1
|
Oang KY, Park S, Moon J, Park E, Lee HK, Sato T, Nozawa S, Adachi SI, Kim J, Kim J, Sohn JH, Ihee H. Extracting Kinetics and Thermodynamics of Molecules without Heavy Atoms via Time-Resolved Solvent Scattering Signals. J Phys Chem Lett 2023; 14:3103-3110. [PMID: 36951437 DOI: 10.1021/acs.jpclett.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Time-resolved X-ray liquidography (TRXL) has emerged as a powerful technique for studying the structural dynamics of small molecules and macromolecules in liquid solutions. However, TRXL has limited sensitivity for small molecules containing light atoms only, whose signal has lower contrast compared with the signal from solvent molecules. Here, we present an alternative approach to bypass this limitation by detecting the change in solvent temperature resulting from a photoinduced reaction. Specifically, we analyzed the heat dynamics of TRXL data obtained from p-hydroxyphenacyl diethyl phosphate (HPDP). This analysis enabled us to experimentally determine the number of intermediates and their respective enthalpy changes, which can be compared to theoretical enthalpies to identify the intermediates. This work demonstrates that TRXL can be used to uncover the kinetics and reaction pathways for small molecules without heavy atoms even if the scattering signal from the solute molecules is buried under the strong solvent scattering signal.
Collapse
Affiliation(s)
- Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea
| | - Sungjun Park
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jiwon Moon
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunji Park
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyun Kyung Lee
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
van Wilderen LJGW, Kern-Michler D, Neumann C, Reinfelds M, von Cosel J, Horz M, Burghardt I, Heckel A, Bredenbeck J. Choose your leaving group: selective photodeprotection in a mixture of pHP-caged compounds by VIPER excitation. Chem Sci 2023; 14:2624-2630. [PMID: 36908963 PMCID: PMC9993852 DOI: 10.1039/d2sc06259c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Photocages are light-triggerable molecular moieties that can locally release a pre-determined leaving group (LG). Finding a suitable photocage for a particular application may be challenging, as the choice may be limited by for instance the optical or physicochemical properties of the system. Using more than one photocage to release different LGs in a reaction mixture may even be more difficult. In this work an experimental strategy is presented that allows us to hand-pick the release of different LGs, and to do so in any order. This is achieved by using isotopologue photocage-LG mixtures in combination with ultrafast VIbrationally Promoted Electronic Resonance (VIPER) excitation. The latter provides the required molecular selectivity simply by tuning the wavenumber of the used IR pulses to the resonance of a specific photocage isotopologue, as is demonstrated here for the para-hydroxyphenacyl (pHP) photocage. For spectroscopic convenience, we use isotopologues of the infrared (IR) spectroscopic marker -SCN as different LGs. Especially for applications where fast LG release is required, pHP is found to be an excellent candidate, as free LG formation is observed to occur with a 10 ps lifetime. The devised strategy may open up new complex uncaging applications, where multiple LGs can be formed locally on a short time scale and in any sequence.
Collapse
Affiliation(s)
- Luuk J G W van Wilderen
- Johann Wolfgang Goethe-University, Institute of Biophysics Max-von-Laue-Str. 1 60438 Frankfurt am Main Germany
| | - Daniela Kern-Michler
- Johann Wolfgang Goethe-University, Institute of Biophysics Max-von-Laue-Str. 1 60438 Frankfurt am Main Germany
| | - Carsten Neumann
- Johann Wolfgang Goethe-University, Institute of Biophysics Max-von-Laue-Str. 1 60438 Frankfurt am Main Germany
| | - Matiss Reinfelds
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Jan von Cosel
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Maximiliane Horz
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Irene Burghardt
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Alexander Heckel
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics Max-von-Laue-Str. 1 60438 Frankfurt am Main Germany
| |
Collapse
|
3
|
Li Y, Lidskog A, Armengol‐Relats H, Pham TH, Favraud A, Nicolas M, Dawaigher S, Xiao Z, Ma D, Lindbäck E, Strand D, Wärnmark K. Enantiotopic Discrimination by Coordination‐Desymmetrized
meso
‐Ligands. ChemCatChem 2020. [DOI: 10.1002/cctc.201902243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yutang Li
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Anna Lidskog
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Helena Armengol‐Relats
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Thanh Huong Pham
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Antoine Favraud
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Maxime Nicolas
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Sami Dawaigher
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Zeyun Xiao
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Dayou Ma
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Emil Lindbäck
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
- Present address: Department of Chemistry Bioscience and Environmental Engineering Faculty of Science and TechnologyUniversity of Stavanger Stavanger NO-4036 Norway
| | - Daniel Strand
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis Department of ChemistryLund University Lund SE-22100 Sweden
| |
Collapse
|
4
|
Field T, Peterson J, Ma C, Jagadesan P, Da Silva JP, Rubina M, Ramamurthy V, Givens RS. Competing pathways for photoremovable protecting groups: the effects of solvent, oxygen and encapsulation. Photochem Photobiol Sci 2020; 19:1364-1372. [DOI: 10.1039/d0pp00067a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photolysis of p-hydroxyphenacyloxy arenes releases free phenols in good yields governed by their pKa. At high pKa, new byproducts (Bvs. A) reveal a change in reaction mechanism.
