1
|
Wilson C, Puckett AO, Murray IM, Oliver AG, Hof F. Extended Sulfo-Pillar[6]arenes ─ a New Host Family and Its Application in the Binding of Direct Oral Anticoagulants. J Am Chem Soc 2024; 146. [PMID: 39356656 PMCID: PMC11487555 DOI: 10.1021/jacs.4c03905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Herein, we report the synthesis of extended sulfo-pillar[6]arenes (sP6), a new host class with a pedigree in salt tolerance and ultrahigh binding affinity toward multiple drug classes. The parent sulfo-pillar[6]arene is a high-affinity host with the potential to act as a supramolecular reversal agent. However, it lacks synthetic diversification of the core scaffold. The new extended sulfo-pillar[6]arenes have either a monodirectional (A1sP6) or bidirectional (A1A2sP6) extension of the hydrophobic cavity. This new functionality enables more noncovalent interactions and strong affinity toward guests, which we demonstrate using the direct oral anticoagulants (DOACs) dabigatran, betrixaban, and edoxaban. DOACs are highly prescribed therapeutics that are underexplored in host-guest chemistry. These agents prevent the formation of blood clots and are prime targets for supramolecular sequestration. This functionalization also introduces new fluorescent properties to the sulfo-pillar[6]arene family via an incorporated p-terphenyl (A1A2sP6). We show that these new hosts have ultrahigh affinity toward dabigatran (Kd = 27 nM, A1A2sP6) in salty solutions and that the A1A2sP6 analogue can bind betrixaban in bovine plasma with a physiologically relevant Kd (7 μM).
Collapse
Affiliation(s)
- Chelsea
R. Wilson
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8W 2Y2, Canada
| | - Austia O. Puckett
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8W 2Y2, Canada
| | - Isabella M. Murray
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
| | - Allen G. Oliver
- Department
of Chemistry and Biochemistry, University
of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Fraser Hof
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
2
|
Llamosí A, Szymański MP, Szumna A. Molecular vessels from preorganised natural building blocks. Chem Soc Rev 2024; 53:4434-4462. [PMID: 38497833 DOI: 10.1039/d3cs00801k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Supramolecular vessels emerged as tools to mimic and better understand compartmentalisation, a central aspect of living matter. However, many more applications that go beyond those initial goals have been documented in recent years, including new sensory systems, artificial transmembrane transporters, catalysis, and targeted drug or gene delivery. Peptides, carbohydrates, nucleobases, and steroids bear great potential as building blocks for the construction of supramolecular vessels, possessing complexity that is still difficult to attain with synthetic methods - they are rich in functional groups and well-defined stereogenic centers, ready for noncovalent interactions and further functions. One of the options to tame the functional and dynamic complexity of natural building blocks is to place them at spatially designed positions using synthetic scaffolds. In this review, we summarise the historical and recent advances in the construction of molecular-sized vessels by the strategy that couples synthetic predictability and durability of various scaffolds (cyclodextrins, porphyrins, crown ethers, calix[n]arenes, resorcin[n]arenes, pillar[n]arenes, cyclotriveratrylenes, coordination frameworks and multivalent high-symmetry molecules) with functionality originating from natural building blocks to obtain nanocontainers, cages, capsules, cavitands, carcerands or coordination cages by covalent chemistry, self-assembly, or dynamic covalent chemistry with the ultimate goal to apply them in sensing, transport, or catalysis.
Collapse
Affiliation(s)
- Arturo Llamosí
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Marek P Szymański
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
3
|
Yao C, Wang T. Quantum Size-Driven Spectral Variations in Pillar[n]arene Systems: A Density Functional Theory and Wave Function Assessment. Molecules 2024; 29:1912. [PMID: 38731404 PMCID: PMC11085802 DOI: 10.3390/molecules29091912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study explores the quantum size effects on the optical properties of pillar[n]arene (n = 5, 6, 7, 8) utilizing density functional theory (DFT) and wave function analysis. The mechanisms of electron transitions in one-photon absorption (OPA) and two-photon absorption (TPA) spectra are investigated, alongside the calculation of electron circular dichroism (ECD) for these systems. Transition Density Matrix (TDM) and electron-hole pair density maps are employed to study the electron excitation characteristics, unveiling a notable size dependency. Analysis of the transition electric dipole moment (TEDM) and the transition magnetic dipole moment (TMDM) reveals the electromagnetic interaction mechanism within pillar[n]arene. Raman spectra computations further elucidate vibrational modes, while interactions with external environments are studied using electrostatic potential (ESP) analysis, and electron delocalization is assessed under an external magnetic field, providing insights into the magnetically induced current phenomena within these supramolecular structures. The thermal stability of pillar[n]arene was investigated by ab initio molecular dynamics (AIMD).
Collapse
Affiliation(s)
- Cailian Yao
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Tao Wang
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
4
|
Coady Z, Smith JN, Wilson KA, White NG. Stereoselective Single Step Cyclization to Give Belt-Functionalized Pillar[6]arenes. J Org Chem 2024; 89:1397-1406. [PMID: 38214497 DOI: 10.1021/acs.joc.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Two macrocycles were synthesized through cyclization reactions of secondary benzylic alcohols, giving pillar[6]arenes with a methyl substituent at each belt position. These macrocycles form stereoselectively with only the rtctct isomer with alternating up and down orientations of the belt methyl groups definitively identified. Isolated yields were modest (7 and 9%), but the macrocycles are prepared in a single step from either a commercially available alcohol or a very readily prepared precursor. X-ray crystal structures of the macrocycles indicate they have a capsule-like structure, which is far from the conventional pillar shape. Density functional theory calculations reveal that the energy barrier required to obtain the pillar conformation is significantly higher for these belt-functionalized macrocycles than for conventional belt-unfunctionalized pillar[6]arenes.
