1
|
Fang Z, Pazienza LT, Zhang J, Tam CP, Szostak JW. Catalytic Metal Ion-Substrate Coordination during Nonenzymatic RNA Primer Extension. J Am Chem Soc 2024; 146:10632-10639. [PMID: 38579124 PMCID: PMC11027144 DOI: 10.1021/jacs.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3'-hydroxyl on the adjacent phosphate of a 5'-5'-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5'-5'-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction.
Collapse
Affiliation(s)
- Ziyuan Fang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Lydia T. Pazienza
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jian Zhang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Chun Pong Tam
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Callaghan KL, Sherrell PC, Ellis AV. The Impact of Activating Agents on Non-Enzymatic Nucleic Acid Extension Reactions. Chembiochem 2024; 25:e202300859. [PMID: 38282207 DOI: 10.1002/cbic.202300859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Non-enzymatic template-directed primer extension is increasingly being studied for the production of RNA and DNA. These reactions benefit from producing RNA or DNA in an aqueous, protecting group free system, without the need for expensive enzymes. However, these primer extension reactions suffer from a lack of fidelity, low reaction rates, low overall yields, and short primer extension lengths. This review outlines a detailed mechanistic pathway for non-enzymatic template-directed primer extension and presents a review of the thermodynamic driving forces involved in entropic templating. Through the lens of entropic templating, the rate and fidelity of a reaction are shown to be intrinsically linked to the reactivity of the activating agent used. Thus, a strategy is discussed for the optimization of non-enzymatic template-directed primer extension, providing a path towards cost-effective in vitro synthesis of RNA and DNA.
Collapse
Affiliation(s)
- Kimberley L Callaghan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
3
|
Dagar S, Sarkar S, Rajamani S. Nonenzymatic Template-Directed Primer Extension Using 2'-3' Cyclic Nucleotides Under Wet-Dry Cycles. ORIGINS LIFE EVOL B 2023; 53:43-60. [PMID: 37243884 DOI: 10.1007/s11084-023-09636-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/15/2023] [Indexed: 05/29/2023]
Abstract
RNA World Hypothesis is centred around the idea of a period in the early history of life's origin, wherein nonenzymatic oligomerization and replication of RNA resulted in functional ribozymes. Previous studies in this endeavour have demonstrated template-directed primer extension using chemically modified nucleotides and primers. Nonetheless, similar studies that used non-activated nucleotides led to the formation of RNA only with abasic sites. In this study, we report template-directed primer extension with prebiotically relevant cyclic nucleotides, under dehydration-rehydration (DH-RH) cycles occurring at high temperature (90 °C) and alkaline conditions (pH 8). 2'-3' cyclic nucleoside monophosphates (cNMP) resulted in primer extension, while 3'-5' cNMP failed to do so. Intact extension of up to two nucleotide additions was observed with both canonical hydroxy-terminated (OH-primer) and activated amino-terminated (NH2-primer) primers. We demonstrate primer extension reactions using both purine and pyrimidine 2'-3' cNMPs, with higher product yield observed during cAMP additions. Further, the presence of lipid was observed to significantly enhance the extended product in cCMP reactions. In all, our study provides a proof-of-concept for nonenzymatic primer extension of RNA, using intrinsically activated prebiotically relevant cyclic nucleotides as monomers.
Collapse
Affiliation(s)
- Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
4
|
Aho A, Österlund T, Rahkila J, Virta PM. DNA‐templated formation and N,O‐transacetalization of N‐methoxyoxazolidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aapo Aho
- University of Turku: Turun Yliopisto Chemistry FINLAND
| | | | - Jani Rahkila
- Åbo Akademi: Abo Akademi Instrument Centre, Faculty of Science and Engineering FINLAND
| | - Pasi Markus Virta
- University of Turku department of chemistry Vatselankatu 2 20014 Turku FINLAND
| |
Collapse
|
5
|
Jiménez EI, Gibard C, Krishnamurthy R. Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eddy I. Jiménez
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Clémentine Gibard
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Ramanarayanan Krishnamurthy
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
6
|
Jiménez EI, Gibard C, Krishnamurthy R. Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angew Chem Int Ed Engl 2021; 60:10775-10783. [PMID: 33325148 DOI: 10.1002/anie.202015910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Recent demonstrations of RNA-DNA chimeras (RDNA) enabling RNA and DNA replication, coupled with prebiotic co-synthesis of deoxyribo- and ribo-nucleotides, have resurrected the hypothesis of co-emergence of RNA and DNA. As further support, we show that diamidophosphate (DAP) with 2-aminoimidazole (amido)phosphorylates and oligomerizes deoxynucleosides to form DNA-under conditions similar to those of ribonucleosides. The pyrimidine deoxynucleoside 5'-O-amidophosphates are formed in good (≈60 %) yields. Intriguingly, the presence of pyrimidine deoxynucleos(t)ides increased the yields of purine deoxynucleotides (≈20 %). Concomitantly, oligomerization (≈18-31 %) is observed with predominantly 3',5'-phosphodiester DNA linkages, and some (<5 %) pyrophosphates. Combined with previous observations of DAP-mediated chemistries and the constructive role of RDNA chimeras, the results reported here help set the stage for systematic investigation of a systems chemistry approach of RNA-DNA coevolution.
