on the lights to reveal bacterial social networking. Chembiochem 2012; 13:508-10. [PMID: 22262670 DOI: 10.1002/cbic.201100767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Indexed: 01/31/2023]
Abstract
"No man is an island." With apologies to John Donne, the same could be said for a bacterium. The discovery of bacterial quorum sensing and its relevance to microbial ecology and pathogenesis have fueled the increasing scrutiny of the molecular mechanisms responsible for the apparent group behavior of microbes. A number of chemically diverse small molecules act as diffusible signaling molecules that regulate gene expression in a population-dependent manner. Some of these signals, such as the N-acyl-L-homoserine lactones, are produced and sensed by others in the same or closely related species, and other chemical classes of signals are used more broadly for interspecies and even interkingdom communication. As a field, the study of these microbial social networks has been termed "sociomicrobiology".
Collapse
Affiliation(s)
- Kenneth D Clevenger
- Department of Chem and Biochem, University of Texas, Austin, Austin, TX 78712, USA
| | | |
Collapse
|
18
|
Globisch D, Lowery CA, McCague KC, Janda KD. Uncharacterized 4,5-Dihydroxy-2,3-Pentanedione (DPD) Molecules Revealed Through NMR Spectroscopy: Implications for a Greater Signaling Diversity in Bacterial Species. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Globisch D, Lowery CA, McCague KC, Janda KD. Uncharacterized 4,5-dihydroxy-2,3-pentanedione (DPD) molecules revealed through NMR spectroscopy: implications for a greater signaling diversity in bacterial species. Angew Chem Int Ed Engl 2012; 51:4204-8. [PMID: 22378693 DOI: 10.1002/anie.201109149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel Globisch
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
20
|
Rui F, Marques JC, Miller ST, Maycock CD, Xavier KB, Ventura MR. Stereochemical diversity of AI-2 analogs modulates quorum sensing in Vibrio harveyi and Escherichia coli. Bioorg Med Chem 2011; 20:249-56. [PMID: 22137598 DOI: 10.1016/j.bmc.2011.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Bacteria coordinate population-dependent behaviors such as virulence by intra- and inter-species communication (quorum sensing). Autoinducer-2 (AI-2) regulates inter-species quorum sensing. AI-2 derives from the spontaneous cyclisation of linear (S)-4,5-dihydroxypentanedione (DPD) into two isomeric forms in dynamic equilibrium. Different species of bacteria have different classes of AI-2 receptors (LsrB and LuxP) which bind to different cyclic forms. In the present work, DPD analogs with a new stereocenter at C-5 (4,5-dihydroxyhexanediones (DHDs)) have been synthesized and their biological activity tested in two bacteria. (4S,5R)-DHD is a synergistic agonist in Escherichia coli (which contains the LsrB receptor), while it is an agonist in Vibrio harveyi (LuxP), displaying the strongest agonistic activity reported so far (EC(50)=0.65μM) in this organism. Thus, modification at C-5 opens the way to novel methods to manipulate quorum sensing as a method for controlling bacteria.
Collapse
Affiliation(s)
- Fabio Rui
- Instituto de Tecnologia Química e Biológica, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|