1
|
Kato T, Riahin C, Furusawa A, Fukushima H, Wakiyama H, Okuyama S, Takao S, Choyke PL, Ptaszek M, Rosenzweig Z, Kobayashi H. Simultaneous multicolor imaging of lymph node chains using hydroporphyrin-doped near-infrared-emitting polymer dots. Nanomedicine (Lond) 2023; 18:659-666. [PMID: 37254845 PMCID: PMC10283015 DOI: 10.2217/nnm-2023-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023] Open
Abstract
Aim: Evaluation of lymphatic drainage can be challenging to differentiate between separate drainage basins because only one 'color' is typically employed in sentinel node studies. This study aimed to test the feasibility of multicolor in vivo lymphangiography using newly developed organic polymer dots. Materials & methods: Biocompatible, purely organic, hydroporphyrin-doped near-infrared-emitting polymer dots were developed and evaluated for in vivo multicolor imaging in mouse lymph nodes. Results & conclusion: The authors demonstrated successful multicolor in vivo fluorescence lymphangiography using polymer dots, each tuned to a different emission spectrum. This allows minimally invasive visualization of at least four separate lymphatic drainage basins using fluorescent nanoparticles, which have the potential for clinical translation.
Collapse
Affiliation(s)
- Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| | - Connor Riahin
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| | - Marcin Ptaszek
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Zeev Rosenzweig
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| |
Collapse
|
2
|
Taniguchi M, Bocian DF, Holten D, Lindsey JS. Beyond green with synthetic chlorophylls – Connecting structural features with spectral properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Jing H, Wang P, Chen B, Jiang J, Vairaprakash P, Liu S, Rong J, Chen CY, Nalaoh P, Lindsey JS. Synthesis of bacteriochlorins bearing diverse β-substituents. NEW J CHEM 2022. [DOI: 10.1039/d1nj05852e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eleven bacteriochlorins have been prepared for surface attachment, bioconjugation, water-solubilization, vibrational studies, and elaboration into multichromophore arrays.
Collapse
Affiliation(s)
- Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Pengzhi Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Boyang Chen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Pothiappan Vairaprakash
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Sijia Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Jie Rong
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Chih-Yuan Chen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Phattananawee Nalaoh
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| |
Collapse
|
4
|
Wang HP, Chen X, Qi YL, Huang LW, Wang CX, Ding D, Xue X. Aggregation-induced emission (AIE)-guided dynamic assembly for disease imaging and therapy. Adv Drug Deliv Rev 2021; 179:114028. [PMID: 34736987 DOI: 10.1016/j.addr.2021.114028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
The phenomenon of aggregation-induced emission (AIE) is inseparable from molecular aggregation and self-assembly. Therefore, the combination of AIE and supramolecular self-assembly is well-matched. AIE-guided dynamic assembly (AGDA) could effectively respond to the endogenous stimuli (such as pH, enzymes, redox molecules) and exogenous stimuli (temperature, light, ultrasound) in the disease microenvironment, so as to achieve specific imaging and diagnosis of the disease lesions. Moreover, AGDA also dynamically adjust the intramolecular motions of AIE molecules, thereby adjusting the energy dissipation pathways and realizing the switch between photodynamic therapy and photothermal therapy for superior therapeutic effects. In this review, we aim to give an overview of the constructing strategies, stimuli-responsive imaging, regulation of intramolecular motion of AGDA in recent years, which is expected to grasp the research status and striving directions of AGDA for imaging and therapy.
Collapse
Affiliation(s)
- He-Ping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yi-Lin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Li-Wen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Chun-Xiao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| |
Collapse
|
5
|
Qing J, Ramesh S, Xu Q, Liu X, Wang H, Yuan Z, Chen Z, Hou L, Sum TC, Gao F. Spacer Cation Alloying in Ruddlesden-Popper Perovskites for Efficient Red Light-Emitting Diodes with Precisely Tunable Wavelengths. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104381. [PMID: 34632623 PMCID: PMC11468992 DOI: 10.1002/adma.202104381] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) have recently shown significant progress with external quantum efficiencies (EQEs) exceeding 20%. However, PeLEDs with pure-red (620-660 nm) light emission, an essential part for full-color displays, remain a great challenge. Herein, a general approach of spacer cation alloying is employed in Ruddlesden-Popper perovskites (RPPs) for efficient red PeLEDs with precisely tunable wavelengths. By simply tuning the alloying ratio of dual spacer cations, the thickness distribution of quantum wells in the RPP films can be precisely modulated without deteriorating their charge-transport ability and energy funneling processes. Consequently, efficient PeLEDs with tunable emissions between pure red (626 nm) and deep red (671 nm) are achieved with peak EQEs up to 11.5%, representing the highest values among RPP-based pure-red PeLEDs. This work opens a new route for color tuning, which will spur future developments of pure-red or even pure-blue PeLEDs with high performance.
