1
|
Chen B, Hu X, Zhu X. Essential Rule Derived from Thermodynamics and Kinetics Studies of Benzopyran Compounds. Molecules 2023; 28:8039. [PMID: 38138528 PMCID: PMC10745646 DOI: 10.3390/molecules28248039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Compounds with benzopyran as the core structure play an important role in the total synthesis of antioxidants, drugs, and natural products. Herein, the thermodynamic data of benzopyran compounds and their intermediates were measured and calculated by combining thermodynamics with kinetics. The mechanism of reactions between four benzopyran compounds and organic hydride acceptors was proven to be a one-step hydride transfer. The thermodynamic properties of these compounds and their corresponding intermediates were elucidated. The rationality and accuracy of the electrochemical measurement method were proved. Furthermore, the essential rule of unique structures being present between the C-H bond and para-substituent constants on the benzene ring, as shown in previous studies, was investigated. A simultaneous correlation between thermodynamics and kinetics was found for the hydride transfer reaction, in which the reaction site is connected with the substituent through the benzene ring, a double bond, or a N atom. The likely reason for the correlation between thermodynamic and kinetic is that the benzene ring, double bond, or N atom have the role of transferring the electronic effect. This finding can be applied to the calculation of the activation energy of hydride self-exchange reactions, the prediction of kinetic isotope effects, and explorations of selective reduction processes of hydride transfer in such organic hydride compounds.
Collapse
Affiliation(s)
- Baolong Chen
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China;
| | - Xiaoqing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Shen GB, Qian BC, Fu YH, Zhu XQ. Thermodynamics of the elementary steps of organic hydride chemistry determined in acetonitrile and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo01310j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the thermodynamics of the elementary step of 421 organic hydrides and unsaturated compounds releasing or accepting hydride or hydrogen determined in acetonitrile as well as their potential applications.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
3
|
Alabugin IV, Kuhn L, Medvedev MG, Krivoshchapov NV, Vil' VA, Yaremenko IA, Mehaffy P, Yarie M, Terent'ev AO, Zolfigol MA. Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chem Soc Rev 2021; 50:10253-10345. [PMID: 34263287 DOI: 10.1039/d1cs00386k] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although carbon is the central element of organic chemistry, oxygen is the central element of stereoelectronic control in organic chemistry. Generally, a molecule with a C-O bond has both a strong donor (a lone pair) and a strong acceptor (e.g., a σ*C-O orbital), a combination that provides opportunities to influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelectronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated transformations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e., the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of σ-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as the conceptual framework for organizing disjointed observations into a logical body of knowledge. In contrast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic cornerstone on which, as we show in this review, the chemistry of organic oxygen functionalities is largely based. As negative hyperconjugation releases the "underutilized" stereoelectronic power of unshared electrons (the lone pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the electronic demand is high and molecules distort from their equilibrium geometries. From this perspective, hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns, and showcase the vast implications of AE for the structure and reactivity. On our journey through a variety of O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can predict chemical reactivity and unlock new useful synthetic transformations.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Patricia Mehaffy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|
4
|
Shen GB, Xie L, Wang YX, Gong TY, Wang BY, Hu YH, Fu YH, Yan M. Quantitative Estimation of the Hydrogen-Atom-Donating Ability of 4-Substituted Hantzsch Ester Radical Cations. ACS OMEGA 2021; 6:23621-23629. [PMID: 34549160 PMCID: PMC8444320 DOI: 10.1021/acsomega.1c03872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/19/2021] [Indexed: 05/22/2023]
Abstract