Collapse
Affiliation(s)
- Eddy I Jiménez
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Clémentine Gibard
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ramanarayanan Krishnamurthy
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
7
|
Dagar S, Sarkar S, Rajamani S. Geochemical influences on nonenzymatic oligomerization of prebiotically relevant cyclic nucleotides. RNA (NEW YORK, N.Y.) 2020; 26:756-769. [PMID: 32205323 PMCID: PMC7266160 DOI: 10.1261/rna.074302.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/19/2020] [Indexed: 06/01/2023]
Abstract
The spontaneous emergence of long RNA molecules on the early Earth, a phenomenon central to the RNA World hypothesis, continues to remain an enigma in the field of origins of life. Few studies have looked at the nonenzymatic oligomerization of cyclic mononucleotides under neutral to alkaline conditions, albeit in fully dehydrated state. In this study, we systematically investigated the oligomerization of cyclic nucleotides under prebiotically relevant conditions, wherein starting reactants were subjected to repeated dehydration-rehydration (DH-RH) regimes. DH-RH conditions, a recurring geological theme that was prevalent on prebiotic Earth, are driven by naturally occurring processes including diurnal cycles and tidal pool activity. These conditions have been shown to facilitate uphill oligomerization reactions. The polymerization of 2'-3' and 3'-5' cyclic nucleotides of a purine (adenosine) and a pyrimidine (cytidine) was investigated. Additionally, the effect of amphiphiles was also evaluated. Furthermore, to discern the effect of "realistic" conditions on this process, the reactions were also performed using a hot spring water sample from a candidate early Earth environment. Our study showed that the oligomerization of cyclic nucleotides under DH-RH conditions resulted in intact informational oligomers. Amphiphiles increased the stability of both the starting monomers and the resultant oligomers in selected reactions. In the hot spring reactions, both the oligomerization of nucleotides and the back hydrolysis of the resultant oligomers were pronounced. Altogether, this study demonstrates how nonenzymatic oligomerization of cyclic nucleotides, under both laboratory-simulated prebiotic conditions and in a candidate early Earth environment, could have resulted in RNA oligomers of a putative RNA World.
Collapse
Affiliation(s)
- Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
8
|
Bose S, Hodgson DRW. Stereoselective Syntheses of 3'-Hydroxyamino- and 3'-Methoxyamino-2',3'-Dideoxynucleosides. Org Lett 2019; 21:9084-9088. [PMID: 31668079 PMCID: PMC7007280 DOI: 10.1021/acs.orglett.9b03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Aminonucleosides
are used as key motifs in medicinal and bioconjugate
chemistry; however, existing strategies toward 3′-hypernucleophilic
amine systems do not readily deliver deoxyribo-configured
products. We report diastereoselective syntheses of deoxyribo- and deoxyxylo-configured 3′-hydroxyamino-
and 3′-methoxyamino-nucelosides from 3′-imine intermediates.
The presence or absence of the 5′-hydroxyl-group protection
dictates facial selectivity via inter- or intramolecular delivery
of hydride from BH3 (borane). Protecting group screening
gave one access to previously unknown 3′-methoxyamino-deoxyguanosine
derivatives.
