1
|
Zhang CJ, Sun Y, Gong J, Zhang H, Liu ZZ, Wang F, Chen JX, Qu JP, Kang YB. α-Nucleophilic Addition to α,β-Unsaturated Carbonyl Compounds via Photocatalytically Generated α-Carbonyl Carbocations. Angew Chem Int Ed Engl 2024:e202415496. [PMID: 39494965 DOI: 10.1002/anie.202415496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 11/05/2024]
Abstract
We report the photocatalytic oxidation of α-carbonyl radicals of amides or esters to the corresponding α-carbonyl carbocations through super photoreductant CBZ6 induced redox-neutral photocatalysis. The α-carbonyl radicals are formed by the β-addition of alkyl radicals generated in situ by the photocatalytic fragmentation of N-hydroxyphthalimide esters to the α,β-unsaturated amides and esters. This method enables the α-nucleophilic addition of hydroxyl or alkoxyl radicals to amides and esters without any prefunctionalization.
Collapse
Affiliation(s)
- Chong-Jin Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Gong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hao Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Zhen Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fang Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jin-Xiang Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Latrache M, Lefebvre C, Abe M, Hoffmann N. Photochemically Induced Hydrogen Atom Transfer and Intramolecular Radical Cyclization Reactions with Oxazolones. J Org Chem 2023; 88:16435-16455. [PMID: 37983612 DOI: 10.1021/acs.joc.3c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photochemically induced intramolecular hydrogen atom transfer in oxazolones is reported. An acetal or thioacetal function at the side chain acts as a hydrogen donor while the photochemical exited oxazolone is the acceptor. A one-step process─the electron and the proton are simultaneously transferred─is productive, while electron transfer followed by proton transfer is inefficient. Radical combination then takes place, leading to the formation of a C-C or C-N bond. The regioselectivity of the reaction is explained by the diradical/zwitterion dichotomy of radical intermediates at the singlet state. In the present case, the zwitterion structure plays a central role, and intramolecular electron transfer favors spin-orbit coupling and thus the intersystem crossing to the singlet state. The reaction of corresponding thioacetal derivatives is less efficient. In this case, photochemical electron transfer is competitive. The photoproducts resulting from C-C bond formation easily undergo stepwise thermal decarboxylation in which zwitterionic and polar transition states are involved. A computational study of this step has also been performed.
Collapse
Affiliation(s)
- Mohammed Latrache
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Corentin Lefebvre
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Hiroshima Research Center for Photo-Drug-Delivery Systems (Hi-P-DDS), 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Norbert Hoffmann
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| |
Collapse
|
3
|
Metal-Free Aerobic C-N Bond Formation of Styrene and Arylamines via Photoactivated Electron Donor-Acceptor Complexation. Molecules 2023; 28:molecules28010356. [PMID: 36615548 PMCID: PMC9822123 DOI: 10.3390/molecules28010356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/25/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
This study processes a facile and green approach for the Markovnikov-selective hydroamination of styrene with naphthylamine through irradiation with UV LED light (365 nm) via an electron donor-acceptor complexation between naphthylamines and oxygen in situ. This protocol showcases the synthetic potential for aerobic C-N bond formation without using a metal catalyst and photosensitizer. Three naphthylamines were examined and afforded desired C-N bond formation product in moderate yield.
Collapse
|
4
|
Zheng D, Plöger S, Daniliuc CG, Studer A. Licht‐vermittelte intermolekulare Kupplung von Alkenen mit Ketonen über Acyloxy‐Nitroso‐Verbindungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Danqing Zheng
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Stefanie Plöger
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
5
|
Zheng D, Plöger S, Daniliuc CG, Studer A. Photo-Mediated Intermolecular Coupling of Alkenes with Ketones via Acyloxy Nitroso Compounds. Angew Chem Int Ed Engl 2021; 60:8547-8551. [PMID: 33559941 DOI: 10.1002/anie.202016955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Indexed: 12/15/2022]
Abstract
An atom-economic intermolecular radical addition reaction of acyloxy nitroso compounds to electron-deficient alkenes mediated by visible light is reported. The starting nitroso derivatives are readily prepared by oxidation of the corresponding oximes prepared from ketones and the overall transformation represents an oxidative coupling of a ketone with a Michael acceptor. The cascade proceeds smoothly under mild conditions, providing a series of valuable functionalized oximes in moderate to good yields. Mechanistic studies suggest that these cascades proceed via addition/coupling processes that are controlled by the persistent radical effect (PRE) with NO acting as the persistent species.