Collapse
Affiliation(s)
- Jian Qing
- Siyuan LaboratoryGuangzhou Key Laboratory of Vacuum Coating Technologies and New Energy MaterialsDepartment of PhysicsJinan UniversityGuangzhouGuangdong510632P. R. China
- Department of Physics, Chemistry, and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| | - Sankaran Ramesh
- Division of Physics and Applied PhysicsSchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
- Energy Research Institute @NTU (ERI@N)Interdisciplinary Graduate ProgrammeNanyang Technological University50 Nanyang Avenue, S2‐B3a‐01Singapore639798Singapore
| | - Qiang Xu
- Division of Physics and Applied PhysicsSchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Xiao‐Ke Liu
- Department of Physics, Chemistry, and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| | - Heyong Wang
- Department of Physics, Chemistry, and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| | - Zhongcheng Yuan
- Department of Physics, Chemistry, and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| | - Zhan Chen
- Siyuan LaboratoryGuangzhou Key Laboratory of Vacuum Coating Technologies and New Energy MaterialsDepartment of PhysicsJinan UniversityGuangzhouGuangdong510632P. R. China
- Department of Physics, Chemistry, and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| | - Lintao Hou
- Siyuan LaboratoryGuangzhou Key Laboratory of Vacuum Coating Technologies and New Energy MaterialsDepartment of PhysicsJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Tze Chien Sum
- Division of Physics and Applied PhysicsSchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Feng Gao
- Department of Physics, Chemistry, and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| |
Collapse
|
6
|
Yu Z, Uthe B, Gelfand R, Pelton M, Ptaszek M. Weakly conjugated bacteriochlorin-bacteriochlorin dyad: Synthesis and photophysical properties. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dyads containing two near-infrared absorbing and emitting bacteriochlorins with distinct spectral properties have been prepared and characterized by absorption, emission, and transient-absorption spectroscopies. The dyads exhibit ultrafast ([Formula: see text]3 ps) energy transfer from the bacteriochlorin with the higher-energy S1 state to the bacteriochlorin emitting at the longer wavelength. The dyads exhibit strong fluorescence and relatively long excited state lifetimes ([Formula: see text]4 ns) in both non-polar and polar solvents, which indicates negligible photoinduced electron transfer between the two bacteriochlorins in the dyads. These dyads are thus attractive for the development of light-harvesting arrays and fluorophores for in vivo bioimaging.
Collapse
Affiliation(s)
- Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Brian Uthe
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Rachel Gelfand
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
7
|
Uthe B, Meares A, Ptaszek M, Pelton M. Solvent-dependent energy and charge transfer dynamics in hydroporphyrin-BODIPY arrays. J Chem Phys 2020; 153:074302. [PMID: 32828083 DOI: 10.1063/5.0012737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Arrays of hydroporphyrins with boron complexes of dipyrromethene (BODIPY) are a promising platform for biomedical imaging or solar energy conversion, but their photophysical properties have been relatively unexplored. In this paper, we use time-resolved fluorescence, femtosecond transient absorption spectroscopy, and density-functional-theory calculations to elucidate solvent-dependent energy and electron-transfer processes in a series of chlorin- and bacteriochlorin-BODIPY arrays. Excitation of the BODIPY moiety results in ultrafast energy transfer to the hydroporphyrin moiety, regardless of the solvent. In toluene, energy is most likely transferred via the through-space Förster mechanism from the S1 state of BODIPY to the S2 state of hydroporphyrin. In DMF, substantially faster energy transfer is observed, which implies a contribution of the through-bond Dexter mechanism. In toluene, excited hydroporphyrin components show bright fluorescence, with quantum yield and fluorescence lifetime comparable to those of the benchmark monomer, whereas in DMF, moderate to significant reduction of both quantum yield and fluorescence lifetime are observed. We attribute this quenching to photoinduced charge transfer from hydroporphyrin to BODIPY. No direct spectral signature of the charge-separated state is observed, which suggests that either (1) the charge-separated state decays very quickly to the ground state or (2) virtual charge-separated states, close in energy to S1 of hydroporphyrin, promote ultrafast internal conversion.
Collapse
Affiliation(s)
- Brian Uthe
- Department of Physics, UMBC (University of Maryland, Baltimore County), 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Adam Meares
- Department of Chemistry and Biochemistry, UMBC (University of Maryland, Baltimore County), 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, UMBC (University of Maryland, Baltimore County), 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Matthew Pelton
- Department of Physics, UMBC (University of Maryland, Baltimore County), 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| |
Collapse
|
8
|
Abstract
Two complementary rational synthetic routes have been developed in order to synthesize hangman chlorins, which differ with regard to the order of the installation (pre- and post-formation of the chlorin macrocycle) and position of the xanthene backbone about the chlorin periphery. The versatility of the synthetic method is demonstrated with the preparation of ten new hangman chlorins bearing a xanthene backbone and a pendant carboxylic acid. Cyclic voltammograms of hangman chlorins exhibit a hangman effect derived from intermolecular proton transfer. This hangman effect is manifested in catalytic hydrogen evolution production.
