1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
The conformation of the idopyranose ring revisited: How subtle O-substituent induced changes can be deduced from vicinal 1H-NMR coupling constants. Carbohydr Res 2020; 496:108052. [PMID: 32738719 DOI: 10.1016/j.carres.2020.108052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 01/18/2023]
Abstract
The idopyranose ring plays a pivotal role in the conformational, dynamical, and intermolecular binding aspects of glycosaminoglycans like heparin and dermatan sulfate and it was early on assigned a role in the Sugar Code governing biological recognition processes. There is consensus that next to the two canonical 1C4 and 4C1 chair conformations, the conformational space accessible to the idopyranose ring entails a 2SO skew-boat conformation, but the equilibrium between these three ring puckers has evaded satisfactory quantification. In this study a meta-analysis of X-ray solid-state data and vicinal NMR coupling constants is presented, based on the Truncated Fourier Puckering (TFP) formalism and the generalized Karplus (CAGPLUS) equation. This approach yields a model-free, granular and consistent reckoning of 159 idopyranose solution puckering equilibria studied by NMR and allows us to reproduce the involved 636 NMR vicinal couplings with an overall residual RMS(Jobs-Jcalc) of 0.184 Hz. Our analyses show that for all ring systems examined, the idopyranosyl chair conformations take up the same ring pucker irrespective of the ring substituent pattern or a vast variety in experimental conditions. Instead, it is the (skew-)boat conformation that adapts to the substitution pattern of the idopyranose ring or a specific sulfation pattern of neighboring saccharides. All idopyranose rings are involved in conformational equilibria that subsume the aforementioned conformers which turn out to differ only a few kJ/mole in conformational energy. Thus, the plasticity and flexibility of idopyranose remains intact under practically all circumstances and, as the glycosidic linkages in heparin are considered to be relatively stiff, the iduronic moiety functions as the linchpin of heparin flexibility thereby being rather a "space(r)" than a "letter" in the alleged Sugar Code alphabet.
Collapse
|
3
|
Krivdin LB. Computational 1 H NMR: Part 3. Biochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:15-30. [PMID: 31286566 DOI: 10.1002/mrc.4895] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
This is the third and the last part of three closely interrelated reviews dealing with computation of 1 H nuclear magnetic resonance chemical shifts and 1 H-1 H spin-spin coupling constants. Present review deals with the computation of these parameters in biologically active natural products, carbohydrates, and other molecules of biological origin focusing on stereochemical applications of computational 1 H nuclear magnetic resonance to these objects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
- Department of Chemistry, Angarsk State Technical University, Angarsk, Russia
| |
Collapse
|
4
|
Krivdin LB. Theoretical calculations of carbon-hydrogen spin-spin coupling constants. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 108:17-73. [PMID: 30538048 DOI: 10.1016/j.pnmrs.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Structural applications of theoretical calculations of carbon-hydrogen spin-spin coupling constants are reviewed covering papers published mainly during the last 10-15 years with a special emphasis on the most notable studies of hybridization, substitution and stereoelectronic effects together with the investigation of hydrogen bonding and intermolecular interactions. The wide scope of different applications of calculated carbon-hydrogen couplings in the structural elucidation of particular classes of organic and bioorganic molecules is reviewed, concentrating mainly on saturated, unsaturated, aromatic and heteroaromatic compounds and their functional derivatives, as well as on natural compounds and carbohydrates. The review is dedicated to Professor Emeritus Michael Barfield in view of his invaluable pioneering contribution to this field.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
6
|
Mazák K, Beecher CN, Kraszni M, Larive CK. The interaction of enoxaparin and fondaparinux with calcium. Carbohydr Res 2013; 384:13-9. [PMID: 24334236 DOI: 10.1016/j.carres.2013.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/24/2013] [Accepted: 11/11/2013] [Indexed: 01/06/2023]
Abstract
The main sites of calcium binding were determined for the low molecular weight heparin drug enoxaparin and the synthetic pentasaccharide Arixtra (fondaparinux). [(1)H,(13)C] HSQC pH titrations were carried out to characterize the acid-base properties of these samples both in the presence and absence of calcium. The differences in the titration curves were used to determine the structural components of enoxaparin and fondaparinux responsible for Ca(2+) binding. In enoxaparin both unsubstituted and 2-O-sulfated iduronic acid residues are important in calcium binding and the presence of the 2-O-sulfo group does not seem to influence the Ca(2+) binding capability of the iduronate ring. In fondaparinux changes in chemical shifts upon Ca(2+) binding were smaller than observed for enoxaparin, and were observed for both the glucuronic acid and 2-O-sulfated iduronic acid residues. In enoxaparin significant perturbations of the chemical shift of the N-sulfoglucosamine anomeric carbon in residues connected to 2-O-sulfated iduronic acid were detected on Ca(2+) binding, however it was not possible to determine whether these changes reflect direct involvement in calcium complexation or result from through space interactions or conformational changes.
Collapse
Affiliation(s)
- Károly Mazák
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA; Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. u. 9, 1092 Budapest, Hungary
| | - Consuelo N Beecher
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Márta Kraszni
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA; Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. u. 9, 1092 Budapest, Hungary
| | - Cynthia K Larive
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Rönnols J, Pendrill R, Fontana C, Hamark C, d’Ortoli TA, Engström O, Ståhle J, Zaccheus MV, Säwén E, Hahn LE, Iqbal S, Widmalm G. Complete 1H and 13C NMR chemical shift assignments of mono- to tetrasaccharides as basis for NMR chemical shift predictions of oligosaccharides using the computer program CASPER. Carbohydr Res 2013; 380:156-66. [DOI: 10.1016/j.carres.2013.06.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/25/2022]
|