Collapse
Affiliation(s)
- Thomas Field
- Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | | | - Chicheng Ma
- Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | | | - José P. Da Silva
- CCMAR - Centre of Marine Sciences
- University of Algarve
- Campus de Gambelas
- Portugal
| | - Marina Rubina
- Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | - V. Ramamurthy
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | | |
Collapse
|
5
|
Kim SH, Jang M, Moon DY, Park BS. Leaving group effect on photochemistry of ortho-alkylphenacyl carboxylate. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Synthesis of α-benzylated amides via electrocatalytic Favorskii rearrangement of 1, 3-diarylacetones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Salahi F, Purohit V, Ferraudi G, Stauffacher C, Wiest O, Helquist P. pHP-Tethered N-Acyl Carbamate: A Photocage for Nicotinamide. Org Lett 2018; 20:2547-2550. [PMID: 29652162 DOI: 10.1021/acs.orglett.8b00697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of a new photocaged nicotinamide having an N-acyl carbamate linker and a p-hydroxyphenacyl (pHP) chromophore is described. The photophysical and photochemical studies showed an absorption maximum at λ = 330 nm and a quantum yield for release of 11% that are dependent upon both pH and solvent. While the acyl carbamate releases nicotinamide efficiently, a simpler amide linker was inert to photocleavage. This photocaged nicotinamide has significant advantages with respect to quantum yield, absorbance wavelength, rate of release, and solubility that make it the first practical example of a photocaged amide.
Collapse
Affiliation(s)
- Farbod Salahi
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Vatsal Purohit
- Department of Biological Sciences , Purdue University , 915 West State Street , West Lafayette , Indiana 47907 , United States
| | - Guillermo Ferraudi
- Notre Dame Radiation Research Laboratory , Notre Dame , Indiana 46556 , United States
| | - Cynthia Stauffacher
- Department of Biological Sciences , Purdue University , 915 West State Street , West Lafayette , Indiana 47907 , United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States.,Laboratory of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology , Peking University, Shenzhen Graduate School , Shenzhen 518055 , China
| | - Paul Helquist
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
8
|
Sadhukhan S, Baire B. An Unprecedented (Semi)Favorskii Rearrangement. Evidence for the 2-(Acyloxy)cyclopropanones. Org Lett 2018; 20:1748-1751. [DOI: 10.1021/acs.orglett.8b00218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santu Sadhukhan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India
| |
Collapse
|
9
|
Madea D, Slanina T, Klán P. A 'photorelease, catch and photorelease' strategy for bioconjugation utilizing a p-hydroxyphenacyl group. Chem Commun (Camb) 2018; 52:12901-12904. [PMID: 27738680 DOI: 10.1039/c6cc07496k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A bioorthogonal 'catch and photorelease' strategy, which combines alkyne-azide cycloaddition between p-hydroxyphenacyl azide and alkyne derivatives to form a 1,2,3-triazole adduct and subsequent photochemical release of the triazole moiety via a photo-Favorskii rearrangement, is introduced. The first step can also involve photorelease of a strained alkyne and its Cu-free click reaction with azide.
Collapse
Affiliation(s)
- D Madea
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - T Slanina
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - P Klán
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Torti E, Havel V, Yawer MA, Ludvíková L, Babiak M, Klán P, Sindelar V. Supramolecular Storage and Controlled Photorelease of an Oxidizing Agent using a Bambusuril Macrocycle. Chemistry 2017; 23:16768-16772. [DOI: 10.1002/chem.201704948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Edoardo Torti
- Department of Chemistry & RECETOX, Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Václav Havel
- Department of Chemistry & RECETOX, Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Mirza A. Yawer
- Department of Chemistry & RECETOX, Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Lucie Ludvíková
- Department of Chemistry & RECETOX, Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Michal Babiak
- CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Petr Klán
- Department of Chemistry & RECETOX, Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Vladimir Sindelar
- Department of Chemistry & RECETOX, Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
11
|
Senadheera SN, Evans AS, Toscano JP, Givens RS. 2-Diazo-1-(4-hydroxyphenyl)ethanone: a versatile photochemical and synthetic reagent. Photochem Photobiol Sci 2013; 13:324-41. [PMID: 24305682 DOI: 10.1039/c3pp50305d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rearrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii rearrangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a-c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 31 ns with a rate for appearance of 4a of k = 7.1 × 10(6) s(-1) in aq. acetonitrile (1 : 1 v : v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates.
Collapse
|
12
|
Šolomek T, Heger D, Ngoy BP, Givens RS, Klán P. The Pivotal Role of Oxyallyl Diradicals in Photo-Favorskii Rearrangements: Transient Spectroscopic and Computational Studies. J Am Chem Soc 2013; 135:15209-15. [DOI: 10.1021/ja407588p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | - Richard S. Givens
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall
Drive, 5010 Malott Hall, Lawrence, Kansas 66045, United States
| | | |
Collapse
|
13
|
Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 2013; 113:119-91. [PMID: 23256727 PMCID: PMC3557858 DOI: 10.1021/cr300177k] [Citation(s) in RCA: 1266] [Impact Index Per Article: 115.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|