Collapse
Affiliation(s)
- Mengran Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Dilek K Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
9
|
Bennion MC, Burch MA, Dennis DG, Lech ME, Neuhaus K, Fendler NL, Parris MR, Cuadra JE, Dixon CF, Mukosera GT, Blauch DN, Hartmann L, Snyder NL, Ruppel JV. Synthesis of Porphyrin and Bacteriochlorin Glycoconjugates through CuAAC Reaction Tuning. European J Org Chem 2019; 2019:6496-6503. [PMID: 33041648 PMCID: PMC7546392 DOI: 10.1002/ejoc.201901128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Rapid and reproducible access to a series of unique porphyrin and bacteriochlorin glycoconjugates, including meso-glycosylated porphyrins and bacteriochlorins, and beta-glycosylated porphyrins, via copper catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) is reported for the first time. The work presented highlights the system-dependent reaction conditions required for glycosylation to porphyrins and bacteriochlorins based on the unique electronic properties of each ring system. Attenuated reaction conditions were used to synthesize fifteen new glycosylated porphyrin and bacteriochlorin analogs in 74 - 99% yield, and were extended to solid support to produce the first oligo(amidoamine)-based porphyrin glycoconjugate. These compounds hold significant potential as next generation water soluble catalysts and photodynamic therapy/photodynamic inactivation (PDT/PDI) agents.
Collapse
Affiliation(s)
- Matthew C Bennion
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Morgan A Burch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David G Dennis
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Melissa E Lech
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Kira Neuhaus
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nikole L Fendler
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Matthew R Parris
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Jessica E Cuadra
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Charlie F Dixon
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - George T Mukosera
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David N Blauch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Joshua V Ruppel
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| |
Collapse
|
10
|
Fujita H, Jing H, Krayer M, Allu S, Veeraraghavaiah G, Wu Z, Jiang J, Diers JR, Magdaong NCM, Mandal AK, Roy A, Niedzwiedzki DM, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Annulated bacteriochlorins for near-infrared photophysical studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj01113g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriochlorins with phenaleno or benzo annulation absorb at 913 or 1033 nm and exhibit excited-state lifetimes of 150 or 7 ps, suggesting applications in photoacoustic imaging.
Collapse
Affiliation(s)
- Hikaru Fujita
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Haoyu Jing
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Michael Krayer
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | | - Zhiyuan Wu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Jianbing Jiang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - James R. Diers
- Department of Chemistry
- University of California
- Riverside
- USA
| | | | - Amit K. Mandal
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | - Arpita Roy
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | - Dariusz M. Niedzwiedzki
- Department of Energy
- Environmental & Chemical Engineering and Center for Solar Energy and Energy Storage
- Washington University
- St. Louis
- USA
| | | | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | |
Collapse
|
11
|
Gibbons D, Flanagan KJ, Pounot L, Senge MO. Structure and conformation of photosynthetic pigments and related compounds. 15. Conformational analysis of chlorophyll derivatives – implications for hydroporphyrinsin vivo. Photochem Photobiol Sci 2019; 18:1479-1494. [DOI: 10.1039/c8pp00500a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Controlling the function of chlorophylls depends in part on their 3D conformation. The NSD program presents a powerful tool to identify the distortion modes in phytochlorins.
Collapse
Affiliation(s)
- Dáire Gibbons
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| | - Keith J. Flanagan
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| | - Léa Pounot
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| | - Mathias O. Senge
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| |
Collapse
|
12
|
Ogata F, Nagaya T, Maruoka Y, Akhigbe J, Meares A, Lucero MY, Satraitis A, Fujimura D, Okada R, Inagaki F, Choyke PL, Ptaszek M, Kobayashi H. Activatable Near-Infrared Fluorescence Imaging Using PEGylated Bacteriochlorin-Based Chlorin and BODIPY-Dyads as Probes for Detecting Cancer. Bioconjug Chem 2018; 30:169-183. [PMID: 30475591 DOI: 10.1021/acs.bioconjchem.8b00820] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Near infrared (NIR) fluorescent probes are attractive tools for biomedical in vivo imaging due to the relatively deeper tissue penetration and lower background autofluorescence. Activatable probes are turned on only after binding to their target, further improving target to background ratios. However, the number of available activatable NIR probes is limited. In this study, we introduce two types of activatable NIR fluorophores derived from bacteriochlorin: chlorin-bacteriochlorin energy-transfer dyads and boron-dipyrromethene (BODIPY)-bacteriochlorin energy-transfer dyads. These fluorophores are characterized by multiple narrow excitation bands with relatively strong emission in the NIR. Targeted bacteriochlorin-based antibody or peptide probes have been previously limited by aggregation after conjugation. Polyethylene glycol (PEG) chains were added to improve the hydrophilicity without altering pharmacokinetics of the targeting moieties. These PEGylated bacteriochlorin-based activatable fluorophores have potential as targeted activatable, multicolor NIR fluorescent probes for in vivo applications.