Collapse
Affiliation(s)
- Zeke Coady
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jordan N Smith
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Katie A Wilson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
Ling L, Zhao Z, Mao L, Wang S, Ma D. Water-soluble pillar[6]arene bearing pyrene on alternating methylene bridges for direct spermine sensing. Chem Commun (Camb) 2023; 59:14161-14164. [PMID: 37955311 DOI: 10.1039/d3cc05094g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
This paper describes the design and synthesis of a conjugate, which is composed of a percarboxylated water-soluble pillar[6]arene and three fluorescent pyrene chromophores on alternating methylene bridges. The optical characteristics are investigated. This conjugate is capable of encapsulating polycationic guest spermine, which results in an enhancement in the fluorescence intensity of pyrene. This host-pyrene conjugate is used for direct sensing of spermine, which shows selectivity towards a variety of biological analytes. The detection of spermine is demonstrated in live cells.
Collapse
Affiliation(s)
- Li Ling
- School of Pharmaceutical Engineering & Institute of Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zizhen Zhao
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Lijun Mao
- School of Pharmaceutical Engineering & Institute of Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| | - Shuyi Wang
- School of Pharmaceutical Engineering & Institute of Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute of Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
6
|
Zhu Y, Escorihuela J, Wang H, Sue ACH, Zuilhof H. Tunable Supramolecular Ag +-Host Interactions in Pillar[ n]arene[ m]quinones and Ensuing Specific Binding to 1-Alkynes. Molecules 2023; 28:7009. [PMID: 37894487 PMCID: PMC10609613 DOI: 10.3390/molecules28207009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
We developed an improved, robust synthesis of a series of pillar[6]arenes with a varying number (0-3) of quinone moieties in the ring. This easy-to-control variation yielded a gradually less electron-rich cavity in going from zero to three quinone units, as shown from the strength of host-guest interactions with silver ions. Such macrocycle-Ag2 complexes themselves were shown to display an unprecedented, sharp distinction between terminal alkynes, which strongly bound to such complexes, and internal alkynes, internal alkenes and terminal alkenes, which do hardly bind.
Collapse
Affiliation(s)
- Yumei Zhu
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, 46100 València, Spain
| | - Haiying Wang
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Andrew C.-H. Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen 361005, China
| | - Han Zuilhof
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
7
|
Zhang Y, Chen L, Du X, Yu X, Zhang H, Meng Z, Zheng Z, Chen J, Meng Q. Selective Fluorescent Sensing for Iron in Aqueous Solution by A Novel Functionalized Pillar[5]arene. ChemistryOpen 2023; 12:e202300109. [PMID: 37803382 PMCID: PMC10558425 DOI: 10.1002/open.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Indexed: 10/08/2023] Open
Abstract
Iron ion is one of the most physiologically important elements in metabolic processes, indispensable for all living systems. Since its excess can lead to severe diseases, new approaches for its monitoring in water samples are urgently needed to meet requirements. Here, we firstly report a novel and universal route for the synthesis of a series of pillar[n]arene derivates containing one benzoquinone unit by photocatalysis. With this in hand, an anthracene - appended water - soluble pillar[5]arene (H) with excellent fluorescence sensing potency was prepared. H enabled the ultrasensitive detection of iron ions in aqueous solution with limits of detection of 10-8 M. Over a wide range of metal ions, H exhibited specific selectivity toward Fe3+ . More importantly, H could still properly operate in a simulated sewage sample, coexisting with multiple interference ions.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xiang Yu
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure andPerformance for Functional MoleculesCollege of ChemistryTianjin Normal UniversityTianjin300387P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
8
|
Kato K, Kaneda T, Ohtani S, Ogoshi T. Per-Arylation of Pillar[ n]arenes: An Effective Tool to Modify the Properties of Macrocycles. J Am Chem Soc 2023; 145:6905-6913. [PMID: 36929722 DOI: 10.1021/jacs.3c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Installation of various substituents is a reliable and versatile way to alter the properties of macrocyclic molecules, but high-yield and controlled methods are not always available especially for multifold reactions. Herein, we report 10- and 12-fold introduction of aryl substituents onto both rims of cylinder-shaped pillar[n]arenes, which usually have alkoxy substituents slanting to the cylinder axes. Although alkoxy pillar[5]arenes exist as D5-symmetric enantiomeric pairs, arylated pillar[5]arenes provide crushed single-crystal structures and stereoisomerism including C2-symmetric conformations depending on the aryl groups. Pillar[n]arenes with 2-benzofuranyl groups display bright fluorescence with quantum yields of 88-90% and no host-guest complexation with electron-deficient molecules in solution due to large deviation from alkoxy compounds. A benzofuran-appended pillar[6]arene instead captures small gaseous molecules in the solid state, probably owing to outside spaces surrounded by aromatic rings.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
9
|
Kato K, Ohtani S, Gon M, Tanaka K, Ogoshi T. Cyclic arrays of five pyrenes on one rim of a planar chiral pillar[5]arene. Chem Sci 2022; 13:13147-13152. [PMID: 36425509 PMCID: PMC9667914 DOI: 10.1039/d2sc04168e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2024] Open
Abstract
