1
|
Koshizuka M, Takahashi N, Shimada N. Organoboron catalysis for direct amide/peptide bond formation. Chem Commun (Camb) 2024; 60:11202-11222. [PMID: 39196535 DOI: 10.1039/d4cc02994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Amides and peptides are ubiquitous functional groups found in several natural and artificial materials, and they are essential for the advancement of life and material sciences. In particular, their relevance in clinical medicine and drug discovery has increased in recent years. Dehydrative condensation of readily available carboxylic acids with amines is the most "direct" method for amide synthesis; however, this methodology generally requires a stoichiometric amount of condensation agent (coupling reagent). Catalytic direct dehydrative amidation has become an "ideal" methodology for synthesizing amides from the perspective of green chemistry, with water as the only byproduct in principle, high atom efficiency, environmentally friendly, energy saving, and safety. Conversely, organoboron compounds, such as boronic acids, which are widely used in various industries as coupling reagents for Suzuki-Miyaura cross-coupling reactions or pharmaceutical structures, are environmentally friendly molecules that have low toxicity and are easy to handle. Based on the chemical properties of organoboron compounds, they have potential Lewis acidity and the ability to form reversible covalent bonds with dehydration, making them attractive as catalysts. This review explores studies on the development of direct dehydrative amide/peptide bond formation reactions from carboxylic acids using organoboron catalysis, classifying them based on chemical bonding and catalysis over approximately 25 years, from the early developmental days to 2023.
Collapse
Affiliation(s)
- Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan
| | - Naoya Takahashi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| |
Collapse
|
2
|
Wang J, Huang Z, Xu H, Nian Y, Wu B, He B, Schenk G. Discovery and Mechanistic Understanding of a Lipase from Rhizorhabdus dicambivorans for Efficient Ester Aminolysis in Aromatic Amines. CHEMSUSCHEM 2024; 17:e202301735. [PMID: 38183360 DOI: 10.1002/cssc.202301735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The formation of amide bonds via aminolysis of esters by lipases generates a diverse range of amide frameworks in biosynthetic chemistry. Few lipases have satisfactory activity towards bulky aromatic amines despite numerous attempts to improve the efficiency of this transformation. Here, we report the discovery of a new intracellular lipase (Ndbn) with a broad substrate scope. Ndbn turns over a range of esters and aromatic amines in the presence of water (2 %; v/v), producing a high yield of multiple valuable amides. Remarkably, a higher conversion rate was observed for the synthesis of amides from substrates with aromatic amine rather than aliphatic amines. Molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) studies showcase the mechanism for the preference for aromatic amines, including a more suitable orientation, shorter catalytic distances in the active site pocket and a lower reaction barrier for aromatic than for aliphatic amines. This unique lipase is thus a promising biocatalyst for the efficient synthesis of aromatic amides.
Collapse
Affiliation(s)
- Jialing Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816, Jiangsu, China
| | - Zhuangzhuang Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816, Jiangsu, China
| | - Haodong Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin road, Nanjing, 210023, Jiangsu, China
| | - Yong Nian
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin road, Nanjing, 210023, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816, Jiangsu, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816, Jiangsu, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
4
|
Abbasi F, Sardarian AR. Direct additive-free N-formylation and N-acylation of anilines and synthesis of urea derivatives using green, efficient, and reusable deep eutectic solvent ([ChCl][ZnCl 2] 2). Sci Rep 2024; 14:7206. [PMID: 38532063 DOI: 10.1038/s41598-024-57608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
In the current report, we introduce a simple, mild efficient and green protocol for N-formylation and N-acetylation of anilines using formamide, formic acid, and acetic acid as inexpensive, nontoxic, and easily available starting materials just with heating along stirring in [ChCl][ZnCl2]2 as a durable, reusable deep eutectic solvent (DES), which acts as a dual catalyst and solvent system to produce a wide range of formanilides and acetanilides. Also, a variety of unsymmetrical urea derivatives were synthesized by the reaction of phenyl isocyanate with a range of amine compounds using this benign DES in high to excellent yields. [ChCl][ZnCl2]2 showed good recycling and reusability up to four runs without considerable loss of its catalytic activity.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Chemistry Department, College of Sciences, Shiraz University, Shiraz, 71946-84795, Iran
| | - Ali Reza Sardarian
- Chemistry Department, College of Sciences, Shiraz University, Shiraz, 71946-84795, Iran.
| |
Collapse
|
5
|
Bormann N, Ward JS, Bergmann AK, Wenz P, Rissanen K, Gong Y, Hatz WB, Burbaum A, Mulks FF. Diiminium Nucleophile Adducts Are Stable and Convenient Strong Lewis Acids. Chemistry 2023; 29:e202302089. [PMID: 37427889 DOI: 10.1002/chem.202302089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Strong Lewis acids are essential tools for manifold chemical procedures, but their scalable deployment is limited by their costs and safety concerns. We report a scalable, convenient, and inexpensive synthesis of stable diiminium-based reagents with a Lewis acidic carbon centre. Coordination with pyridine donors stabilises these centres; the 2,2'-bipyridine adduct shows a chelation effect at carbon. Due to high fluoride, hydride, and oxide affinities, the diiminium pyridine adducts are promising soft and hard Lewis acids. They effectively produce acylpyridinium salts from carboxylates that can acylate amines to give amides and imides even from electronically intractable coupling partners.