Collapse
Affiliation(s)
- Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Joshua Akhigbe
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Adam Meares
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Melissa Y Lucero
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Daiki Fujimura
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Ryuhei Okada
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Fuyuki Inagaki
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States of America
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States of America
| |
Collapse
|
13
|
Meares A, Satraitis A, Ptaszek M. BODIPY-Bacteriochlorin Energy Transfer Arrays: Toward Near-IR Emitters with Broadly Tunable, Multiple Absorption Bands. J Org Chem 2017; 82:13068-13075. [PMID: 29119786 PMCID: PMC5873296 DOI: 10.1021/acs.joc.7b02031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of energy transfer arrays, comprising a near-IR absorbing and emitting bacteriochlorin, and BODIPY derivatives with different absorption bands in the visible region (503-668 nm) have been synthesized. Absorption band of BODIPY was tuned by installation of 0, 1, or 2 styryl substituents [2-(2,4,6-trimethoxyphenyl)ethenyl], which leads to derivatives with absorption maxima at 503, 587, and 668 nm, respectively. Efficient energy transfer (>0.90) is observed for each dyad, which is manifested by nearly exclusive emission from bacteriochlorin moiety upon BODIPY excitation. Fluorescence quantum yield of each dyad in nonpolar solvent (toluene) is comparable with that observed for corresponding bacteriochlorin monomer, and is significantly reduced in solvent of high dielectric constants (DMF), most likely by photoinduced electron transfer. Given the availability of diverse BODIPY derivatives, with absorption between 500-700 nm, BODIPY-bacteriochlorin arrays should allow for construction of near-IR emitting agents with multiple and broadly tunable absorption bands. Solvent-dielectric constant dependence of Φf in dyads gives an opportunity to construct environmentally sensitive fluorophores and probes.
Collapse
Affiliation(s)
- Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
14
|
Jiao J, Yu M, Holten D, Lindsey JS, Bocian DF. Characterization of Hydroporphyrins Covalently Attached to Si(100). J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attachment of synthetic analogs of natural tetrapyrroles to electroactive surfaces enables physicochemical interrogation and may provide material for use in catalysis, diagnostics, and energy conversion. Six synthetic zinc chlorins and one free base bacteriochlorin, tailored analogs of chlorophyll and bacteriochlorophyll, respectively, have been attached to Si(100) via a high-temperature (400°C) baking method. The hydroporphyrins bear diverse functional groups that enable surface attachment (vinyl, acetyl, triisopropylsilylethynyl, pentafluorophenyl, and hydroxymethylphenyl) and a geminal dimethyl group in each reduced ring for stabilization toward adventitious dehydrogenation. The films were examined by cyclic voltammetry, FTIR spectroscopy, X-ray photoelectron spectroscopy, and ellipsometry. Monofunctionalized and difunctionalized hydroporphyrins gave monolayer and multilayer films, respectively, indicating robustness of the hydroporphyrin molecules, but in each case the film was more heterogeneous than observed with comparable porphyrins. The data suggest that some amount of unattached molecules remain intercalated with surface-attached molecules. Additional molecular designs will need to be examined to develop a deep understanding of the structure-activity relationship for formation of homogeneous monolayers and multilayers of synthetic hydroporphyrins.
Collapse
Affiliation(s)
- Jieying Jiao
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | - Miao Yu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| |
Collapse
|
15
|
Meares A, Satraitis A, Akhigbe J, Santhanam N, Swaminathan S, Ehudin M, Ptaszek M. Amphiphilic BODIPY-Hydroporphyrin Energy Transfer Arrays with Broadly Tunable Absorption and Deep Red/Near-Infrared Emission in Aqueous Micelles. J Org Chem 2017; 82:6054-6070. [PMID: 28516773 PMCID: PMC5873324 DOI: 10.1021/acs.joc.7b00357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BODIPY-hydroporphyrin energy transfer arrays allow for development of a family of fluorophores featuring a common excitation band at 500 nm, tunable excitation band in the deep red/near-infrared window, and tunable emission. Their biomedical applications are contingent upon retaining their optical properties in an aqueous environment. Amphiphilic arrays containing PEG-substituted BODIPY and chlorins or bacteriochlorins were prepared and their optical and fluorescence properties were determined in organic solvents and aqueous surfactants. The first series of arrays contains BODIPYs with PEG substituents attached to the boron, whereas in the second series, PEG substituents are attached to the aryl at the meso positions of BODIPY. For both series of arrays, excitation of BODIPY at 500 nm results in efficient energy transfer to and bright emission of hydroporphyrin in the deep-red (640-660 nm) or near-infrared (740-760 nm) spectral windows. In aqueous solution of nonionic surfactants (Triton X-100 and Tween 20) arrays from the second series exhibit significant quenching of fluorescence, whereas properties of arrays from the first series are comparable to those observed in polar organic solvents. Reported arrays possess large effective Stokes shift (115-260 nm), multiple excitation wavelengths, and narrow, tunable deep-red/near-IR fluorescence in aqueous surfactants, and are promising candidates for a variety of biomedical-related applications.