Collapse
Affiliation(s)
- Sritama Bose
- Durham University , Department of Chemistry , Lower Mountjoy, Stockton Road , Durham , DH1 3LE , United Kingdom
| | - David R W Hodgson
- Durham University , Department of Chemistry , Lower Mountjoy, Stockton Road , Durham , DH1 3LE , United Kingdom
| |
Collapse
|
9
|
Yin S, Chen Y, Yu C, Ma W. From molecular to cellular form: modeling the first major transition during the arising of life. BMC Evol Biol 2019; 19:84. [PMID: 30943915 PMCID: PMC6448278 DOI: 10.1186/s12862-019-1412-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 03/21/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND It has long been suggested that Darwinian evolution may have started at the molecular level and subsequently proceeded to a level with membrane boundary, i.e., of protocells. The transformation has been referred to as "the first major transition leading to life". However, so far, we actually have little knowledge about the relevant evolutionary mechanisms - and even about the plausibility - of such a transition. Here, based upon the scenario of the RNA world, we performed a computer simulation study to address this issue. RESULTS First, it was shown that at the molecular level, after the spread of one ribozyme (RNA replicase), another ribozyme (nucleotide synthetase) may emerge naturally in the system, and the two ribozymes would cooperate to spread in the naked scene. Then, when empty vesicles absorb the two ribozymes via "cytophagy", the resulting protocells may spread in the system and substitute the naked ribozymes. As for the driven power of such a transition, it was demonstrated that the membrane boundary's roles to ensure the cooperation between the two ribozymes and to prevent invasion of parasites are important. Beyond that, remarkably, it was found that another two factors may also have been significant: a possibly higher mobility of the raw materials in the environment (free water) and the protocells' potential capability to move around actively. Finally, the permeability of the membrane to raw materials was shown to be a major problem regarding the disadvantage for the cellular form. CONCLUSIONS The transition from the molecular level to the cellular level may have occurred naturally in early history of evolution. The evolutionary mechanisms for this process were complex. Besides the membrane boundary's roles to guarantee the molecular cooperation and to resist parasites, the greater chance for the protocells to access raw materials - either due to the diffusion of raw materials outside or the protocells' active movement, should also be highlighted, which may have at least to an extent compensated the disadvantage regarding the membrane's blocking effect against raw materials. The present study represents an effort of systematical exploration on this significant transition during the arising of life.
Collapse
Affiliation(s)
- Shaolin Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
10
|
Conway LP, Mikkola S, O'Donoghue AC, Hodgson DRW. The synthesis, conformation and hydrolytic stability of an N,S-bridging thiophosphoramidate analogue of thymidylyl-3',5'-thymidine. Org Biomol Chem 2018; 14:7361-7. [PMID: 27417455 DOI: 10.1039/c6ob01270a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3'-N,5'-S-bridging thiophosphoramidate analogue of thymidylyl-3',5'-thymidine was synthesised under aqueous conditions. (1)H NMR conformational measurements show that the 3'-N-substituted deoxyribose ring is biased towards the 'north', RNA-like conformation. Rate constants for hydrolysis of the analogue were measured at 90 °C in the pH range 1.3-10.9. The pH-log kobs profile displays a pH-independent region between approximately pH 7 and 10 (t1/2 ∼13 days). Under acidic conditions, kobs displays a first order dependence on [H3O(+)].
Collapse
Affiliation(s)
- Louis P Conway
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Satu Mikkola
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland
| | | | - David R W Hodgson
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
11
|
Sosson M, Richert C. Enzyme-free genetic copying of DNA and RNA sequences. Beilstein J Org Chem 2018; 14:603-617. [PMID: 29623122 PMCID: PMC5870163 DOI: 10.3762/bjoc.14.47] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/20/2018] [Indexed: 11/23/2022] Open
Abstract
The copying of short DNA or RNA sequences in the absence of enzymes is a fascinating reaction that has been studied in the context of prebiotic chemistry. It involves the incorporation of nucleotides at the terminus of a primer and is directed by base pairing. The reaction occurs in aqueous medium and leads to phosphodiester formation after attack of a nucleophilic group of the primer. Two aspects of this reaction will be discussed in this review. One is the activation of the phosphate that drives what is otherwise an endergonic reaction. The other is the improved mechanistic understanding of enzyme-free primer extension that has led to a quantitative kinetic model predicting the yield of the reaction over the time course of an assay. For a successful modeling of the reaction, the strength of the template effect, the inhibitory effect of spent monomers, and the rate constants of the chemical steps have to be determined experimentally. While challenges remain for the high fidelity copying of long stretches of DNA or RNA, the available data suggest that enzyme-free primer extension is a more powerful reaction than previously thought.