Collapse
Affiliation(s)
- Niklas Bormann
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Ann Kathrin Bergmann
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Paula Wenz
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Yiwei Gong
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Wolf-Benedikt Hatz
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Alexander Burbaum
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Florian F Mulks
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
6
|
Chen YM, Wong CC, Weng PW, Chiang CW, Lin PY, Lee PW, Jheng PR, Hao PC, Chen YT, Cho EC, Chuang EY. Bioinspired and self-restorable alginate-tyramine hydrogels with plasma reinforcement for arthritis treatment. Int J Biol Macromol 2023; 250:126105. [PMID: 37549762 DOI: 10.1016/j.ijbiomac.2023.126105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Long-standing administration of disease-modifying antirheumatic drugs confirms their clinical value for managing rheumatoid arthritis (RA). Nevertheless, there are emergent worries over unwanted adverse risks of systemic drug administration. Hence, a novel strategy that can be used in a drug-free manner while diminishing side effects is immediately needed, but challenges persist in the therapy for RA. To this end, herein we conjugated tyramine (TYR) with alginate (ALG) to form ALG-TYR and then treated it for 5 min with oxygen plasma (ALG-TYR + P/5 min). It was shown that the ALG-TYR + P/5 min hydrogel exhibited favorable viscoelastic, morphological, mechanical, biocompatible, and cellular heat-shock protein amplification behaviors. A thorough physical and structural analysis was conducted on the ALG-TYR + P/5 min hydrogel, revealing favorable physical characteristics and uniform porous structural features within the hydrogel. Moreover, ALG-TYR + P/5 min not only effectively inhibited inflammation of RA but also potentially regulated lesion immunity. Once ALG-TYR + P/5 min was intra-articularly administered to joints of rats with zymosan-induced arthritis, we observed that ALG-TYR + P/5 min could ameliorate syndromes of RA joint. This bioinspired and self-restorable ALG-TYR + P/5 min hydrogel can thus serve as a promising system to provide prospective outcomes to potentiate RA therapy.
Collapse
Affiliation(s)
- Yu-Ming Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Biomedical Devices, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Biomedical Devices, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Wei Chiang
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Yen Lin
- BioGend Therapeutics Co., New Taipei City 23561, Taiwan
| | - Po-Wei Lee
- BioGend Therapeutics Co., New Taipei City 23561, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Ping-Chien Hao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Chen Cho
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
7
|
Lo R, Pykal M, Schneemann A, Zbořil R, Fischer RA, Jayaramulu K, Otyepka M. Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15454-15460. [PMID: 37588814 PMCID: PMC10426341 DOI: 10.1021/acs.jpcc.3c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Indexed: 08/18/2023]
Abstract
Covalent hybrids of graphene and metal-organic frameworks (MOFs) hold immense potential in various technologies, particularly catalysis and energy applications, due to the advantageous combination of conductivity and porosity. The formation of an amide bond between carboxylate-functionalized graphene acid (GA) and amine-functionalized UiO-66-NH2 MOF (Zr6O4(OH)4(NH2-bdc)6, with NH2-bdc2- = 2-amino-1,4-benzenedicarboxylate and UiO = Universitetet i Oslo) is a highly efficient strategy for creating such covalent hybrids. Previous experimental studies have demonstrated exceptional properties of these conductive networks, including significant surface area and functionalized hierarchical pores, showing promise as a chemiresistive CO2 sensor and electrode materials for asymmetric supercapacitors. However, the molecular-level origin of the covalent linkages between pristine MOF and GA layers remains unclear. In this study, density functional theory (DFT) calculations were conducted to elucidate the mechanism of amide bond formation between GA and UiO-66-NH2. The theoretical calculations emphasize the crucial role of zirconium within UiO-66, which acts as a catalyst in the reaction cycle. Both commonly observed hexa-coordinated and less common hepta-coordinated zirconium complexes are considered as intermediates. By gaining detailed insights into the binding interactions between graphene derivatives and MOFs, strategies for tailored syntheses of such nanocomposite materials can be developed.