Collapse
Affiliation(s)
- Adam Meares
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Andrius Satraitis
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Joshua Akhigbe
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Nithya Santhanam
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Subramani Swaminathan
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Melanie Ehudin
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Marcin Ptaszek
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| |
Collapse
|
16
|
Reddy MN, Zhang S, Kim HJ, Mass O, Taniguchi M, Lindsey JS. Synthesis and Spectral Properties of meso-Arylbacteriochlorins, Including Insights into Essential Motifs of their Hydrodipyrrin Precursors. Molecules 2017; 22:molecules22040634. [PMID: 28420113 PMCID: PMC6154299 DOI: 10.3390/molecules22040634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 11/16/2022] Open
Abstract
Synthetic bacteriochlorins-analogues of bacteriochlorophylls, Nature's near-infrared absorbers-are attractive for diverse photochemical studies. meso-Arylbacteriochlorins have been prepared by the self-condensation of a dihydrodipyrrin-carbinol or dihydrodipyrrin-acetal following an Eastern-Western (E-W) or Northern-Southern (N-S) joining process. The bacteriochlorins bear a gem-dimethyl group in each pyrroline ring to ensure stability toward oxidation. The two routes differ in the location of the gem-dimethyl group at the respective 3- or 2-position in the dihydrodipyrrin, and the method of synthesis of the dihydrodipyrrin. Treatment of a known 3,3-dimethyldihydrodipyrrin-1-carboxaldehyde with an aryl Grignard reagent afforded the dihydrodipyrrin-1-(aryl)carbinol, and upon subsequent acetylation, the corresponding dihydrodipyrrin-1-methyl acetate (dihydrodipyrrin-acetate). Self-condensation of the dihydrodipyrrin-acetate gave a meso-diarylbacteriochlorin (E-W route). A 2,2-dimethyl-5-aryldihydrodipyrrin-1-(aryl)carbinol underwent self-condensation to give a trans-A₂B₂-type meso-tetraarylbacteriochlorin (N-S route). In each case, the aromatization process entails a 2e-/2H⁺ (aerobic) dehydrogenative oxidation following the dihydrodipyrrin self-condensation. Comparison of a tetrahydrodipyrrin-acetal (0%) versus a dihydrodipyrrin-acetal (41%) in bacteriochlorin formation and results with various 1-substituted dihydrodipyrrins revealed the importance of resonance stabilization of the reactive hydrodipyrrin intermediate. Altogether 10 new dihydrodipyrrins and five new bacteriochlorins have been prepared. The bacteriochlorins exhibit characteristic bacteriochlorophyll-like absorption spectra, including a Qy band in the region 726-743 nm.
Collapse
Affiliation(s)
| | - Shaofei Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Han-Je Kim
- Department of Science Education, Gongju National University of Education, Gongju 314-701, Korea.
| | - Olga Mass
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
17
|
Liu Y, Allu S, Nagarjuna Reddy M, Hood D, Diers JR, Bocian DF, Holten D, Lindsey JS. Synthesis and photophysical characterization of bacteriochlorins equipped with integral swallowtail substituents. NEW J CHEM 2017. [DOI: 10.1039/c7nj00499k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The two pyrroline units of bacteriochlorins can now bear gem-dialkyl or diaryl groups (L), which project above and below the macrocycle plane, whereas dimethyl groups generally have been accessible previously.
Collapse
Affiliation(s)
- Yizhou Liu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | | - Don Hood
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | - James R. Diers
- Department of Chemistry
- University of California
- Riverside
- USA
| | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | |
Collapse
|
18
|
Liu M, Chen CY, Hood D, Taniguchi M, Diers JR, Bocian DF, Holten D, Lindsey JS. Synthesis, photophysics and electronic structure of oxobacteriochlorins. NEW J CHEM 2017. [DOI: 10.1039/c6nj04135c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic oxobacteriochlorins exhibit strong absorption in the deep-red window flanked by chlorins to the red and bacteriochlorins to the near-infrared.
