1
|
Robert‐Scott G, St‐Gelais J, Giguère D. Annulative Dimerization of Carbohydrates: Synthesis of Complex
C
2
‐Symmetrical 1,4‐Dioxane‐Sugar Hybrids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gabrielle Robert‐Scott
- Département de Chimie Université Laval 1045 av. De la Médecine Québec City, Qc G1V 0A6 Canada
| | - Jacob St‐Gelais
- Département de Chimie Université Laval 1045 av. De la Médecine Québec City, Qc G1V 0A6 Canada
| | - Denis Giguère
- Département de Chimie Université Laval 1045 av. De la Médecine Québec City, Qc G1V 0A6 Canada
| |
Collapse
|
2
|
Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions. Top Curr Chem (Cham) 2015; 361:137-77. [PMID: 25370520 DOI: 10.1007/128_2014_562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review covers recent progress in the preparation of H-phosphonate mono- and diesters, basic studies on mechanistic and stereochemical aspects of this class of phosphorus compounds, and their fundamental chemistry in terms of transformation of P-H bonds into P-heteroatom bonds. Selected recent applications of H-phosphonate derivatives in basic organic phosphorus chemistry and in the synthesis of biologically important phosphorus compounds are also discussed.
Collapse
|
3
|
Mori K, Kodama T, Obika S. Synthesis and hybridization property of a boat-shaped pyranosyl nucleic acid containing an exocyclic methylene group in the sugar moiety. Bioorg Med Chem 2014; 23:33-7. [PMID: 25496806 DOI: 10.1016/j.bmc.2014.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022]
Abstract
A boat-shaped pyranosyl nucleic acid (BsNA) having an exocyclic methylene group in the sugar moiety was synthesized to investigate the possibility that the axial H3' of original BsNA is the cause of its duplex destabilization. The synthesized BsNA analog was chemically stable against various nucleophiles. From the thermal stability of duplex oligonucleotides including the BsNA analog, it was found that the duplex-forming ability can be sensitive to the size of functional groups at the 3'-position.
Collapse
Affiliation(s)
- Kazuto Mori
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Kodama
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Kaura M, Kumar P, Hrdlicka PJ. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers. J Org Chem 2014; 79:6256-68. [PMID: 24933409 DOI: 10.1021/jo500994c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Conformationally restricted nucleotides such as locked nucleic acid (LNA) are very popular as affinity-, specificity-, and stability-enhancing modifications in oligonucleotide chemistry to produce probes for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. Considerable efforts have been devoted in recent years to optimize the biophysical properties of LNA through additional modification of the sugar skeleton. We recently introduced C5-functionalization of LNA uridines as an alternative and synthetically more straightforward approach to improve the biophysical properties of LNA. In the present work, we set out to test the generality of this concept by studying the characteristics of oligonucleotides modified with four different C5-functionalized LNA cytidine and C8-functionalized LNA adenosine monomers. The results strongly suggest that C5-functionalization of LNA pyrimidines is indeed a viable approach for improving the binding affinity, target specificity, and/or enzymatic stability of LNA-modified ONs, whereas C8-functionalization of LNA adenosines is detrimental to binding affinity and specificity. These insights will impact the future design of conformationally restricted nucleotides for nucleic acid targeting applications.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho , Moscow, Idaho 83844-2343, United States
| | | | | |
Collapse
|
5
|
Kumar P, Baral B, Anderson BA, Guenther DC, Østergaard ME, Sharma PK, Hrdlicka PJ. C5-alkynyl-functionalized α-L-LNA: synthesis, thermal denaturation experiments and enzymatic stability. J Org Chem 2014; 79:5062-73. [PMID: 24797769 PMCID: PMC4049248 DOI: 10.1021/jo5006153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 12/23/2022]
Abstract
Major efforts are currently being devoted to improving the binding affinity, target specificity, and enzymatic stability of oligonucleotides used for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. One of the most popular strategies toward this end has been to introduce additional modifications to the sugar ring of affinity-inducing conformationally restricted nucleotide building blocks such as locked nucleic acid (LNA). In the preceding article in this issue, we introduced a different strategy toward this end, i.e., C5-functionalization of LNA uridines. In the present article, we extend this strategy to α-L-LNA: i.e., one of the most interesting diastereomers of LNA. α-L-LNA uridine monomers that are conjugated to small C5-alkynyl substituents induce significant improvements in target affinity, binding specificity, and enzymatic stability relative to conventional α-L-LNA. The results from the back-to-back articles therefore suggest that C5-functionalization of pyrimidines is a general and synthetically straightforward approach to modulate biophysical properties of oligonucleotides modified with LNA or other conformationally restricted monomers.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Bharat Baral
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Brooke A. Anderson
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Dale C. Guenther
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Michael E. Østergaard
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Pawan K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Patrick J. Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
6
|
Kumar P, Østergaard ME, Baral B, Anderson BA, Guenther DC, Kaura M, Raible DJ, Sharma PK, Hrdlicka PJ. Synthesis and biophysical properties of C5-functionalized LNA (locked nucleic acid). J Org Chem 2014; 79:5047-61. [PMID: 24825249 PMCID: PMC4049237 DOI: 10.1021/jo500614a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 01/07/2023]
Abstract
Oligonucleotides modified with conformationally restricted nucleotides such as locked nucleic acid (LNA) monomers are used extensively in molecular biology and medicinal chemistry to modulate gene expression at the RNA level. Major efforts have been devoted to the design of LNA derivatives that induce even higher binding affinity and specificity, greater enzymatic stability, and more desirable pharmacokinetic profiles. Most of this work has focused on modifications of LNA's oxymethylene bridge. Here, we describe an alternative approach for modulation of the properties of LNA: i.e., through functionalization of LNA nucleobases. Twelve structurally diverse C5-functionalized LNA uridine (U) phosphoramidites were synthesized and incorporated into oligodeoxyribonucleotides (ONs), which were then characterized with respect to thermal denaturation, enzymatic stability, and fluorescence properties. ONs modified with monomers that are conjugated to small alkynes display significantly improved target affinity, binding specificity, and protection against 3'-exonucleases relative to regular LNA. In contrast, ONs modified with monomers that are conjugated to bulky hydrophobic alkynes display lower target affinity yet much greater 3'-exonuclease resistance. ONs modified with C5-fluorophore-functionalized LNA-U monomers enable fluorescent discrimination of targets with single nucleotide polymorphisms (SNPs). In concert, these properties render C5-functionalized LNA as a promising class of building blocks for RNA-targeting applications and nucleic acid diagnostics.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Michael E. Østergaard
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Bharat Baral
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Brooke A. Anderson
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Dale C. Guenther
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Mamta Kaura
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Daniel J. Raible
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Pawan K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Patrick J. Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|