Collapse
Affiliation(s)
- Rabindranath Lo
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, v.v.i., Flemingovo nám. 2, 160
00 Prague 6, Czech
Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
| | - Martin Pykal
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
- Nanotechnology
Centre, CEET, VSB, Technical University
of Ostrava, 17. listopadu
2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Roland A. Fischer
- Chair
of Inorganic and Metal−Organic Chemistry, Department of Chemistry
and Catalysis Research Centre, Technical
University of Munich, 85748 Garching, Germany
| | - Kolleboyina Jayaramulu
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
- Hybrid
Porous Materials Lab, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir 181221, India
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| |
Collapse
|
8
|
Fridianto KT, Wen YP, Lo LC, Lam Y. Development of fluorous boronic acid catalysts integrated with sulfur for enhanced amidation efficiency. RSC Adv 2023; 13:17420-17426. [PMID: 37304775 PMCID: PMC10251487 DOI: 10.1039/d3ra03300g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023] Open
Abstract
A thermally stable, fluorous sulfur-containing boronic acid catalyst has been developed and was shown to efficiently promote dehydrative condensation between carboxylic acids and amines under environmentally friendly conditions. The methodology can be applied to aliphatic, aromatic and heteroaromatic acids as well as primary and secondary amines. N-Boc protected amino acids were also successfully coupled in good yields with very little racemization. The catalyst could be reused four times with no significant loss of activity.
Collapse
Affiliation(s)
- Kevin Timothy Fridianto
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543
| | - Ya-Ping Wen
- Department of Chemistry, National Taiwan University No. 1, Sec. 4 Roosevelt Road Taipei 106 Taiwan
| | - Lee-Chiang Lo
- Department of Chemistry, National Taiwan University No. 1, Sec. 4 Roosevelt Road Taipei 106 Taiwan
| | - Yulin Lam
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543
| |
Collapse
|
9
|
Mao F, Jin C, Wang J, Yang H, Yan X, Li X, Xu X. A one-step base-free synthesis of N-arylamides via modified pivaloyl mixed anhydride mediated amide coupling. Org Biomol Chem 2023; 21:3825-3828. [PMID: 37083033 DOI: 10.1039/d3ob00452j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Pivalic anhydride is shown to be an effective reagent for direct amidation of carboxylic acids with N-alkyl anilines. The only by-product of this reaction is nontoxic pivalic acid, which can be easily removed by aqueous workup. The reactions are conducted under mild conditions and found to be compatible with a range of carboxylic acids, including aromatic, heterocyclic, acrylic, and aliphatic carboxylic acids and amino acids generating the desired amides in short reaction times.
Collapse
Affiliation(s)
- Fenghua Mao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Can Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jie Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hui Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinhuan Yan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiaoqing Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
10
|
Savitha KS, Senthil Kumar M, Jagadish RL. Systematic approach in enhancing the selectivity of titanium tetrabutoxide towards high molecular weight poly(butylene succinate) synthesis. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- K. S. Savitha
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| | - M. Senthil Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - R. L. Jagadish
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| |
Collapse
|
11
|
Li Q, Zhang W, Zhu C, Pan H, Shi KY, Zhang Y, Han MY, Tan CH. Organobase-Catalyzed Umpolung of Amides: The Generation and Transfer of Carbamoyl Anion. J Org Chem 2023; 88:1245-1255. [PMID: 36628963 DOI: 10.1021/acs.joc.2c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel organobase-catalyzed umpolung reaction of amides was disclosed. This method provides an efficient method to generate and transfer carbamoyl anions. In this transformation, some of the inherent disadvantages of carbamoyl metal were avoided. The mechanistic analysis revealed that the reaction proceeds through polarity inversion of amide, and various carbamoyl anions were applied in the reaction. Moreover, a wide range of substrates was achieved with moderate to excellent yield.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Hong Pan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Kang-Yue Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371
| |
Collapse
|
12
|
Zhou J, Paladino M, Hall DG. Direct Boronic Acid Promoted Amidation of Carboxylic Acids with Poorly Nucleophilic Amines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingning Zhou
- Department of Chemistry University of Alberta 4-010 Centennial Centre for Interdisciplinary Science T6G 2G2 Edmonton Alberta Canada
| | - Marco Paladino
- Department of Chemistry University of Alberta 4-010 Centennial Centre for Interdisciplinary Science T6G 2G2 Edmonton Alberta Canada
| | - Dennis G. Hall
- Department of Chemistry University of Alberta 4-010 Centennial Centre for Interdisciplinary Science T6G 2G2 Edmonton Alberta Canada
| |
Collapse
|
13
|
Chouhan KK, Chowdhury D, Mukherjee A. Transamidation of aromatic amines with formamides using cyclic dihydrogen tetrametaphosphate. Org Biomol Chem 2022; 20:7929-7935. [PMID: 36155708 DOI: 10.1039/d2ob00882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide fragments are found to be one of the key constituents in a wide range of natural products and pharmacologically active compounds. Herein, we report a simple and efficient procedure for transamidation with a cyclic dihydrogen tetrametaphosphate. The protocol is simple, does not require any additives, and encompasses a broad substrate scope. To comprehend the mechanism of the present methodology, detailed spectroscopic and kinetic studies were undertaken.