Spatial arrangement of multiple planar chromophores is an emerging strategy for molecule-based chiroptical materials via easy and systematic synthesis. We attached five pyrene planes to a chiral macrocycle, pillar[5]arene, producing a set of chiroptical molecules in which pyrene-derived absorption and emission were endowed with dissymmetry by effective transfer of chiral information. The chiroptical response was dependent on linker structures and substituted patterns because of variable interactions between pyrene units. One of these hybrids showed larger dissymmetry factor and response wavelength (g lum = 7.0 × 10-3 at ca. 547 nm) than reported pillar[5]arene-based molecules using the pillar[5]arene cores as parts of photo-responsive π-conjugated units.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
10
|
Kato K, Maeda K, Mizuno M, Nishina Y, Fa S, Ohtani S, Ogoshi T. Room‐Temperature Ring‐Opening Polymerization of δ‐Valerolactone and ϵ‐Caprolactone Caused by Uptake into Porous Pillar[5]arene Crystals. Angew Chem Int Ed Engl 2022; 61:e202212874. [DOI: 10.1002/anie.202212874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Koki Maeda
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology Kanazawa University
- NanoMaterials Research Institute (NanoMaRi) Kanazawa University Kakuma-machi Kanazawa, 920-1192 Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences Okayama University Okayama 700-8530 Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
- WPI Nano Life Science Institute Kanazawa University Kakuma-machi Kanazawa, 920-1192 Japan
| |
Collapse
|
11
|
|
12
|
Vincent SP, Chen W. Copillar[5]arene Chemistry: Synthesis and Applications. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1738369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractResearch on pillar[n]arenes has witnessed a very quick expansion. This emerging class of functionalized macrocyclic oligoarenes not only offers host–guest properties due to the presence of the central cavity, but also presents a wide variety of covalent functionalization possibilities. This short review focuses on copillararenes, a subfamily of pillar[n]arenes. In copillararenes, at least one of the hydroquinone units bears different functional groups compared to the others. After having defined the particular features of copillararenes, this short review compares the different synthetic strategies allowing their construction. Some key applications and future perspectives are also described. 1 Introduction2 General Features of Pillar[5]arenes3 Synthesis of Functionalized Copillar[4+1]arenes4 Concluding Remarks
Collapse
Affiliation(s)
| | - Wenzhang Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University
- Department of Chemistry, UNamur, NARILIS
| |
Collapse
|
13
|
Liu Z, Li Z, Li B, Zhou L, Zhang H, Han J. Hybrid Macrocyclic Polymers: Self-Assembly Containing Cucurbit[m]uril-pillar[n]arene. Polymers (Basel) 2022; 14:1777. [PMID: 35566949 PMCID: PMC9106019 DOI: 10.3390/polym14091777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Supramolecular self-assembly by hybrid macrocycles containing both cucurbit[m]uril (CB[m]) and pillar[n]arene was discussed and summarized in this review. Due to different solubility, diverse-sized cavities, and various driving forces in recognizing guests, the role of CB[m] and pillar[n]arene in such hybrid macrocyclic systems could switch between competitor in capturing specialized guests, and cooperator for building advanced hybridized macrocycles, by controlling their characteristics in host-guest inclusions. Furthermore, both CB[m] and pillar[n]arene were employed for fabricating advanced supramolecular self-assemblies such as mechanically interlocked molecules and supramolecular polymers. In those self-assemblies, CB[m] and pillar[n]arene played significant roles in, e.g., microreactor for catalyzing particular reactions to bridge different small pieces together, molecular "joint" to connect different monomers into larger assemblies, and "stabilizer" in accommodating the guest molecules to adopt a favorite structure geometry ready for assembling.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi’an Peihua University, Xi’an 710125, China;
| | - Zhizheng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Bing Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
15
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra‐functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Zeng
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Peiren Liu
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Xing
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
16
|
Song L, Zhou L, Li B, Zhang H. Fullerene-containing pillar[ n]arene hybrid composites. Org Biomol Chem 2022; 20:8176-8186. [DOI: 10.1039/d2ob01664h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The construction and application of fullerene-containing pillar[n]arene organic–inorganic hybrid composites/systems has been discussed and summarized.
Collapse
Affiliation(s)
- Leqian Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
17
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra-functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2021; 61:e202115823. [PMID: 34962061 DOI: 10.1002/anie.202115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/07/2022]
Abstract
Due to the highly symmetrical structures generated from one-pot syntheses, the partial functionalization of macrocycles is usually beset with low yields and onerous purifications of the target multifunctional macrocycles. To improve this circumstance, taking pillar[6]arenes as an example, a two-step fragment coupling method is developed for synthesizing symmetrically tetra-functionalized pillar[6]arenes, namely X-pillar[6]arenes. This method is simple and versatile, which makes hetero-fragment coupling and pre-functionalization available. Nine new macrocycles and a pillar[6]arene-based cage are prepared. In addition, one of the newly synthesized macrocycles, COOEtEtXP[6] , exhibits a strong cyan luminescence in the solid state under irradiation by 365 nm UV light. This emission originates from intramolecular through-space conjugation. Meanwhile, formation of a supramolecular polymer by multiple non-covalent intra/intermolecular interactions help rigidify the structure and make COOEtEtXP[6] an efficient solid-state emitter. It is believed that this fragment coupling can also be used to realize the multi-functionalization of other macrocycles.