Collapse
Affiliation(s)
- Marilyne Sosson
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
12
|
Abstract
![]()
The
potential of N(Me)-alkoxyamine glycosylation
as a DNA-templated ligation has been studied. On a hairpin stem-template
model, a notable rate enhancement and an increased equilibrium yield
are observed compared to the corresponding reaction without a DNA
catalyst. The N-glycosidic connection is dynamic
at pH 5, whereas it becomes irreversible at pH 7. The N(Me)-alkoxyamine glycosylation may hence be an attractive pH controlled
reaction for the assembly of DNA-based dynamic products.
Collapse
Affiliation(s)
- Tommi Österlund
- Department of Chemistry , University of Turku , 20014 Turku , Finland
| | - Heidi Korhonen
- Department of Chemistry , University of Turku , 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , 20014 Turku , Finland
| |
Collapse
|
13
|
Kumar VA. Evolution of specific 3'-5'-linkages in RNA in pre-biotic soup: a new hypothesis. Org Biomol Chem 2018; 14:10123-10133. [PMID: 27714238 DOI: 10.1039/c6ob01796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This article reviews the different possibilities towards progression of the formation of DNA/RNA in the chemical world, before life, in enzyme-free conditions. The advent of deoxyribo- and ribopentose-sugars, nucleosides, nucleotides and oligonucleotides in the prebiotic soup is briefly discussed. Further, the formation of early single stranded oligomers, base-pairing possibilities and information transfer based on the stability parameters of the derived duplexes is reviewed. Each theory has its own merits and demerits which we have elaborated upon. Lastly, using clues from this literature, a possible explanation for the specific 3'-5'-linkages in RNA is proposed.
Collapse
Affiliation(s)
- Vaijayanti A Kumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
14
|
Ma W. What Does "the RNA World" Mean to "the Origin of Life"? Life (Basel) 2017; 7:life7040049. [PMID: 29186049 PMCID: PMC5745562 DOI: 10.3390/life7040049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/30/2017] [Accepted: 11/24/2017] [Indexed: 12/30/2022] Open
Abstract
Corresponding to life’s two distinct aspects: Darwinian evolution and self-sustainment, the origin of life should also split into two issues: the origin of Darwinian evolution and the arising of self-sustainment. Because the “self-sustainment” we concern about life should be the self-sustainment of a relevant system that is “defined” by its genetic information, the self-sustainment could not have arisen before the origin of Darwinian evolution, which was just marked by the emergence of genetic information. The logic behind the idea of the RNA world is not as tenable as it has been believed. That is, genetic molecules and functional molecules, even though not being the same material, could have emerged together in the beginning and launched the evolution—provided that the genetic molecules can “simply” code the functional molecules. However, due to these or those reasons, alternative scenarios are generally much less convincing than the RNA world. In particular, when considering the accumulating experimental evidence that is supporting a de novo origin of the RNA world, it seems now quite reasonable to believe that such a world may have just stood at the very beginning of life on the Earth. Therewith, we acquire a concrete scenario for our attempts to appreciate those fundamental issues that are involved in the origin of life. In the light of those possible scenes included in this scenario, Darwinian evolution may have originated at the molecular level, realized upon a functional RNA. When two or more functional RNAs emerged, for their efficient cooperation, there should have been a selective pressure for the emergence of protocells. But it was not until the appearance of the “unitary-protocell”, which had all of its RNA genes linked into a chromosome, that Darwinian evolution made its full step towards the cellular level—no longer severely constrained by the low-grade evolution at the molecular level. Self-sustainment did not make sense before protocells emerged. The selection pressure that was favoring the exploration of more and more fundamental raw materials resulted in an evolutionary tendency of life to become more and more self-sustained. New functions for the entities to adapt to environments, including those that are involved in the self-sustainment per se, would bring new burdens to the self-sustainment—the advantage of these functions must overweigh the corresponding disadvantage.