Collapse
Affiliation(s)
- Kishor Kumar Chouhan
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| | - Deep Chowdhury
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| | - Arup Mukherjee
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| |
Collapse
|
14
|
Mukherjee A, Nad P, Gupta K, Sen A. Mechanistic Understanding of KOtBu-Mediated Direct Amidation of Esters with Anilines: An Experimental Study and Computational Approach. Chem Asian J 2022; 17:e202200800. [PMID: 36048008 DOI: 10.1002/asia.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Indexed: 11/12/2022]
Abstract
A sustainable and cost-effective protocol has been reported for the synthesis of amide bonds from unactivated esters and non-nucleophilic amines promoted by potassium tert -butoxide under aerobic conditions. The reaction proceeds under relatively mild conditions, encompassing wide substrate scope. A combined experimental and quantum chemical study has been performed to shed light on the mechanism, which implied that a radical pathway is operating for the present protocol.
Collapse
Affiliation(s)
- Arup Mukherjee
- Indian Institute of Technology Bhilai, Chemistry, GEC Campus, Raipur, 492015, Raipur, INDIA
| | - Pinaki Nad
- IIT Bhilai: Indian Institute of Technology Bhilai, Chemistry, INDIA
| | - Kriti Gupta
- IIT Bhilai: Indian Institute of Technology Bhilai, Chemistry, INDIA
| | - Anik Sen
- GITAM Institute of Science: Gandhi Institute of Technology and Management Institute of Science, Chemistry, INDIA
| |
Collapse
|
15
|
Mart M, Jurczak J, Karakaya I. Efficient catalyst-free direct amidation of non-activated carboxylic acids from carbodiimides. Org Biomol Chem 2022; 20:7900-7906. [PMID: 35979745 DOI: 10.1039/d2ob01322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient catalyst- and activating agent-free amidation method via direct amidation of carboxylic acids where carbodiimides act as a reagent instead of an activating agent is reported. The reaction is conducted under non-traditional coupling conditions where a higher temperature is employed. Besides not using stoichiometric ratios of activating agent or catalyst, this approach is made even more attractive by occurring in the presence of the environmentally friendly and recyclable non-toxic solvent of DMSO. A wide variety of benzylic, aliphatic, α,β-unsaturated and aromatic carboxylic acids provide related amides in up to 95% yield. The excellent yield from a gram-scale reaction shows that this application is particularly convenient for larger-scale synthesis applications.
Collapse
Affiliation(s)
- Mehmet Mart
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka, 44/52, 01-224, Warsaw, Poland.
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka, 44/52, 01-224, Warsaw, Poland.
| | - Idris Karakaya
- Department of Chemistry, College of Basic Sciences, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
16
|
Wang L, Liu M, Jiang M, Wan L, Li W, Cheng D, Chen F. Six‐Step Continuous Flow Synthesis of Diclofenac Sodium via Cascade Etherification/Smiles Rearrangement Strategy: Tackling the Issues of Batch Processing. Chemistry 2022; 28:e202201420. [DOI: 10.1002/chem.202201420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Lulu Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Weijian Li
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| |
Collapse
|
17
|
Rauter M, Nietz D, Kunze G. Cutinase ACut2 from Blastobotrysraffinosifermentans for the Selective Desymmetrization of the Symmetric Diester Diethyl Adipate to the Monoester Monoethyl Adipate. Microorganisms 2022; 10:1316. [PMID: 35889035 PMCID: PMC9325033 DOI: 10.3390/microorganisms10071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Monoethyl adipate (MEA) is a highly valuable monoester for activating resistance mechanisms and improving protective effects in pathogen-attacked plants. The cutinase ACut2 from the non-conventional yeast Blastobotrys (Arxula) raffinosifermentans (adeninivorans) was used for its synthesis by the desymmetrization of dicarboxylic acid diester diethyl adipate (DEA). Up to 78% MEA with 19% diacid adipic acid (AA) as by-product could be synthesized by the unpurified ACut2 culture supernatant from the B. raffinosifermentans overexpression strain. By adjusting pH and enzyme concentration, the selectivity of the free ACut2 culture supernatant was increased, yielding 95% MEA with 5% AA. Selectivity of the carrier immobilized ACut2 culture supernatant was also improved by pH adjustment during immobilization, as well as carrier enzyme loading, ultimately yielding 93% MEA with an even lower AA concentration of 3-4%. Thus, optimizations enabled the selective hydrolysis of DEA into MEA with only a minor AA impurity. In the up-scaling, a maximum of 98% chemical and 87.8% isolated MEA yield were obtained by the adsorbed enzyme preparation with a space time yield of 2.6 g L-1 h-1. The high monoester yields establish the ACut2-catalyzed biosynthesis as an alternative to existing methods.