Collapse
Affiliation(s)
- Hong Zeng
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Peiren Liu
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Hao Xing
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Feihe Huang
- Zhejiang University, Department of Chemistry, Faculty of Sciences, 310027, Hangzhou, CHINA
| |
Collapse
|
18
|
Fan Y, Hu K, Nan J, Shen Y. Tetraphenylethene-Embedded Pillar[5]arene and [15]Paracyclophane: Distorted Cavities and Host-Guest Binding Properties. Molecules 2021; 26:molecules26195915. [PMID: 34641459 PMCID: PMC8512412 DOI: 10.3390/molecules26195915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Two aggregation-induced emission (AIE) macrocycles (DMP[5]-TPE and PCP[5]-TPE) were prepared by embedding Tetraphenylethene (TPE) unit into the skeletons of Dimethoxypillar[5]arene (DMP[5]) and [15]Paracyclophane ([15]PCP) at meso position, respectively. In crystal, the PCP[5]-TPE showed a distorted cavity, and the incubation of hexane inside the DMP[5]-TPE cavity caused a distinct change in the molecular conformation compared to PCP[5]-TPE. There was no complexation between PCP[5]-TPE and 1,4-dicyanobutane (DCB). UV absorption experiments showed the distorted cavity of DMP[5]-TPE hindered association with DCB.
Collapse
|
19
|
Zhang Q, Zhang YM, Yao H, Wei TB, Shi B, Lin Q. Supramolecular AIE polymer-based rare earth metallogels for the selective detection and high efficiency removal of cyanide and perchlorate. Polym Chem 2021. [DOI: 10.1039/d0py01630f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel supramolecular AIE polymer-based rare earth metallogels (PT-GEu and PT-GTb) have been rationally designed and synthesized for the efficient detection and removal of cyanide (CN−) and perchlorate (ClO4−).
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - You-Ming Zhang
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hong Yao
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Tai-Bao Wei
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Bingbing Shi
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qi Lin
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
20
|
Sheng X, Li E, Huang F. Construction of pillar[4]arene[1]quinone-1,10-dibromodecane pseudorotaxanes in solution and in the solid state. Beilstein J Org Chem 2020; 16:2954-2959. [PMID: 33335603 PMCID: PMC7722622 DOI: 10.3762/bjoc.16.245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
We report novel pseudorotaxanes based on the complexation between pillar[4]arene[1]quinone and 1,10-dibromodecane. The complexation is found to have a 1:1 host–guest complexation stoichiometry in chloroform but a 2:1 host–guest complexation stoichiometry in the solid state. From single crystal X-ray diffraction, the linear guest molecules thread into cyclic pillar[4]arene[1]quinone host molecules in the solid state, stabilized by CH∙∙∙π interactions and hydrogen bonds. The bromine atoms at the periphery of the guest molecule provide convenience for the further capping of the pseudorotaxanes to construct rotaxanes.
Collapse
Affiliation(s)
- Xinru Sheng
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
21
|
Rashvand Avei M, Etezadi S, Captain B, Kaifer AE. Visualization and quantitation of electronic communication pathways in a series of redox-active pillar[6]arene-based macrocycles. Commun Chem 2020; 3:117. [PMID: 36703347 PMCID: PMC9814560 DOI: 10.1038/s42004-020-00363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/23/2020] [Indexed: 01/29/2023] Open
Abstract
While oxidized pillar[5]arenes with 1-5 benzoquinone units are known, very few examples of oxidized pillar[6]arenes have been reported. We describe here the synthesis, characterization and electrochemical behavior of a series of macrocyclic hosts prepared by the stepwise oxidation of 1,4-diethoxypillar[6]arene, resulting in high-yield and high-purity isolation of two constitutional isomers for each macrocycle, in which two, three or four 1,4-diethoxybenzene units are replaced by benzoquinone residues. A careful structural comparison with their counterparts in the pillar[5]arene framework indicates that the geometries of the macrocycles are better described as non-Euclidean hyperbolic hexagons and elliptic pentagons, respectively. A comprehensive computational study to determine anisotropic induced current density (ACID) allows us to visualize and quantify through-space and through-bond communication pathways along the macrocyclic belt. Experimental and simulated voltammetric data, as well as UV-vis spectra, of the new macrocycles afford insights into the various electronic communication pathways in these compounds.
Collapse
Affiliation(s)
- Mehdi Rashvand Avei
- grid.26790.3a0000 0004 1936 8606Department of Chemistry, University of Miami, Coral Gables, FL 33124 USA
| | - Sedigheh Etezadi
- grid.26790.3a0000 0004 1936 8606Department of Chemistry, University of Miami, Coral Gables, FL 33124 USA
| | - Burjor Captain
- grid.26790.3a0000 0004 1936 8606Department of Chemistry, University of Miami, Coral Gables, FL 33124 USA
| | - Angel E. Kaifer
- grid.26790.3a0000 0004 1936 8606Department of Chemistry, University of Miami, Coral Gables, FL 33124 USA
| |
Collapse
|
22
|
Li E, Jie K, Fang Y, Cai P, Huang F. Transformation of Nonporous Adaptive Pillar[4]arene[1]quinone Crystals into Fluorescent Crystals via Multi-Step Solid–Vapor Postsynthetic Modification for Fluorescence Turn-on Sensing of Ethylenediamine. J Am Chem Soc 2020; 142:15560-15568. [DOI: 10.1021/jacs.0c07482] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yu Fang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
23
|
Wada K, Kakuta T, Yamagishi TA, Ogoshi T. Obvious vapochromic color changes of a pillar[6]arene containing one benzoquinone unit with a mechanochromic change before vapor exposure. Chem Commun (Camb) 2020; 56:4344-4347. [PMID: 32193526 DOI: 10.1039/d0cc01112f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a color changeable aromatic vapor detection system by combining the mechanochromism and vapochromism of pillar[6]arene containing one benzoquinone unit. The color of pillar[6]arene solid was changed by mechanochromism before vapor exposure. Different aromatic vapors then induced an obvious vapochromic color change from dark red to light orange or vice versa.