Collapse
Affiliation(s)
- Danqing Zheng
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Stefanie Plöger
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Armido Studer
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
6
|
Itoh K, Nagao SI, Tokunaga K, Hirayama S, Karaki F, Mizuguchi T, Nagai K, Sato N, Suzuki M, Hashimoto M, Fujii H. Visible-Light-Induced Synthesis of 1,2,3,4-Tetrahydroquinolines through Formal [4+2] Cycloaddition of Acyclic α,β-Unsaturated Amides and Imides with N,N-Dialkylanilines. Chemistry 2021; 27:5171-5179. [PMID: 33300620 DOI: 10.1002/chem.202004186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Indexed: 01/01/2023]
Abstract
1,2,3,4-Tetrahydroquinolines should be applicable to the development of new pharmaceutical agents. A facile synthesis of 1,2,3,4-tetrahydroquinolines that is achieved by a photoinduced formal [4+2] cycloaddition reaction of acyclic α,β-unsaturated amides and imides with N,N-dialkylanilines under visible-light irradiation, in which a new IrIII complex photosensitizer, a thiourea, and an oxidant act cooperatively in promoting the reaction, is reported. The photoreaction enables the synthesis of a wide variety of 1,2,3,4-tetrahydroquinolines, while controlling the trans/cis diastereoselectivity (>99:1) and constructing contiguous stereogenic centers. A chemoselective cleavage of an acyclic imide auxiliary is demonstrated.
Collapse
Affiliation(s)
- Kennosuke Itoh
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Shun-Ichi Nagao
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Center for Promotion of Higher Education, Kogakuin University, Tokyo, 192-0015, Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Fumika Karaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Noriko Sato
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Mitsuaki Suzuki
- Department of Chemistry, Faculty of Science, Josai University, Saitama, 350-0295, Japan
| | - Masashi Hashimoto
- Department of Chemistry, Faculty of Science, Josai University, Saitama, 350-0295, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| |
Collapse
|
7
|
Luan ZH, Qu JP, Kang YB. Discovery of Oxygen α-Nucleophilic Addition to α,β-Unsaturated Amides Catalyzed by Redox-Neutral Organic Photoreductant. J Am Chem Soc 2020; 142:20942-20947. [DOI: 10.1021/jacs.0c10707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zi-Hong Luan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Abstract
Synergistic utilization of TiO2-photo-generated holes and electrons is a potential protocol for catalytic C–C bond formation reactions.
Collapse
Affiliation(s)
- Dongge Ma
- School of Science
- Beijing Technology and Business University
- Beijing
- P. R. China
| | - Anan Liu
- Key Laboratory of Photochemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Shuhong Li
- School of Science
- Beijing Technology and Business University
- Beijing
- P. R. China
| | - Chichong Lu
- School of Science
- Beijing Technology and Business University
- Beijing
- P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|
9
|
Ando Y, Kamatsuka T, Shinokubo H, Miyake Y. Selective α-arylation of α,β-unsaturated imides mediated by a visible light photoredox catalyst. Chem Commun (Camb) 2017; 53:9136-9138. [DOI: 10.1039/c7cc04776b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light-mediated α-arylation of α,β-unsaturated imides is achieved via aminium radicals generated from diarylalkylamines using a photoredox catalyst.
Collapse
Affiliation(s)
- Yuki Ando
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Takuto Kamatsuka
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
10
|
Oelgemöller M, Hoffmann N. Studies in organic and physical photochemistry - an interdisciplinary approach. Org Biomol Chem 2016; 14:7392-442. [PMID: 27381273 DOI: 10.1039/c6ob00842a] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.
Collapse
Affiliation(s)
- Michael Oelgemöller
- James Cook University, College of Science and Engineering, Townsville, QLD 4811, Australia.
| | | |
Collapse
|
11
|
|
12
|
Manley DW, Walton JC. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis. Beilstein J Org Chem 2015; 11:1570-82. [PMID: 26664577 PMCID: PMC4660884 DOI: 10.3762/bjoc.11.173] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/19/2015] [Indexed: 11/23/2022] Open
Abstract
Heterogeneous semiconductor photoredox catalysis (SCPC), particularly with TiO2, is evolving to provide radically new synthetic applications. In this review we describe how photoactivated SCPCs can either (i) interact with a precursor that donates an electron to the semiconductor thus generating a radical cation; or (ii) interact with an acceptor precursor that picks up an electron with production of a radical anion. The radical cations of appropriate donors convert to neutral radicals usually by loss of a proton. The most efficient donors for synthetic purposes contain adjacent functional groups such that the neutral radicals are resonance stabilized. Thus, ET from allylic alkenes and enol ethers generated allyl type radicals that reacted with 1,2-diazine or imine co-reactants to yield functionalized hydrazones or benzylanilines. SCPC with tertiary amines enabled electron-deficient alkenes to be alkylated and furoquinolinones to be accessed. Primary amines on their own led to self-reactions involving C-N coupling and, with terminal diamines, cyclic amines were produced. Carboxylic acids were particularly fruitful affording C-centered radicals that alkylated alkenes and took part in tandem addition cyclizations producing chromenopyrroles; decarboxylative homo-dimerizations were also observed. Acceptors initially yielding radical anions included nitroaromatics and aromatic iodides. The latter led to hydrodehalogenations and cyclizations with suitable precursors. Reductive SCPC also enabled electron-deficient alkenes and aromatic aldehydes to be hydrogenated without the need for hydrogen gas.