Collapse
Affiliation(s)
- Marion Rauter
- Orgentis Chemicals GmbH, Bahnhofstr. 3–5, Gatersleben, D-06466 Stadt Seeland, Germany;
| | - Daniela Nietz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, D-06466 Stadt Seeland, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
18
|
Govindaraj D, Gopal B. Investigation of the catalytic activity of metallic copper and copper dispersed SiO2 for the reductive acetylation of aromatic nitro compounds. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Alfano AI, Lange H, Brindisi M. Amide Bonds Meet Flow Chemistry: A Journey into Methodologies and Sustainable Evolution. CHEMSUSCHEM 2022; 15:e202102708. [PMID: 35015338 PMCID: PMC9304223 DOI: 10.1002/cssc.202102708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Indexed: 06/03/2023]
Abstract
Formation of amide bonds is of immanent importance in organic and synthetic medicinal chemistry. Its presence in "traditional" small-molecule active pharmaceutical ingredients, in linear or cyclic oligo- and polypeptidic actives, including pseudopeptides, has led to the development of dedicated synthetic approaches for the formation of amide bonds starting from, if necessary, suitably protected amino acids. While the use of solid supported reagents is common in traditional peptide synthesis, similar approaches targeting amide bond formation in continuous-flow mode took off more significantly, after a first publication in 2006, only a couple of years ago. Most efforts rely upon the transition of traditional approaches in flow mode, or the combination of solid-phase peptide synthesis principles with flow chemistry, and advantages are mainly seen in improving space-time yields. This Review summarizes and compares the various approaches in terms of basic amide formation, peptide synthesis, and pseudopeptide generation, describing the technological approaches and the advantages that were generated by the specific flow approaches. A final discussion highlights potential future needs and perspectives in terms of greener and more sustainable syntheses.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| | - Heiko Lange
- University of Milano-Bicocca Department of Earth and Environmental SciencesPiazza della Scienza 120126MilanItaly
| | - Margherita Brindisi
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| |
Collapse
|
20
|
Al-Otaibi JS, Mary YS, Mary YS, Thirunavukkarasu M, Trivedi R, Chakraborty B. Conformational, Reactivity Analysis, Wavefunction-Based Properties, Molecular Docking and Simulations of a Benzamide Derivative with Potential Antitumor Activity-DFT and MD Simulations. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2039229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - M. Thirunavukkarasu
- Department of Physics, Indo-American College, Cheyyar, Tamil Nadu, India
- Department of Physics, Thiru A. Govindasamy Govt. Arts College, Tindivanam, Tamil Nadu, India
| | - Ravi Trivedi
- Department of Physics, Indian Institute of Technology, Mumbai, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
21
|
Braddock DC, Davies JJ, Lickiss PD. Methyltrimethoxysilane (MTM) as a Reagent for Direct Amidation of Carboxylic Acids. Org Lett 2022; 24:1175-1179. [PMID: 35084870 PMCID: PMC9007566 DOI: 10.1021/acs.orglett.1c04265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Methyltrimethoxysilane [MTM, CH3Si(OMe)3]
has been demonstrated to be an effective, inexpensive, and safe reagent
for the direct amidation of carboxylic acids with amines. Two simple
workup procedures that provide the pure amide product without the
need for further purification have been developed. The first employs
an aqueous base-mediated annihilation of MTM. The second involves
simple product crystallization from the reaction mixture providing
a low process mass intensity
direct amidation protocol.
Collapse
Affiliation(s)
- D Christopher Braddock
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Joshua J Davies
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Paul D Lickiss
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
22
|
Lian P, Li R, Wan X, Xiang Z, Liu H, Cao Z, Wan X. Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Org Chem Front 2022. [DOI: 10.1039/d1qo01613j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An unprecedented strategy for the acetylation of alcohols and amines using diacetyl as both an acylation reagent and a photosensitizer was well developed.
Collapse
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiao Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zixin Xiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Yan Z, Liu F, Wang X, Qiang Q, Li Y, Zhang Y, Rong Z. Redox-Neutral Dehydrogenative Cross-Coupling of Alcohols and Amines Enabled by Nickel Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00004k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is a facile and straightforward synthetic method for the construction of amides via Ni/NHC-catalyzed amidation of alcohols with amines. The strategy exhibits various advantages over existing methods, including...