Collapse
Affiliation(s)
- Mengran Liu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Chih-Yuan Chen
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Don Hood
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | | - James R. Diers
- Department of Chemistry
- University of California
- Riverside
- USA
| | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | |
Collapse
|
19
|
Affiliation(s)
- Yizhou Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8294, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8294, United States
| |
Collapse
|
20
|
Zhang N, Jiang J, Liu M, Taniguchi M, Mandal AK, Evans-Storms RB, Pitner JB, Bocian DF, Holten D, Lindsey JS. Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Near-Infrared-Emitting Bacteriochlorins. NEW J CHEM 2016; 40:7750-7767. [PMID: 28133433 DOI: 10.1039/c6nj01155a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthetic bacteriochlorins absorb in the near-infrared (NIR) region and are versatile analogues of natural bacteriochlorophylls. The utilization of these chromophores in energy sciences and photomedicine requires the ability to tailor their physicochemical properties, including the incorporation of units to impart water solubility. Herein, we report the synthesis, from two common bacteriochlorin building blocks, of five wavelength-tunable, bioconjugatable and water-soluble bacteriochlorins along with two non-bioconjugatable benchmarks. Each bacteriochlorin bears short polyethylene glycol (PEG) units as the water-solubilizing motif. The PEG groups are located at the 3,5-positions of aryl groups at the pyrrolic β-positions to suppress aggregation in aqueous media. A handle containing a single carboxylic acid is incorporated to allow bioconjugation. The seven water-soluble bacteriochlorins in water display Qy absorption into the NIR range (679-819 nm), sharp emission (21-36 nm full-width-at-half-maximum) and modest fluorescence quantum yield (0.017-0.13). Each bacteriochlorin is neutral (non-ionic) yet soluble in organic (e.g., CH2Cl2, DMF) and aqueous solutions. Water solubility was assessed using absorption spectroscopy by changing the concentration ∼1000-fold (190-690 µM to 0.19-0.69 µM) with a reciprocal change in pathlength (0.1-10 cm). All bacteriochlorins showed excellent solubility in water, except for a bacteriochlorin-imide that gave slight aggregation at higher concentrations. One bacteriochlorin was conjugated to a mouse polyclonal IgG antibody for use in flow cytometry with compensation beads for proof-of-principle. The antibody conjugate of B2-NHS displayed a sharp signal upon ultraviolet laser excitation (355 nm) with NIR emission measured with a 730/45 nm bandpass filter. Overall, the study gives access to a set of water-soluble bacteriochlorins with desirable photophysical properties for use in multiple fields.
Collapse
Affiliation(s)
- Nuonuo Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Mengran Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Amit Kumar Mandal
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | | | | | - David F Bocian
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| |
Collapse
|
21
|
Liu M, Chen CY, Mandal AK, Chandrashaker V, Evans-Storms RB, Pitner JB, Bocian DF, Holten D, Lindsey JS. Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Red-Emitting Chlorins. NEW J CHEM 2016; 40:7721-7740. [PMID: 28154477 DOI: 10.1039/c6nj01154c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chromophores that absorb and emit in the red spectral region (600-700 nm), are water soluble, and bear a bioconjugatable tether are relatively rare yet would fulfill many applications in photochemistry and photomedicine. Here, three molecular designs have been developed wherein stable synthetic chlorins - analogues of chlorophylls - have been tailored with PEG groups for use in aqueous solution. The designs differ with regard to order of the installation (pre/post-formation of the chlorin macrocycle) and position of the PEG groups. Six PEGylated synthetic chlorins (three free bases, three zinc chelates) have been prepared, of which four are equipped with a bioconjugatable (carboxylic acid) tether. The most effective design for aqueous solubilization entails facial encumbrance where PEG groups project above and below the plane of the hydrophobic disk-like chlorin macrocycle. The chlorins possess strong absorption at ~400 nm (B band) and in the red region (Qy band); regardless of wavelength of excitation, emission occurs in the red region. Excitation in the ~400 nm region thus provides an effective Stokes shift of >200 nm. The four bioconjugatable water-soluble chlorins exhibit Qy absorption/emission in water at 613/614, 636/638, 698/700 and 706/710 nm. The spectral properties are essentially unchanged in DMF and water for the facially encumbered chlorins, which also exhibit narrow Qy absorption and emission bands (full-width-at-half maximum of each <25 nm). The water-solubility was assessed by absorption spectroscopy over the concentration range ~0.4 μM - 0.4 mM. One chlorin was conjugated to a mouse polyclonal IgG antibody for use in flow cytometry with compensation beads for proof-of-principle. The conjugate displayed a sharp signal when excited by a violet laser (405 nm) with emission in the 620-660 nm range. Taken together, the designs described herein augur well for development of a set of spectrally distinct chlorins with relatively sharp bands in the red region.
Collapse
Affiliation(s)
- Mengran Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Chih-Yuan Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Amit Kumar Mandal
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | | | | | | | - David F Bocian
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| |
Collapse
|
22
|
Zhang S, Kim HJ, Tang Q, Yang E, Bocian DF, Holten D, Lindsey JS. Synthesis and photophysical characteristics of 2,3,12,13-tetraalkylbacteriochlorins. NEW J CHEM 2016. [DOI: 10.1039/c6nj00517a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tetraalkylbacteriochlorins, available upon acid-mediated self-condensation of α-ester stabilized dihydrodipyrrin-carboxaldehydes, provide valuable models of the naturally occurring bacteriochlorophylls.