Collapse
Affiliation(s)
- Keisuke Wada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | | | | | | |
Collapse
|
24
|
Pearce N, Davies ES, Champness NR. per-Alkoxy-pillar[5]arenes as Electron Donors: Electrochemical Properties of Dimethoxy-Pillar[5]arene and Its Corresponding Rotaxane. Molecules 2020; 25:molecules25071627. [PMID: 32252224 PMCID: PMC7180461 DOI: 10.3390/molecules25071627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/13/2023] Open
Abstract
1,4-dimethoxypillar[5]arene undergoes reversible multielectron oxidations forming stable radical cations, a property retained when incorporated in [2]rotaxanes, suggesting that pillar[5]arenes can be employed as viable, yet unreported, electron donors.
Collapse
|
25
|
Xu X, Jerca VV, Hoogenboom R. Structural Diversification of Pillar[
n
]arene Macrocycles. Angew Chem Int Ed Engl 2020; 59:6314-6316. [DOI: 10.1002/anie.202002467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaowen Xu
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Valentin Victor Jerca
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281-S4 9000 Ghent Belgium
- Centre of Organic Chemistry “Costin D. Nenitzescu” Romanian Academy Spl. Independentei 202B Bucharest Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281-S4 9000 Ghent Belgium
| |
Collapse
|
26
|
Xu X, Jerca VV, Hoogenboom R. Strukturelle Diversifizierung von Pillar[
n
]aren‐Makrocyclen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaowen Xu
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281-S4 9000 Ghent Belgien
| | - Valentin Victor Jerca
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281-S4 9000 Ghent Belgien
- Centre of Organic Chemistry “Costin D. Nenitzescu” Romanian Academy Spl. Independentei 202B Bucharest Rumänien
| | - Richard Hoogenboom
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281-S4 9000 Ghent Belgien
| |
Collapse
|
27
|
Cao D, Meier H. Pillararene-based fluorescent sensors for the tracking of organic compounds. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Unraveling the binding nature of hexane with quinone functionalized pillar[5]quinone: a computational study. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00945-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Li G, Fan C, Cheng G, Wu W, Yang C. Synthesis, enantioseparation and photophysical properties of planar-chiral pillar[5]arene derivatives bearing fluorophore fragments. Beilstein J Org Chem 2019; 15:1601-1611. [PMID: 31435442 PMCID: PMC6664395 DOI: 10.3762/bjoc.15.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Planar chiral pillar[5]arene derivatives (P5A-DPA and P5A-Py) bearing bulky fluorophores were obtained in high yield by click reaction. The photophysical properties of both compounds were investigated in detail. P5A-DPA with two 9,10-diphenylanthracene (DPA) pigments grafted on the pillar[5]arene showed a high fluorescence quantum yield of 89.5%. This is comparable to the monomer DPA-6, while P5A-Py with two perylene (Py) pigments grafted on the pillar[5]arene showed a significantly reduced quantum yield of 46.4% vs 78.2% for the monomer Py-6. The oxygen-through-annulus rotation of the phenolic units was inhibited for both compounds due to the bulky chromophore introduced, and the resolution of the enantiomers was achieved due to the bulky size of the fluorophores. The absolute configuration of the enantiomers was determined by circular dichroism (CD) spectra. The solvent-induced aggregation behavior was investigated with the enantiopure P5A-DPA and P5A-Py. It was found that the CD signals were enhanced by aggregation. P5A-DPA showed aggregation-induced emission enhancement, while P5A-Py showed aggregation-induced emission quenching, accompanied by excimer emission when aggregating in water and THF mixed solution.