The purpose of this study is to investigate thermodynamic and kinetic properties on the hydrogen-atom-donating ability of 4-substituted Hantzsch ester radical cations (XRH•+), which are excellent NADH coenzyme models. Gibbs free energy changes and activation free energies of 17 XRH•+ releasing H• [denoted as ΔG HD o(XRH•+) and ΔG HD ≠(XRH•+)] were calculated using density functional theory (DFT) and compared with that of Hantzsch ester (HEH2) and NADH. ΔG HD o(XRH•+) range from 19.35 to 31.25 kcal/mol, significantly lower than that of common antioxidants (such as ascorbic acid, BHT, the NADH coenzyme, and so forth). ΔG HD ≠(XRH•+) range from 29.81 to 39.00 kcal/mol, indicating that XRH•+ spontaneously releasing H• are extremely slow unless catalysts or active intermediate radicals exist. According to the computed data, it can be inferred that the Gibbs free energies and activation free energies of the core 1,4-dihydropyridine radical cation structure (DPH•+) releasing H• [ΔG HD o(DPH•+) and ΔG HD ≠(DPH•+)] should be 19-32 kcal/mol and 29-39 kcal/mol in acetonitrile, respectively. The correlations between the thermodynamic driving force [ΔG HD o(XRH•+)] and the activation free energy [ΔG HD ≠(XRH•+)] are also explored. Gibbs free energy is the important and decisive parameter, and ΔG HD ≠(XRH•+) increases in company with the increase of ΔG HD o(XRH•+), but no simple linear correlations are found. Even though all XRH•+ are judged as excellent antioxidants from the thermodynamic view, the computed data indicate that whether XRH•+ is an excellent antioxidant in reaction is decided by the R substituents in 4-position. XRH•+ with nonaromatic substituents tend to release R• instead of H• to quench radicals. XRH•+ with aromatic substituents tend to release H• and be used as antioxidants, but not all aromatic substituted Hantzsch esters are excellent antioxidants.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Li Xie
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yun-Xia Wang
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Teng-Yang Gong
- School of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Bin-Yu Wang
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yu-He Hu
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P. R. China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| |
Collapse
|
5
|
Wang Z, Jiang L, Ji J, Zhou F, Lan J, You J. Construction of Cationic Azahelicenes: Regioselective Three‐Component Annulation Using In Situ Activation Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhishuo Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Linfeng Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jinwen Ji
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Fulin Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
6
|
Wang Z, Jiang L, Ji J, Zhou F, Lan J, You J. Construction of Cationic Azahelicenes: Regioselective Three‐Component Annulation Using In Situ Activation Strategy. Angew Chem Int Ed Engl 2020; 59:23532-23536. [DOI: 10.1002/anie.202010051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/30/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Zhishuo Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Linfeng Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jinwen Ji
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Fulin Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
7
|
Evoniuk CJ, Gomes GDP, Hill SP, Fujita S, Hanson K, Alabugin IV. Coupling N–H Deprotonation, C–H Activation, and Oxidation: Metal-Free C(sp3)–H Aminations with Unprotected Anilines. J Am Chem Soc 2017; 139:16210-16221. [DOI: 10.1021/jacs.7b07519] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Sean P. Hill
- Florida State University, Tallahassee, Florida 32306, United States
| | - Satoshi Fujita
- Interdisciplinary
Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Fukuoka Prefecture 819-0395, Japan
| | - Kenneth Hanson
- Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
8
|
Gulbrandsen HS, Alfaro JLD, Read ML, Gundersen L. Synthesis of Electron‐Deficient Tetrahydro‐ and Dihydroimidazo[1,2‐
f
]phenanthridines by Microwave‐Mediated IMDAF Reactions. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Matthew Lovell Read
- Department of Chemistry University of Oslo P. O. Box 1033, Blindern 0315 Oslo Norway
| | - Lise‐Lotte Gundersen
- Department of Chemistry University of Oslo P. O. Box 1033, Blindern 0315 Oslo Norway
| |
Collapse
|
9
|
Shen GB, Xia K, Li XT, Li JL, Fu YH, Yuan L, Zhu XQ. Prediction of Kinetic Isotope Effects for Various Hydride Transfer Reactions Using a New Kinetic Model. J Phys Chem A 2016; 120:1779-99. [DOI: 10.1021/acs.jpca.5b10135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guang-Bin Shen
- Department of Chemistry, The State Key Laboratory