Collapse
Affiliation(s)
- David W Manley
- University of St. Andrews, EaStCHEM School of Chemistry, St. Andrews, Fife, KY16 9ST, UK
| | - John C Walton
- University of St. Andrews, EaStCHEM School of Chemistry, St. Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
13
|
Shi J, Tang XD, Wu YC, Li HN, Song LJ, Wang ZY. Palladium-Catalyzed Desulfitative Arylation of 5-Alkoxy-3,4-dibromo-2(5H)-furanone with Sodium Arylsulfinates. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403404] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Abstract
Titanium dioxide is a versatile heterogeneous catalyst. Absorption of light by a TiO2 particle leads to the formation of an electron–hole pair. Electron transfer from or to the particle induces redox reactions. Although mainly applied in the context of environmental chemistry, these processes are also used to selectively transform organic compounds. Oxidations and reductions have been carried out. Applications to the synthesis of heterocycles have been reported. Many C–C bond formation reactions have been performed. Owing to adsorption of the substrates or by different surface modifications, visible light can be used to excite the catalytic system, which generates mild reaction conditions.
Collapse
|
15
|
Affiliation(s)
- Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne; ICMR, Equipe de Photochimie; UFR Sciences, B.P. 1039 51687 Reims France
| |
Collapse
|
16
|
Synthesis of enantiomerically pure model compounds of the glucose-6-phosphate-T1-translocase inhibitors kodaistatins A–D. Inferences with regard to the stereostructure of the natural products. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.05.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Hoffmann N. Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent. Photochem Photobiol Sci 2013; 11:1613-41. [PMID: 22732723 DOI: 10.1039/c2pp25074h] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electronic excitation significantly changes the reactivity of chemical compounds. Compared to ground state reactions, photochemical reactions considerably enlarge the application spectrum of a particular functional group in organic synthesis. Multistep syntheses may be simplified and perspectives for target oriented synthesis (TOS) and diversity oriented synthesis (DOS) are developed. New compound families become available or may be obtained more easily. In contrast to common chemical reagents, photons don't generate side products resulting from the transformation of a chemical reagent. Therefore, they are considered as a traceless reagent. Consequently, photochemical reactions play a central role in the methodology of sustainable chemistry. This aspect has been recognized since the beginning of the 20th century. As with many other photochemical transformations, photochemical reactions of aromatic, benzene-like compounds illustrate well the advantages in this context. Photochemical cycloadditions of aromatic compounds have been investigated for a long time. Currently, they are applied in various fields of organic synthesis. They are also studied in supramolecular structures. The phenomena of reactivity and stereoselectivity are investigated. During recent years, photochemical electron transfer mediated reactions are particularly focused. Such transformations have likewise been performed with aromatic compounds. Reactivity and selectivity as well as application to organic synthesis are studied.
Collapse
Affiliation(s)
- Norbert Hoffmann
- Institut de Chimie Moléculaire de Reims, UMR 7312 CNRS et Université de Reims Champagne-Ardenne, Equipe de Photochimie, UFR Sciences, B.P. 1039, F-51687 Reims, cedex 02, France.
| |
Collapse
|
18
|
Barata-Vallejo S, Flesia MM, Lantaño B, Argüello JE, Peñéñory AB, Postigo A. Heterogeneous Photoinduced Homolytic Aromatic Substitution of Electron-Rich Arenes with Perfluoroalkyl Groups in Water and Aqueous Media - A Radical-Ion Reaction. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Zhang M, Rouch WD, McCulla RD. Conjugated Polymers as Photoredox Catalysts: Visible-Light-Driven Reduction of Aryl Aldehydes by Poly(p-phenylene). European J Org Chem 2012. [DOI: 10.1002/ejoc.201200437] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Tan YH, Li JX, Xue FL, Qi J, Wang ZY. Concise synthesis of chiral 2(5H)-furanone derivatives possessing 1,2,3-triazole moiety via one-pot approach. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|