Collapse
Affiliation(s)
- Guojuan Li
- Key Laboratory of Green Chemistry & Technology, College of Chemistry and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chunying Fan
- Key Laboratory of Green Chemistry & Technology, College of Chemistry and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology, College of Chemistry and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
30
|
Al-Azemi TF, Vinodh M, Alipour FH, Mohamod AA. Constitutional isomers of brominated-functionalized copillar[5]arenes: synthesis, characterization, and crystal structures. RSC Adv 2019; 9:13814-13819. [PMID: 35519554 PMCID: PMC9063920 DOI: 10.1039/c9ra02313e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
We herein report the preparation of constitutional isomers of brominated-functionalized pillar[5]arenes via co-condensation of 1,4-bis(2-bromoethoxy)benzene and 1,4-dimethoxybenzene. The structures of the obtained isomers were then established using single crystal X-ray diffraction. We also found that the isomeric yield distribution of the different constitutional isomers was independent of the monomer's mole feed ratio, as revealed by HPLC analysis of the crude mixture. Finally, further characterization of the separated constitutional isomers indicated that they possess different melting points, NMR spectra, crystal structures, binding constants and stacking patterns in the solid state. Constitutional isomers of brominated-functionalized pillar[5]arenes were synthesized using a co-cyclization strategy.![]()
Collapse
Affiliation(s)
- Talal F Al-Azemi
- Chemistry Department, Kuwait University P. O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Mickey Vinodh
- Chemistry Department, Kuwait University P. O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Fatemeh H Alipour
- Chemistry Department, Kuwait University P. O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Abdirahman A Mohamod
- Chemistry Department, Kuwait University P. O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| |
Collapse
|
31
|
Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen C. Artificial K
+
Channels Formed by Pillararene‐Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Huiyuan Kong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Lingyu Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Haodong Fang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Haofeng Zhu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Chang‐Po Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| |
Collapse
|
32
|
Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen CP. Artificial K + Channels Formed by Pillararene-Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew Chem Int Ed Engl 2019; 58:2779-2784. [PMID: 30648810 DOI: 10.1002/anie.201813797] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Indexed: 01/10/2023]
Abstract
A class of artificial K+ channels formed by pillararene-cyclodextrin hybrid molecules have been designed and synthesized. These channels efficiently inserted into lipid bilayers and displayed high selectivity for K+ over Na+ in fluorescence and electrophysiological experiments. The cation transport selectivity of the artificial channels is tunable by varying the length of the linkers between pillararene and cyclodexrin. The shortest channel showed specific transmembrane transport preference for K+ over all alkali metal ions (selective sequence: K+ > Cs+ > Rb+ > Na+ > Li+ ), and is rarely observed for artificial K+ channels. The high selectivity of this artificial channel for K+ over Na+ ensures specific transmembrane translocation of K+ , and generated stable membrane potential across lipid bilayers.
Collapse
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Huiyuan Kong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Lingyu Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Haodong Fang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Haofeng Zhu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Po Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
33
|
Al-Azemi TF, Vinodh M, Alipour FH, Mohamod AA. Synthesis, functionalization, and isolation of planar-chiral pillar[5]arenes with bulky substituents using a chiral derivatization agent. RSC Adv 2019; 9:23295-23301. [PMID: 35514477 PMCID: PMC9067291 DOI: 10.1039/c9ra03135a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/22/2019] [Indexed: 12/02/2022] Open
Abstract
Bulky perneopentyloxy-pillar[5]arene (Pillar-1) was synthesized and its conformational mobility was investigated using variable-temperature 1H NMR spectroscopy. The host–guest interactions between Pillar-1 and n-octyltrimethylammonium hexafluorophosphate (OMA) were investigated, and the formation of a 1 : 1 complex was revealed via1H NMR. Planar-chiral isomers were synthesized via the reaction of a hydroxy-functionalized pillar[5]arene with chiral derivatization agent (S)-(+)-MTPA-Cl. The (Sp, R)-and (Rp, R)-forms of the pillar[5]arene diastereomers were isolated by HPLC, and their structures were analyzed by 19F NMR. HPLC measurements indicated that racemization did not take place at 40 °C for 72 h. Bulky perneopentyloxy-pillar[5]arene was synthesized. Complexation behavior and conformational mobility were investigated using 1H NMR spectroscopy. Isolation of planar-chiral pillar[5]arenes using a chiral derivatization agent were carried out.![]()
Collapse
|
34
|
Al-Azemi TF, Vinodh M, Alipour FH, Mohamod AA. Chiral discrimination of 2-heptlyaminium salt by planar-chiral monohydroxy-functionalized pillar[5]arenes. Org Chem Front 2019. [DOI: 10.1039/c8qo01343h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A chiral receptor was synthesized based on monohydroxy-functionalized pillar[5]arenes and its ability to discriminate alkyl aminium salts is demonstrated.
Collapse
Affiliation(s)
| | - Mickey Vinodh
- Chemistry Department
- Kuwait University
- Safat 13060
- Kuwait
| | | | | |
Collapse
|
35
|
Ogoshi T, Akutsu T, Yamagishi TA. An amphiphilic pseudo[1]catenane: neutral guest-induced clouding point change. Beilstein J Org Chem 2018; 14:1937-1943. [PMID: 30112098 PMCID: PMC6071686 DOI: 10.3762/bjoc.14.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 01/18/2023] Open
Abstract
The hydrophobic/hydrophilic ratio in a molecule largely affects its assembled properties in aqueous media. In this study, we synthesized a new bicyclic compound which could dynamically change its hydrophobic/hydrophilic ratio by chemical stimulus. The bicyclic compound consisted of amphiphilic pillar[5]arene and hydrophobic alkyl chain rings, and formed a self-inclusion structure in aqueous media, which was assigned as a pseudo[1]catenane structure. The hydrophobic chain ring was hidden inside the pillar[5]arene cavity in the pseudo[1]catenane structure, thus the bicyclic compound was soluble in water at 20 °C with a clouding point at 24 °C. The pseudo[1]catenane was converted to the de-threaded structure upon addition of the neutral guest 1,4-dicyanobutane, which displaced the alkyl chain ring from the inside to the outside of the cavity. The hydrophobic alkyl chain ring was now exposed to the aqueous media, causing aggregation of the hydrophobic alkyl chain rings, which induced insolubilization of the bicyclic compound in aqueous media at 20 °C and a decrease in its clouding point.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomohiro Akutsu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
