1
|
Wu A, Yamamoto H. Super silyl-based stable protecting groups for both the C- and N-terminals of peptides: applied as effective hydrophobic tags in liquid-phase peptide synthesis. Chem Sci 2023; 14:5051-5061. [PMID: 37206381 PMCID: PMC10189889 DOI: 10.1039/d3sc01239e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Tag-assisted liquid-phase peptide synthesis (LPPS) is one of the important processes in peptide synthesis in pharmaceutical discovery. Simple silyl groups have positive effects when incorporated in the tags due to their hydrophobic properties. Super silyl groups contain several simple silyl groups and play an important role in modern aldol reactions. In view of the unique structural architecture and hydrophobic properties of the super silyl groups, herein, two new types of stable super silyl-based groups (tris(trihexylsilyl)silyl group and propargyl super silyl group) were developed as hydrophobic tags to increase the solubility in organic solvents and the reactivity of peptides during LPPS. The tris(trihexylsilyl)silyl group can be installed at the C-terminal of the peptides in ester form and N-terminal in carbamate form for peptide synthesis and it is compatible with hydrogenation conditions (Cbz chemistry) and Fmoc-deprotection conditions (Fmoc chemistry). The propargyl super silyl group is acid-resistant, which is compatible with Boc chemistry. Both tags are complementary to each other. The preparation of these tags requires less steps than previously reported tags. Nelipepimut-S was synthesized successfully with different strategies using these two types of super silyl tags.
Collapse
Affiliation(s)
- An Wu
- Peptide Research Centre, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Centre, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
2
|
Noji M, Ishimaru S, Obata H, Kumaki A, Seki T, Hayashi S, Takanami T. Facile electrochemical synthesis of silyl acetals: An air-stable precursor to formylsilane. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Wu L, Fei W, Liu Z, Zhang L, Fang C, Lu H. Specific and Reversible Enrichment of Early-Stage Glycated Proteome Based on Thiazolidine Chemistry and Palladium-Mediated Cleavage. Anal Chem 2022; 94:5213-5220. [PMID: 35333042 DOI: 10.1021/acs.analchem.1c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Comprehensive analysis of protein glycation is important for better understanding of its formation mechanism and biological significance. The current preconcentration methods of glycated proteome mainly depend on the reversible combination of boronic acid and cis-dihydroxy group by pH adjustment, but it has inherent limitations (e.g., poor specificity and time-consuming). Herein, for the first time, a novel enrichment method for glycated peptides is proposed based on the reversible chemical reaction between aldehyde and 1,2-aminothiol groups, in which oxidized glycated peptides are captured onto the magnetic nanoparticles via thiazolidine chemistry and then released by palladium-mediated cleavage. The method is rapid, with excellent selectivity (even at a 1:1000 molar ratio of glycated peptides/nonglycated peptides) and high sensitivity (1 fmol/μL). As a good evidence, 1549 glycated peptides were identified from glycated human serum with 94.6% specificity, providing a powerful technique for high-throughput analysis of glycated peptides.
Collapse
Affiliation(s)
- Linlin Wu
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weiwei Fei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zhiyong Liu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, People's Republic of China
| | - Caiyun Fang
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, 200032, People's Republic of China
| | - Haojie Lu
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
4
|
Wang X, Liu F, Li Y, Yan Z, Qiang Q, Rong Z. Recent Advances in the Synthesis of Acylsilanes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
- Key Laboratory for Organic Electronics and Information Displays Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 P.R. China
| | - Yongjie Li
- College of Chemistry Liaoning University Shenyang 110036 P.R. China
| | - Zijuan Yan
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| | - Qing Qiang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| | - Zi‐Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| |
Collapse
|
5
|
Zimdars P, Böhlig K, Metz P. Preparation of Functionalized Acylsilanes by Diol Cleavage of Cyclic 1,2‐Dihydroxysilanes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Patrick Zimdars
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Kristin Böhlig
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Peter Metz
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| |
Collapse
|