Collapse
Affiliation(s)
- Shaofei Zhang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Han-Je Kim
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
- Department of Science Education
| | - Qun Tang
- Department of Chemistry
- University of California
- Riverside
- USA
| | - Eunkyung Yang
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | |
Collapse
|
23
|
Zhang N, Reddy KR, Jiang J, Taniguchi M, Sommer RD, Lindsey JS. Elaboration of an unexplored substitution site in synthetic bacteriochlorins. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615500534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability to introduce substituents at designated sites about the perimeter of synthetic bacteriochlorins – analogs of bacteriochlorophylls of bacterial photosynthesis – remains a subject of ongoing study. Here, the self-condensation of a dihydrodipyrrin-dioxolane affords a 5-[2-(trimethylsiloxy)ethoxy]bacteriochlorin. Like a 5-methoxybacteriochlorin, the latter undergoes regioselective bromination at the 15-position, directed by the distal 5-alkoxy group. On the other hand, attempted bromination of a bacteriochlorin bearing a 5-(2-hydroxyethoxy) group resulted in intramolecular ether formation with the adjacent β-pyrroline position to give an annulated dioxepine ring (confirmed by single-crystal X-ray structural analysis). The hydroxyethoxy group at the 5-position can be derivatized by acylation. In addition, the installation of auxochromes (methoxycarbonyl, phenylethynyl) at the β-pyrrole rings causes a substantial bathochromic shift of the long-wavelength absorption band (812 nm) and companion fluorescence emission band (821 nm). Taken together, the modification of the 5-substituent complements existing methods for installing a single substituent on the bacteriochlorin macrocycle.
Collapse
Affiliation(s)
- Nuonuo Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Kanumuri Ramesh Reddy
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Roger D. Sommer
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| |
Collapse
|
24
|
Lindsey JS. De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. Chem Rev 2015; 115:6534-620. [PMID: 26068531 DOI: 10.1021/acs.chemrev.5b00065] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
25
|
Ra D, Gauger KA, Muthukumaran K, Balasubramanian T, Chandrashaker V, Taniguchi M, Yu Z, Talley DC, Ehudin M, Ptaszek M, Lindsey JS. Progress Towards Synthetic Chlorins with Graded Polarity, Conjugatable Substituents, and Wavelength Tunability. J PORPHYR PHTHALOCYA 2015; 19:547-572. [PMID: 26640361 DOI: 10.1142/s1088424615500042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in chlorin synthetic chemistry now enable the de novo preparation of diverse chlorin-containing molecular architectures. Five distinct molecular designs have been explored here, including hydrophobic bioconjugatable (oxo)chlorins; a hydrophilic bioconjugatable chlorin; a trans-ethynyl/iodochlorin building block; a set of chlorins bearing electron-rich (methoxy, dimethylamino, methylthio) groups at the 3-position; and a set of ten 3,13-disubstituted chlorins chiefly bearing groups with extended π-moieties. Altogether 23 new chlorins (17 targets, 6 intermediates) have been prepared. The challenge associated with molecular designs that encompass the combination of "hydrophilic, bioconjugatable and wavelength-tunable" chiefly resides in the nature of the hydrophilic unit.
Collapse
Affiliation(s)
- Doyoung Ra
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Kelly A Gauger
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Kannan Muthukumaran
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | | | | | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Daniel C Talley
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Melanie Ehudin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| |
Collapse
|
26
|
Meares A, Satraitis A, Santhanam N, Yu Z, Ptaszek M. Deep-red emissive BODIPY-chlorin arrays excitable with green and red wavelengths. J Org Chem 2015; 80:3858-69. [PMID: 25803423 DOI: 10.1021/acs.joc.5b00119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report here the synthesis and characterization of BODIPY-chlorin arrays containing a chlorin subunit, with tunable deep-red (641-685 nm) emission, and one or two BODIPY moieties, absorbing at 504 nm. Two types of arrays were examined: one where BODIPY moieties are attached through a phenylacetylene linker at the 13- or 3,13-positions of chlorin, and a second type where BODIPY is attached at the 10-position of chlorin through an amide linker. Each of the examined arrays exhibits an efficient (≥0.80) energy transfer from BODIPY to the chlorin moiety in both toluene and DMF and exhibits intense fluorescence of chlorin upon excitation of BODIPY at ∼500 nm. Therefore, the effective Stokes shift in such arrays is in the range of 140-180 nm. Dyads with BODIPY attached at the 10-position of chlorin exhibit a bright fluorescence in a range of solvents with different polarities (i.e., toluene, MeOH, DMF, and DMSO). In contrast to this, some of the arrays in which BODIPY is attached at the 3- or at both 3,13-positons of chlorin exhibit significant reduction of fluorescence in polar solvents. Overall, dyads where BODIPY is attached at the 10-position of chlorin exhibit ∼5-fold brighter fluorescence than corresponding chlorin monomers, upon excitation at 500 nm.