36
|
Affiliation(s)
- Derong Cao
- School of Chemistry and Chemical Engineering State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; 381 Wushan Road 510641 Guangzhou China
| | - Herbert Meier
- School of Chemistry and Chemical Engineering State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; 381 Wushan Road 510641 Guangzhou China
- Institute of Organic Chemistry; University of Mainz; Duesbergweg 10-14 55099 Mainz Germany
| |
Collapse
|
37
|
Mao W, Zhan S, Zhu B, Ma D. Step-Growth Cyclo-Oligomerization for the Preparation of Di- and Tetrafunctionalized Pillar[5]arenes. J Org Chem 2018. [DOI: 10.1021/acs.joc.8b00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Weipeng Mao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Shuaijun Zhan
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Bowei Zhu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
38
|
Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW. Biological and related applications of pillar[n]arenes. Chem Commun (Camb) 2018; 53:677-696. [PMID: 27942626 DOI: 10.1039/c6cc08967d] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pillar[n]arenes are a new class of synthetic supramolecular macrocycles streamlined by their particular pillar-shaped architecture which consists of an electron-rich cavity and two fine-tuneable rims. The ease and diversity of the functionalization of the two rims open possibilities for the design of new architectures, topological isomers, and scaffolds. Significantly, this emerging class of macrocyclic receptors offers a unique platform for biological purposes. This review article covers the most recent contributions from the pillar[n]arene field in terms of artificial membrane transport systems, controlled drug delivery systems, biomedical imaging, biosensors, cell adhesion, fluorescent sensing, and pesticide detection based on host-guest interactions. The review also uniquely describes the properties of sub-units that make pillar[n]arenes suitable for biological applications and it provides a detailed outline for the design of new innovative pillar-like structures with specific properties to open up a new avenue for pillar[n]arene chemistry.
Collapse
Affiliation(s)
- CuhaWijay Sathiyajith
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Rafik Rajjak Shaikh
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qian Han
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yue Zhang
- The First Clinical College, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, P. R. China.
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
39
|
Kakuta T, Yamagishi T, Ogoshi T. Supramolecular chemistry of pillar[n]arenes functionalised by a copper(i)-catalysed alkyne-azide cycloaddition "click" reaction. Chem Commun (Camb) 2018; 53:5250-5266. [PMID: 28387405 DOI: 10.1039/c7cc01833a] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since we discovered pillar[n]arenes in 2008, many chemists have developed a strong interest in pillar[n]arene chemistry because of the many advantages associated with these materials, including their facile and high yielding synthesis, versatile functionality, planar chirality and unique host-guest properties. In this feature article, we discuss recent advances in the field of supramolecular chemistry based on the use of pillar[n]arenes as substrates for copper(i)-catalysed alkyne-azide cycloaddition (CuAAC) "click" chemistry. The CuAAC reaction provides facile access to 1,4-disubstituted triazoles by a reaction between alkyne and azido substrates in the presence of a Cu(i) catalyst. Pillar[n]arenes bearing alkyne or azido groups can therefore be used as substrates for this reaction. Herein, we discuss not only the synthesis of pillar[n]arenes bearing alkyne or azido groups but also the application of these functionalised systems to the CuAAC reaction to construct supramolecular assemblies. We also discuss the rational molecular design and synthesis of guest compounds using the CuAAC reaction because linear alkanes sandwiched between 1,2,3-triazole moieties are good guests for cyclic pentamer pillar[5]arenes.
Collapse
Affiliation(s)
- T Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | |
Collapse
|
40
|
Yang K, Pei Y, Wen J, Pei Z. Recent advances in pillar[n]arenes: synthesis and applications based on host-guest interactions. Chem Commun (Camb) 2018; 52:9316-26. [PMID: 27332040 DOI: 10.1039/c6cc03641d] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[n]arenes (n = 5-15) are a novel class of macrocyclic molecules with hydroquinone as the repeating unit linked by methylene bridges at para-positions. Introduced by T. Ogoshi for the first time in 2008, pillararenes have attracted increasing interest and have been widely studied during the last eight years, due to their unique structural advantages as host molecules, such as symmetrical rigid architecture, electron-rich cavities and facile functional modification. In this review, we first describe the syntheses of pillar[n]arenes including cyclooligomerization of pillar[n]arenes and modification of pillar[n]arenes after cyclooligomerization, summarising almost twenty different kinds of guest motifs and dividing them into three types: cationic, neutral and anionic motifs. The main section of this review examines the applications of pillar[n]arenes based on the host-guest interactions in different research fields, including biology, materials science and environmental science. Finally, future research directions and potential for novel applications are discussed.
Collapse
Affiliation(s)
- Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
41
|
Han C, Zhao D, Li H, Wang H, Huang X, Sun D. Effective Binding of Neutral Dinitriles by Pillar[4]arene[1]quinone both in Solution and in Solid State. ChemistrySelect 2018. [DOI: 10.1002/slct.201702793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chengyou Han
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Dezhi Zhao
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Haiyu Li
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Haibo Wang
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Xu Huang
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Daofeng Sun
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| |
Collapse
|
42
|
Al-Azemi TF, Mohamod AA, Vinodh M, Alipour FH. A new approach for the synthesis of mono- and A1/A2-dihydroxy-substituted pillar[5]arenes and their complexation with alkyl alcohols in solution and in the solid state. Org Chem Front 2018. [DOI: 10.1039/c7qo00641a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new method for synthesizing hydroxy-functionalized pillar[5]arenes by catalytic hydrogenation to remove the benzyl protecting groups of a pillararene precursor has been employed.