Collapse
Affiliation(s)
- Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
15
|
Maruyama H, Oikawa R, Hayakawa M, Takamori S, Kimura Y, Abe N, Tsuji G, Matsuda A, Shuto S, Ito Y, Abe H. Chemical ligation of oligonucleotides using an electrophilic phosphorothioester. Nucleic Acids Res 2017; 45:7042-7048. [PMID: 28520986 PMCID: PMC5499596 DOI: 10.1093/nar/gkx459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 05/11/2017] [Indexed: 11/14/2022] Open
Abstract
We developed a new approach for chemical ligation of oligonucleotides using the electrophilic phosphorothioester (EPT) group. A nucleophilic phosphorothioate group on oligonucleotides was converted into the EPT group by treatment with Sanger's reagent (1-fluoro-2,4-dinitrobenzene). EPT oligonucleotides can be isolated, stored frozen, and used for the ligation reaction. The reaction of the EPT oligonucleotide and an amino-modified oligonucleotide took place without any extra reagents at pH 7.0–8.0 at room temperature, and resulted in a ligation product with a phosphoramidate bond with a 39–85% yield. This method has potential uses in biotechnology and chemical biology.
Collapse
Affiliation(s)
- Hideto Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ryota Oikawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Mayu Hayakawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Shono Takamori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Genichiro Tsuji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1, Hirosawa, Wako-Shi, Saitama, 351-0198, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.,Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1, Hirosawa, Wako-Shi, Saitama, 351-0198, Japan
| |
Collapse
|
16
|
Jauker M, Griesser H, Richert C. Copying of RNA Sequences without Pre-Activation. Angew Chem Int Ed Engl 2015; 54:14559-63. [PMID: 26435291 PMCID: PMC4678514 DOI: 10.1002/anie.201506592] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/03/2015] [Indexed: 11/23/2022]
Abstract
Template-directed incorporation of nucleotides at the terminus of a growing complementary strand is the basis of replication. For RNA, this process can occur in the absence of enzymes, if the ribonucleotides are first converted to an active species with a leaving group. Thus far, the activation required a separate chemical step, complicating prebiotically plausible scenarios. Here we show that a combination of a carbodiimide and an organocatalyst induces near-quantitative incorporation of any of the four ribonucleotides. Upon in situ activation, adenosine monophosphate was found to also form oligomers in aqueous solution. So, both de novo strand formation and sequence-specific copying can occur without an artificial synthetic step.
Collapse
Affiliation(s)
- Mario Jauker
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany)
| | - Helmut Griesser
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany)
| | - Clemens Richert
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany).
| |
Collapse
|
17
|
Jauker M, Griesser H, Richert C. Kopieren von RNA-Sequenzen ohne Voraktivierung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Barbeyron R, Martin AR, Jean-Jacques Vasseur JJV, Michael Smietana MS. DNA-templated borononucleic acid self assembly: a study of minimal complexity. RSC Adv 2015. [DOI: 10.1039/c5ra20767c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The minimal degree of sequence complexity needed for DNA-templated self-assembly of bifunctional oligonucleotides able to form internucleosidic boronate linkages has been studied.
Collapse
Affiliation(s)
- Renaud Barbeyron
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS
- Université de Montpellier
- 34095 Montpellier
- France
| | - Anthony R. Martin
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS
- Université de Montpellier
- 34095 Montpellier
- France
| | | | | |
Collapse
|
19
|
Barbeyron R, Vasseur JJ, Smietana M. pH-controlled DNA- and RNA-templated assembly of short oligomers. Chem Sci 2015; 6:542-547. [PMID: 28936308 PMCID: PMC5588539 DOI: 10.1039/c4sc03028a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/24/2014] [Indexed: 01/04/2023] Open
Abstract
In the area of artificial genetics the development of non-enzymatic self-organization of synthetic building blocks is critical for both providing biopolymers with extended functions and understanding prebiotic processes. While reversibility is believed to have played a major role in early functional genetic materials, we previously reported an efficient DNA-templated ligation of suitably designed 5'-end boronic acid and 3'-end ribonucleosidic half-sequences. Here, we report the enzyme-free and activation-free DNA- and RNA-templated assembly of bifunctional hexamers. The reversible assembly was found to be regio- and sequence specific and the stabilities of the resulting duplexes were compared to their nicked counterparts. To go further with our understanding of this unprecedented process we also examined an auto-templated duplex self-assembly representing a key step toward the evolution of sequence-defined synthetic polymers.