Collapse
|
24
|
Yingxian L, Wei C, Linchun Z, Ji-Quan Z, Yonglong Z, Chun L, Bing G, Lei T, Yuan-Yong Y. Catalytic N-methyl amidation of carboxylic acids under cooperative conditions. RSC Adv 2022; 12:20550-20554. [PMID: 35919177 PMCID: PMC9284536 DOI: 10.1039/d2ra03255d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
The generation of N-methyl amides using simple acids with high atom economy is rare owning to the volatile nature of methyl amine. Herein, an atom economic protocol was disclosed to prepare this valuable motif under DABCO/Fe3O4 cooperative catalysis.
Collapse
Affiliation(s)
- Li Yingxian
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Chen Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Zhao Linchun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Zhang Ji-Quan
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Zhao Yonglong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Li Chun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Guo Bing
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550004 Guiyang, P. R. China
| | - Tang Lei
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yang Yuan-Yong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|
25
|
Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem Rev 2021; 122:3637-3710. [PMID: 34910451 DOI: 10.1021/acs.chemrev.1c00631] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.,Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
26
|
Jiang J, Li L, Zhang L, Chen Q, Sun H, Liao S, Li C, Zhang L. Organophosphoric Acid Promoted Transamidation: Using
N
,
N
‐Dimethylformamide and
N
,
N
‐Dimethylacetamide as the Acyl Sources. ChemistrySelect 2021. [DOI: 10.1002/slct.202103932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Linlin Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Ling Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Qian Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Hao Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Shanggao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Chun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Lin Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| |
Collapse
|
27
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Park Place, Main Building Cardiff CF10 3AT UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Ian Priestley
- Syngenta Ltd. Huddersfield Manufacturing Centre Huddersfield HD2 1FF UK
| | - Edouard Godineau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | | | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| |
Collapse
|
28
|
Synthesis, characterization, in vitro biological and molecular docking evaluation of N,N'-(ethane-1,2-diyl)bis(benzamides). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02199-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling*. Angew Chem Int Ed Engl 2021; 60:21868-21874. [PMID: 34357668 DOI: 10.1002/anie.202106412] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.
Collapse
Affiliation(s)
- William I Nicholson
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Ian Priestley
- Syngenta Ltd., Huddersfield Manufacturing Centre, Huddersfield, HD2 1FF, UK
| | - Edouard Godineau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | | | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| |
Collapse
|
30
|
Kumar A, Sharma P, Sharma N, Kumar Y, Mahajan D. Catalyst free N-formylation of aromatic and aliphatic amines exploiting reductive formylation of CO 2 using NaBH 4. RSC Adv 2021; 11:25777-25787. [PMID: 35478907 PMCID: PMC9037105 DOI: 10.1039/d1ra04848a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we report a sustainable approach for N-formylation of aromatic as well as aliphatic amines using sodium borohydride and carbon dioxide gas. The developed approach is catalyst free, and does not need pressure or a specialized reaction assembly. The reductive formylation of CO2 with sodium borohydride generates formoxy borohydride species in situ, as confirmed by 1H and 11B NMR spectroscopy. The in situ formation of formoxy borohydride species is prominent in formamide based solvents and is critical for the success of the N-formylation reactions. The formoxy borohydride is also found to promote transamidation reactions as a competitive pathway along with reductive functionalization of CO2 with amine leading to N-formylation of amines.
Collapse
Affiliation(s)
- Arun Kumar
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Pankaj Sharma
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Nidhi Sharma
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Yashwant Kumar
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Dinesh Mahajan
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| |
Collapse
|
31
|
Mali AS, Indalkar K, Chaturbhuj GU. Solvent-free, Efficient Transamidation of Carboxamides with Amines Catalyzed by Recyclable Sulfated Polyborate Catalyst. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1908047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anil S. Mali
- Institute of Chemical Technology, Matunga, Mumbai, India
| | | | | |
Collapse
|
32
|
Fuse S, Komuro K, Otake Y, Masui H, Nakamura H. Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor. Chemistry 2021; 27:7525-7532. [PMID: 33496974 DOI: 10.1002/chem.202100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/23/2022]
Abstract
Lactams are cyclic amides that are indispensable as drugs and as drug candidates. Conventional lactamization includes acid-mediated and coupling-agent-mediated approaches that suffer from narrow substrate scope, much waste, and/or high cost. Inexpensive, less-wasteful approaches mediated by highly electrophilic reagents are attractive, but there is an imminent risk of side reactions. Herein, a methods using highly electrophilic triphosgene in a microflow reactor that accomplishes rapid (0.5-10 s), mild, inexpensive, and less-wasteful lactamization are described. Methods A and B, which use N-methylmorpholine and N-methylimidazole, respectively, were developed. Various lactams and a cyclic peptide containing acid- and/or heat-labile functional groups were synthesized in good to high yields without the need for tedious purification. Undesired reactions were successfully suppressed, and the risk of handling triphosgene was minimized by the use of microflow technology.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Keiji Komuro
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
33
|
Yılmaz Ö, Çevik PK, Yılmaz MK. Synthesis of New Substituted Diamides. Investigation of Their Antioxidant and Antibacterial Properties. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Traceless selenocarboxylates for the one-pot synthesis of amides and derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Yadav S, Reshi NUD, Pal S, Bera JK. Aerobic oxidation of primary amines to amides catalyzed by an annulated mesoionic carbene (MIC) stabilized Ru complex. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01541a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A Ru complex, stabilized by an annulated mesoionic carbene ligand, catalyzes the aerobic oxidation of a host of primary amines to amides in high yields and excellent selectivity. Kinetics, Hammett and DFT studies provide mechanistic insight.