of Elemento-Organic Chemistry and the ‡Collaborative Innovation Center
of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ke Xia
- Department of Chemistry, The State Key Laboratory
of Elemento-Organic Chemistry and the ‡Collaborative Innovation Center
of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiu-Tao Li
- Department of Chemistry, The State Key Laboratory
of Elemento-Organic Chemistry and the ‡Collaborative Innovation Center
of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jun-Ling Li
- Department of Chemistry, The State Key Laboratory
of Elemento-Organic Chemistry and the ‡Collaborative Innovation Center
of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yan-Hua Fu
- Department of Chemistry, The State Key Laboratory
of Elemento-Organic Chemistry and the ‡Collaborative Innovation Center
of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Yuan
- Department of Chemistry, The State Key Laboratory
of Elemento-Organic Chemistry and the ‡Collaborative Innovation Center
of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiao-Qing Zhu
- Department of Chemistry, The State Key Laboratory
of Elemento-Organic Chemistry and the ‡Collaborative Innovation Center
of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Liu F, Zhu X. Unusual Reaction Constant for Hydride Transfer from a Carbanion to 9-Arylxanthyliums. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Kinetic Isotope Effect of Prostaglandin H Synthase Exhibits Inverted Temperature Dependence. Catalysts 2014. [DOI: 10.3390/catal4020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
12
|
Naab BD, Guo S, Olthof S, Evans EGB, Wei P, Millhauser GL, Kahn A, Barlow S, Marder SR, Bao Z. Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. J Am Chem Soc 2013; 135:15018-25. [PMID: 24011269 DOI: 10.1021/ja403906d] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of air-stable n-dopants for organic semiconductor materials has been hindered by the necessity of high-energy HOMOs and the air sensitivity of compounds that satisfy this requirement. One strategy for circumventing this problem is to utilize stable precursor molecules that form the active doping complex in situ during the doping process or in a postdeposition thermal- or photo-activation step. Some of us have reported on the use of 1H-benzimidazole (DMBI) and benzimidazolium (DMBI-I) salts as solution- and vacuum-processable n-type dopant precursors, respectively. It was initially suggested that DMBI dopants function as single-electron radical donors wherein the active doping species, the imidazoline radical, is generated in a postdeposition thermal annealing step. Herein we report the results of extensive mechanistic studies on DMBI-doped fullerenes, the results of which suggest a more complicated doping mechanism is operative. Specifically, a reaction between the dopant and host that begins with either hydride or hydrogen atom transfer and which ultimately leads to the formation of host radical anions is responsible for the doping effect. The results of this research will be useful for identifying applications of current organic n-doping technology and will drive the design of next-generation n-type dopants that are air stable and capable of doping low-electron-affinity host materials in organic devices.
Collapse
Affiliation(s)
- Benjamin D Naab
- Departments of Chemical Engineering and Chemistry, Stanford University , 359 N-S Axis Stauffer III, Stanford, California 94303, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Park J, Lee YM, Nam W, Fukuzumi S. Brønsted Acid-Promoted C–H Bond Cleavage via Electron Transfer from Toluene Derivatives to a Protonated Nonheme Iron(IV)-Oxo Complex with No Kinetic Isotope Effect. J Am Chem Soc 2013; 135:5052-61. [DOI: 10.1021/ja311662w] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiyun Park
- Department
of Material and Life
Science, Graduate School of Engineering, ALCA, Japan Science and Technology
Agency, Osaka University, Suita, Osaka
565-0871, Japan
| | - Yong-Min Lee
- Department
of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department
of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shunichi Fukuzumi
- Department
of Material and Life
Science, Graduate School of Engineering, ALCA, Japan Science and Technology
Agency, Osaka University, Suita, Osaka
565-0871, Japan
- Department
of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
14
|
Zhu XQ, Deng FH, Yang JD, Li XT, Chen Q, Lei NP, Meng FK, Zhao XP, Han SH, Hao EJ, Mu YY. A classical but new kinetic equation for hydride transfer reactions. Org Biomol Chem 2013; 11:6071-89. [DOI: 10.1039/c3ob40831k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|