Collapse
Affiliation(s)
- Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Nithya Santhanam
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
27
|
Yuen JM, Harris MA, Liu M, Diers JR, Kirmaier C, Bocian DF, Lindsey JS, Holten D. Effects of substituents on synthetic analogs of chlorophylls. Part 4: How formyl group location dictates the spectral properties of chlorophylls b, d and f. Photochem Photobiol 2015; 91:331-42. [PMID: 25488432 DOI: 10.1111/php.12401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/03/2014] [Indexed: 12/24/2022]
Abstract
Photosynthetic organisms are adapted to light characteristics in their habitat in part via the spectral characteristics of the associated chlorophyll pigments, which differ in the position of a formyl group around the chlorin macrocycle (chlorophylls b, d, f) or no formyl group (chlorophyll a). To probe the origin of this spectral tuning, the photophysical and electronic structural properties of a new set of synthetic chlorins are reported. The zinc and free base chlorins have a formyl group at either the 2- or 3-position. The four compounds have fluorescence yields in the range 0.19-0.28 and singlet excited-state lifetimes of ca 4 ns for zinc chelates and ca 8 ns for the free base forms. The photophysical properties of the 2- and 3-formyl zinc chlorins are similar to those observed previously for 13-formyl or 3,13-diformyl chlorins, but differ markedly from those for 7-formyl analogs. Molecular-orbital characteristics obtained from density functional theory (DFT) calculations were used as input to spectral simulations employing the four-orbital model. The analysis has uncovered the key changes in electronic structure engendered by the presence/location of a formyl group at various macrocycle positions, which is relevant to understanding the distinct spectral properties of the natural chlorophylls a, b, d and f.
Collapse
Affiliation(s)
- Jonathan M Yuen
- Department of Chemistry, Washington University, St. Louis, MO
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jiang J, Yang E, Reddy KR, Niedzwiedzki DM, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Synthetic bacteriochlorins bearing polar motifs (carboxylate, phosphonate, ammonium and a short PEG). Water-solubilization, bioconjugation, and photophysical properties. NEW J CHEM 2015. [DOI: 10.1039/c5nj00759c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bacteriochlorin scaffold has been derivatized for life sciences applications.
Collapse
Affiliation(s)
- Jianbing Jiang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Eunkyung Yang
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | | | | | | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | |
Collapse
|
29
|
Jiang J, Taniguchi M, Lindsey JS. Near-infrared tunable bacteriochlorins equipped for bioorthogonal labeling. NEW J CHEM 2015. [DOI: 10.1039/c5nj00209e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nine new near-infrared absorbing (729–820 nm) synthetic bacteriochlorins are equipped with one of four reactive groups for bioorthogonal conjugation.
Collapse
Affiliation(s)
- Jianbing Jiang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | |
Collapse
|
30
|
Shrestha K, González-Delgado JM, Blew JH, Jakubikova E. Electronic Structure of Covalently Linked Zinc Bacteriochlorin Molecular Arrays: Insights into Molecular Design for NIR Light Harvesting. J Phys Chem A 2014; 118:9901-13. [DOI: 10.1021/jp507749c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kushal Shrestha
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jessica M. González-Delgado
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - James H. Blew
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
31
|
Michel SLJ. Report from the Seventh Annual ‘Frontiers at the Chemistry Biology Interface Symposium’. ACS Chem Biol 2014. [DOI: 10.1021/cb500648y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah L. J. Michel
- Department of Pharmaceutical
Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
32
|
Fujisawa JI. An unusual mechanism for HOMO–LUMO gap narrowing in a minimal near-IR dye generated by the deprotonation of bis(dicyanomethylene)indan. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Harada T, Sano K, Sato K, Watanabe R, Yu Z, Hanaoka H, Nakajima T, Choyke PL, Ptaszek M, Kobayashi H. Activatable organic near-infrared fluorescent probes based on a bacteriochlorin platform: synthesis and multicolor in vivo imaging with a single excitation. Bioconjug Chem 2014; 25:362-9. [PMID: 24450401 PMCID: PMC3983136 DOI: 10.1021/bc4005238] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Near infrared (NIR) fluorescent probes are ideal for in vivo imaging because they offer deeper tissue penetration and lower background autofluorescence. Although most fluorophores in this range are cyanine-based dyes, several new classes of fluorescent NIR probes have been developed. In this study, we developed organic bacteriochlorin derivatives, NMP4 and NMP5, which are excited with a single green light and emit different narrow, well-resolved bands in the NIR (peak of 739 and 770 nm for NMP4 and NMP5, respectively). When conjugated to galactosyl-human serum albumin (hGSA) or glucosyl-human serum albumin (glu-HSA), both targeting H-type lectins, including the β-d-galactose receptor expressing on ovarian cancer, these agents become targeted, activatable, single excitation, multicolor NIR fluorescence probes. After conjugation to either glu-HSA or hGSA, substantial quenching of fluorescence occurs that is reversed after cell binding and internalization. In vitro studies showed higher cancer cell uptake with NMP4 or NMP5 conjugated to hGSA compared to the same conjugates with glu-HSA. In vivo single excitation two-color imaging was performed after intraperitoneal injection of these agents into mice with disseminated ovarian cancer. Excited with a single green light, distinct NIR emission spectra from each fluorophore were detected and could be distinguished with spectral unmixing. In vivo results using a red fluorescence protein (RFP) labeled tumor model of disseminated ovarian cancer demonstrated high sensitivity and specificity for all probes. The success of single excitation, 2-color NIR fluorescence imaging with a new class of bacteriochlorin-based activatable fluorophores, NMP4 and NMP5, paves the way for further exploration of noncyanine dye-based NIR fluorophores.
Collapse
Affiliation(s)
- Toshiko Harada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|