Collapse
Affiliation(s)
- Suman Yadav
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Noor U Din Reshi
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saikat Pal
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
36
|
Singh J, Sharma S, Sharma A. Photocatalytic Carbonylation Strategies: A Recent Trend in Organic Synthesis. J Org Chem 2020; 86:24-48. [DOI: 10.1021/acs.joc.0c02205] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shivani Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
37
|
Nano-sized clinoptilolite as a green catalyst for the rapid and chemoselective N-formylation of amines. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01886-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Vijayapritha S, Viswanathamurthi P. New half-sandwich (η6-p-cymene)ruthenium(II) complexes with benzothiazole hydrazone Schiff base ligand: Synthesis, structural characterization and catalysis in transamidation of carboxamide with primary amines. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
A KHSO4 promoted tandem synthesis of 1,3,4-thiadiazoles from thiohydrazides and DMF derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Kamanna K, Khatavi S, Hiremath P. Microwave-assisted One-pot Synthesis of Amide Bond using WEB. CURRENT MICROWAVE CHEMISTRY 2020. [DOI: 10.2174/2213335606666190828114344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Amide bond plays a key role in medicinal chemistry, and the analysis of bioactive
molecular database revealed that the carboxamide group appears in more than 25% of the existing
database drugs. Typically amide bonds are formed from the union of carboxylic acid and
amine; however, the product formation does not occur spontaneously. Several synthetic methods
have been reported for amide bond formation in literature. Present work demonstrated simple and
eco-friendly amide bond formation using carboxylic acid and primary amines through in situ generation
of O-acylurea. The reaction was found to be more efficient, faster reaction rate; simple work-up
gave pure compound isolation in moderate to excellent yield using microwave irradiation as compared
to conventional heating.
Methods:
Developed one-pot synthesis of amide compounds using agro-waste derived greener catalyst
under microwave irradiation.
Results:
Twenty amide bond containing organic compounds are synthesized from carboxylic acid
with primary amine catalyzed by agro-waste derived medium under microwave irradiation. First, the
reaction involved carboxylic acid activation using EDC.HCl, which is the required base for the neutralization
and coupling. The method employed natural agro-waste derived from banana peel ash
(WEB) for the coupling gave target amide product without the use of an external organic or inorganic
base.
Conclusion:
In the present work, we demonstrated that agro-waste extract is an alternative greener
catalytic medium for the condensation of organic carboxylic acid and primary amine under microwave
irradiation. The method found several advantages compared to reported methods like solventfree,
non-toxic, cheaper catalyst, and simple reaction condition. The final isolated product achieved
chromatographically pure by simple recrystallization and did not require further purification.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - S.Y. Khatavi
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - P.B. Hiremath
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| |
Collapse
|
41
|
Omprakash Rathi J, Subray Shankarling G. Recent Advances in the Protection of Amine Functionality: A Review. ChemistrySelect 2020. [DOI: 10.1002/slct.202000764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jyoti Omprakash Rathi
- Department of Dyestuff TechnologyInstitute of Chemical Technology N. P. Marg, Matunga (E) Mumbai 400 019 India
| | - Ganapati Subray Shankarling
- Department of Dyestuff TechnologyInstitute of Chemical Technology N. P. Marg, Matunga (E) Mumbai 400 019 India
- Department of Dyestuff TechnologyInstitute of Chemical Technology N. P. Marg, Matunga (E) Mumbai 400 019 India
| |
Collapse
|
42
|
Sharma S, Buchbinder NW, Braje WM, Handa S. Fast Amide Couplings in Water: Extraction, Column Chromatography, and Crystallization Not Required. Org Lett 2020; 22:5737-5740. [PMID: 32574062 DOI: 10.1021/acs.orglett.0c01676] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the micelle of PS-750-M, the presence of 3° amides from the surfactant proline linker mimics dimethylformamide, dimethylacetamide, and N-methyl-2-pyrrolidone. The resultant micellar properties enable extremely fast amide couplings mediated by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (without hydroxybenzotriazole), rather than expensive and specialized coupling agents. Conditions have been developed wherein products precipitate, and isolation by filtration completely avoids the use of organic solvent. This methodology is scalable and avoids product epimerization.