Collapse
Affiliation(s)
- Renaud Barbeyron
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et Université Montpellier 2 , Place Bataillon , 34095 Montpellier , France . ;
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et Université Montpellier 2 , Place Bataillon , 34095 Montpellier , France . ;
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et Université Montpellier 2 , Place Bataillon , 34095 Montpellier , France . ;
| |
Collapse
|
20
|
Kervio E, Claasen B, Steiner UE, Richert C. The strength of the template effect attracting nucleotides to naked DNA. Nucleic Acids Res 2014; 42:7409-20. [PMID: 24875480 PMCID: PMC4066754 DOI: 10.1093/nar/gku314] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmission of genetic information relies on Watson–Crick base pairing between nucleoside phosphates and template bases in template–primer complexes. Enzyme-free primer extension is the purest form of the transmission process, without any chaperon-like effect of polymerases. This simple form of copying of sequences is intimately linked to the origin of life and provides new opportunities for reading genetic information. Here, we report the dissociation constants for complexes between (deoxy)nucleotides and template–primer complexes, as determined by nuclear magnetic resonance and the inhibitory effect of unactivated nucleotides on enzyme-free primer extension. Depending on the sequence context, Kd′s range from 280 mM for thymidine monophosphate binding to a terminal adenine of a hairpin to 2 mM for a deoxyguanosine monophosphate binding in the interior of a sequence with a neighboring strand. Combined with rate constants for the chemical step of extension and hydrolytic inactivation, our quantitative theory explains why some enzyme-free copying reactions are incomplete while others are not. For example, for GMP binding to ribonucleic acid, inhibition is a significant factor in low-yielding reactions, whereas for amino-terminal DNA hydrolysis of monomers is critical. Our results thus provide a quantitative basis for enzyme-free copying.
Collapse
Affiliation(s)
- Eric Kervio
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Birgit Claasen
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ulrich E Steiner
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Clemens Richert
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
21
|
Abstract
The complexity of even the simplest known life forms makes efforts to synthesize living cells from inanimate components seem like a daunting task. However, recent progress toward the creation of synthetic cells, ranging from simple protocells to artificial cells approaching the complexity of bacteria, suggests that the synthesis of life is now a realistic goal. Protocell research, fueled by advances in the biophysics of primitive membranes and the chemistry of nucleic acid replication, is providing new insights into the origin of cellular life. Parallel efforts to construct more complex artificial cells, incorporating translational machinery and protein enzymes, are providing information about the requirements for protein-based life. We discuss recent advances and remaining challenges in the synthesis of artificial cells, the possibility of creating new forms of life distinct from existing biology, and the promise of this research for gaining a deeper understanding of the nature of living systems.
Collapse
Affiliation(s)
- J Craig Blain
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114; ,
| | | |
Collapse
|
22
|
Blain JC, Ricardo A, Szostak JW. Synthesis and nonenzymatic template-directed polymerization of 2'-amino-2'-deoxythreose nucleotides. J Am Chem Soc 2014; 136:2033-9. [PMID: 24409991 PMCID: PMC4105081 DOI: 10.1021/ja411950n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Threose nucleic acid (TNA) is a potential
alternative genetic material
that may have played a role in the early evolution of life. We have
developed a novel synthesis of 2′-amino modified TNA nucleosides
(2′-NH2-TNA) based on a cycloaddition reaction between
a glycal and an azodicarboxylate, followed by direct nucleosidation
of the cycloadduct. Using this route, we synthesized the thymine and
guanine 2′-NH2-TNA nucleosides in seven steps with
24% and 12% overall yield, respectively. We then phosphorylated the
guanine nucleoside on the 3′-hydroxyl, activated the phosphate
as the 2-methylimidazolide, and tested the ability of the activated
nucleotide to copy C4 RNA, DNA, and TNA templates by nonenzymatic
primer extension. We measured pseudo-first-order rate constants for
the first nucleotide addition step of 1.5, 0.97, and 0.57 h–1 on RNA, DNA, and TNA templates, respectively, at pH 7.5 and 4 °C
with 150 mM NaCl, 100 mM N-(hydroxylethyl)imidazole
catalyst, and 5 mM activated nucleotide. The activated nucleotide
hydrolyzed with a rate constant of 0.39 h–1, causing
the polymerization reaction to stall before complete template copying
could be achieved. These extension rates are more than 1 order of
magnitude slower than those for amino-sugar ribonucleotides under
the same conditions, and copying of the TNA template, which best represented
a true self-copying reaction, was the slowest of all. The poor kinetics
of 2′-NH2-TNA template copying could give insight
into why TNA was ultimately not used as a genetic material by biological
systems.
Collapse
Affiliation(s)
- J Craig Blain
- Howard Hughes Medical Institute and Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | | | | |
Collapse
|