Collapse
Affiliation(s)
| | | | - Mickey Vinodh
- Chemistry Department
- Kuwait University
- Safat 13060
- Kuwait
| | | |
Collapse
|
43
|
Al-Azemi TF, Vinodh M, Alipour FH, Mohamod AA. Constitutional Isomers of Pentahydroxy-Functionalized Pillar[5]arenes: Synthesis, Characterization, and Crystal Structures. J Org Chem 2017; 82:10945-10952. [DOI: 10.1021/acs.joc.7b01837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Talal F. Al-Azemi
- Chemistry Department, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Mickey Vinodh
- Chemistry Department, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Fatemeh H. Alipour
- Chemistry Department, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | | |
Collapse
|
44
|
Affiliation(s)
- Fang Guo
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yan Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Bohan Xi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Guowang Diao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
45
|
Bojtár M, Simon A, Bombicz P, Bitter I. Expanding the Pillararene Chemistry: Synthesis and Application of a 10 + 1 Functionalized Pillar[5]arene. Org Lett 2017; 19:4528-4531. [DOI: 10.1021/acs.orglett.7b02092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Márton Bojtár
- Department
of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - András Simon
- Department
of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Petra Bombicz
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, Hungary
| | - István Bitter
- Department
of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
46
|
Han C, Zhao D, Li T, Sun D. Stereoselective Synthesis of Pillar[4]arene[1]cis
-diepoxy-p
-dione and X-Ray Crystal Structure of Host-Guest System. Chem Asian J 2017; 12:2354-2358. [PMID: 28703485 DOI: 10.1002/asia.201700791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Chengyou Han
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road Huangdao District Qingdao 266580 P.R. China
| | - Dezhi Zhao
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road Huangdao District Qingdao 266580 P.R. China
| | - Tian Li
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road Huangdao District Qingdao 266580 P.R. China
| | - Daofeng Sun
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road Huangdao District Qingdao 266580 P.R. China
| |
Collapse
|
47
|
Avei MR, Kaifer AE. Through-Space Communication Effects on the Electrochemical Reduction of Partially Oxidized Pillar[5]arenes Containing Variable Numbers of Quinone Units. J Org Chem 2017; 82:8590-8597. [DOI: 10.1021/acs.joc.7b01366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mehdi Rashvand Avei
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124-0431, United States
| | - Angel E. Kaifer
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124-0431, United States
| |
Collapse
|
48
|
Ogoshi T, Shimada Y, Sakata Y, Akine S, Yamagishi TA. Alkane-Shape-Selective Vapochromic Behavior Based on Crystal-State Host-Guest Complexation of Pillar[5]arene Containing One Benzoquinone Unit. J Am Chem Soc 2017; 139:5664-5667. [PMID: 28414220 DOI: 10.1021/jacs.7b00631] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colored crystals of pillar[5]arene containing one benzoquinone unit were found to exhibit alkane-shape-selective vapochromic behavior. Activated pillar[5]arene crystals, prepared by removing solvated methanol from pillar[5]arene crystals, changed color from dark-brown to light-red after exposure to linear alkane vapors; however, no color changes were observed on exposure to branched or cyclic alkanes. Uptake of methanol vapor by the activated crystals induced a different color change, from dark-brown to black. This multi-vapochromism results from the different intermolecular π-stacking interactions between the benzoquinone and 1,4-diethoxybenzene units in the alkane- and methanol-containing crystals. Unlike most known vapochromic materials, these pillar[5]arene-based materials were highly stable; after uptake of n-alkanes or methanol the color of the crystals did not change after storage in air for 3 weeks. This is because the included guests were stabilized in the cavity by multiple CH/π interactions.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan.,JST, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuo Shimada
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
49
|
Yin CB, Han Y, Huo GF, Sun J, Yan CG. Synthesis, crystal structures and complexing ability of difunctionalized copillar[5]arene Schiff bases. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Barrán-Berdón AL, Martínez-Negro M, García-Río L, Domènech Ò, Tros de Ilarduya C, Aicart E, Junquera E. A biophysical study of gene nanocarriers formed by anionic/zwitterionic mixed lipids and pillar[5]arene polycationic macrocycles. J Mater Chem B 2017; 5:3122-3131. [DOI: 10.1039/c6tb02939f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multivalent cationic macrocycle is used as a mediator between plasmid DNAs and anionic lipids (ALs) to build an efficient and safe gene nanocarrier.
Collapse
Affiliation(s)
- Ana L. Barrán-Berdón
- Grupo de Química Coloidal y Supramolecular
- Departamento de Química Física I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
| | - María Martínez-Negro
- Grupo de Química Coloidal y Supramolecular
- Departamento de Química Física I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
| | - Luis García-Río
- Departamento de Química Física
- Centro de Investigación en Química Biológica y Materiales Moleculares
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Òscar Domènech
- Departamento de Fisicoquímica
- Facultat de Farmàcia
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Conchita Tros de Ilarduya
- Departamento de Farmacia y Tecnología Farmacéutica
- Facultad de Farmacia
- Universidad de Navarra
- IdiSNA
- Navarra Institute for Health Research
| | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular
- Departamento de Química Física I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
| | - Elena Junquera
- Grupo de Química Coloidal y Supramolecular
- Departamento de Química Física I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
| |
Collapse
|