Collapse
Affiliation(s)
- Sudripet Sharma
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Nicklas W Buchbinder
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Wilfried M Braje
- Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Sachin Handa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
43
|
Chhatwal AR, Lomax HV, Blacker AJ, Williams JMJ, Marcé P. Direct synthesis of amides from nonactivated carboxylic acids using urea as nitrogen source and Mg(NO 3) 2 or imidazole as catalysts. Chem Sci 2020; 11:5808-5818. [PMID: 32832055 PMCID: PMC7416778 DOI: 10.1039/d0sc01317j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022] Open
Abstract
A new method for the direct synthesis of primary and secondary amides from carboxylic acids is described using Mg(NO3)2·6H2O or imidazole as a low-cost and readily available catalyst, and urea as a stable, and easy to manipulate nitrogen source. This methodology is particularly useful for the direct synthesis of primary and methyl amides avoiding the use of ammonia and methylamine gas which can be tedious to manipulate. Furthermore, the transformation does not require the employment of coupling or activating agents which are commonly required.
Collapse
Affiliation(s)
- A Rosie Chhatwal
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK .
| | - Helen V Lomax
- Centre for Sustainable Chemical Technologies , University of Bath , Claverton Down , Bath , BA2 7AY , UK
| | - A John Blacker
- Institute of Process Research & Development , School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Jonathan M J Williams
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK .
| | - Patricia Marcé
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK .
| |
Collapse
|
44
|
Xu Y, Xu X, Wu B, Gan C, Lin X, Wang J, Ke F. Transition‐Metal‐Free, Visible‐Light‐Mediated
N
‐acylation: An Efficient Route to Amides in Water. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yiwen Xu
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Xiuzhi Xu
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Bin Wu
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Chenling Gan
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Xiaoyan Lin
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Jin Wang
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Fang Ke
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| |
Collapse
|
45
|
Fekri LZ, Feshalami MF. Green, Practical and Scalable Multicomponent Reaction for the Synthesis of Amides and Pyridazinones from Arenes Using L-Proline Functionalized Silicapropyl Modified Nanomagnetic as a Heterogeneous Bronsted Acid Catalyst. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1749091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Marjan Farjood Feshalami
- Department of Pharmaceutical Chemistry, Ghadr Institute of Higher Education, Koochesfahan, Guilan, Iran
| |
Collapse
|
46
|
Shah SS, Shee M, Venkatesh Y, Singh AK, Samanta S, Singh NDP. Organophotoredox‐Mediated Amide Synthesis by Coupling Alcohol and Amine through Aerobic Oxidation of Alcohol. Chemistry 2020; 26:3703-3708. [PMID: 31923326 DOI: 10.1002/chem.201904924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Sk. Sheriff Shah
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Maniklal Shee
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Yarra Venkatesh
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Amit Kumar Singh
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Samya Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - N. D. Pradeep Singh
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| |
Collapse
|
47
|
Two new benzamides: Synthesis, spectroscopic characterization, X-ray diffraction, and electronic structure analyses. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Zinc Oxide Nanoparticles Catalysed One-Pot Three-Component Reaction: A Facile Synthesis of 4-Aryl-NH-1,2,3-Triazoles. Catal Letters 2020. [DOI: 10.1007/s10562-020-03143-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
49
|
Barragan E, Noonikara‐Poyil A, Bugarin A. π‐Conjugated Triazenes and Nitriles: Simple Photoinduced Synthesis of Anilides Using Mild and Metal‐Free Conditions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Enrique Barragan
- Department of Chemistry and BiochemistryUniversity of Texas at Arlington Arlington TX 76019 USA
| | - Anurag Noonikara‐Poyil
- Department of Chemistry and BiochemistryUniversity of Texas at Arlington Arlington TX 76019 USA
| | - Alejandro Bugarin
- Department of Chemistry and PhysicsFlorida Gulf Coast University Fort Myers FL 33965 USA
| |
Collapse
|
50
|
Basu P, Dey TK, Ghosh A, Biswas S, Khan A, Islam SM. An efficient one-pot synthesis of industrially valuable primary organic carbamates and N-substituted ureas by a reusable Merrifield anchored iron( ii)-anthra catalyst [FeII(Anthra-Merf)] using urea as a sustainable carbonylation source. NEW J CHEM 2020. [DOI: 10.1039/c9nj05675k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Merrifield anchored iron(ii)-anthra catalyst [FeII(Anthra-Merf)] has been synthesized for the production of primary carbamates and N-substituted ureas using a carbonylation source.
Collapse
Affiliation(s)
- Priyanka Basu
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Tusar Kanto Dey
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Aniruddha Ghosh
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Surajit Biswas
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology
- King Saud University
- Riyadh
- Saudi Arabia
| | | |
Collapse
|