1
|
Huang Z, Xian J, Lv S, Xu S, Li J, Xie F, Li B. Porous Organic Polymer Supported Nano Ruthenium Catalysts for Cascade Aromatization of Quinoxalin-2(1 H)-one and C-H Annulation with Alkynes. Org Lett 2023; 25:7974-7978. [PMID: 37905545 DOI: 10.1021/acs.orglett.3c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Selective C-H annulation with alkynes is one of the most useful tools to synthesize heterocycles. Herein, we developed novel porous organic polymers supported ruthenium (POPs-Ru) as highly efficient catalysts for cascade aromatization of quinoxalin-2(1H)-one and C-H annulation with alkynes. Both terminal and internal alkynes were successfully transferred to furo[2,3-b]quinoxaline derivatives with good functional group tolerance and high regioselectivity by using POPs-Ru catalysts. Furthermore, the catalyst exhibited high activity and could be reused at least five times without obvious deactivation of this coupling reaction. This study offers an important platform for the immobilization of molecular metal catalysts for C-H functionalization.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiayi Xian
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Shaohuan Lv
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Shanshan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiefang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
2
|
Investigation of bioorganometallic artemisinins as antiplasmodials. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Fang T, Zhang S, Ye Q, Kong S, Yang T, Tang K, He X, Shang Y. Rh-Catalyzed Cascade C-H Activation/Annulation of N-Hydroxybenzamides and Propargylic Acetates for Modular Access to Isoquinolones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238553. [PMID: 36500644 PMCID: PMC9740102 DOI: 10.3390/molecules27238553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
A sequential Rh(III)-catalyzed C-H activation/annulation of N-hydroxybenzamides with propargylic acetates leading to the formation of NH-free isoquinolones is described. This reaction proceeds through a sequential C-H activation/alkyne insertion/intramolecular annulation/N-O bond cleavage procedure, affording a broad spectrum of products with diverse substituents in moderate-to-excellent yields. Notably, this protocol features the simultaneous formation of two new C-C/C-N bonds and one heterocycle in one pot with the release of water as the sole byproduct.
Collapse
Affiliation(s)
- Taibei Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Shiwen Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qingqing Ye
- Department of Medicine, Chuzhou City Vocation College, Chuzhou 239000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Shuwen Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Tingting Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Kaijie Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| |
Collapse
|
4
|
Cui Y, Wang R, Yang C, Wang A, Jing Y, Zhang S. Annulation of m-Substituted Aromatic Ketones with Diphenylacetylene Catalyzed by Ruthenium: A Reliable Route to Substituted Naphthalene Derivatives. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s107036322212043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Das Adhikari GK, Pati BV, Mohanty SR, Prusty N, Ravikumar PC. Co(II) Catalysed C‐H/N‐H Annulation of Cyclic Alkenes with Benzamides at Room Temperature; An Easy Access to the Core Skeleton of Hexahydrobenzo[c]phenanthridine type‐Alkaloids. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Namrata Prusty
- National Institute of Science Education and Research Chemical Science INDIA
| | - Ponneri C. Ravikumar
- National Institute of Science Education and Research School of Chemical Sciences NISER Jatni Campus 752050 Bhubaneswar INDIA
| |
Collapse
|
6
|
KARAKAYA İ. Synthesis and characterization of azobenzene derived from 8-aminoquinoline in aqueous media. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Pan S, Sarkar S, Ghosh B, Samanta R. Transition metal catalysed direct construction of 2-pyridone scaffolds through C-H bond functionalizations. Org Biomol Chem 2021; 19:10516-10529. [PMID: 34816862 DOI: 10.1039/d1ob01856f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Substituted 2-pyridone is one of the most frequent scaffolds among nitrogen-containing bioactive natural products, pharmaceuticals and organic materials. Besides the classical syntheses to construct this class of molecules, retrosynthetically more straightforward approaches based on transition metal catalysed C-H bond functionalizations have been explored recently. In this review, we have summarized the recent progress in the direct transition metal catalysed construction of substituted 2-pyridone scaffolds via site-selective C-H bond functionalizations.
Collapse
Affiliation(s)
- Subarna Pan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Bidhan Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
8
|
Wei HZ, Wei Y, Shi M. Construction of an isoquinolinone framework from carboxylic-ester-directed umpolung ring opening of methylenecyclopropanes. Chem Commun (Camb) 2021; 57:11201-11204. [PMID: 34622891 DOI: 10.1039/d1cc04826k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An interesting type of reaction involving functionalized methylenecyclopropanes (MCPs) has been revealed. Here, a nucleophilic attack of an anionic species onto a partially polarity-reversed MCP was realized by treating a neighbouring carboxylic ester tethered to the MCP and amine with KHMDS to realize an umpolung ring opening of the MCP. This work established an operationally convenient protocol for the rapid construction of isoquinolinone frameworks.
Collapse
Affiliation(s)
- Hao-Zhao Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. .,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| |
Collapse
|
9
|
Thirupataiah B, Mounika G, Sujeevan Reddy G, Sandeep Kumar J, Kapavarapu R, Medishetti R, Mudgal J, Mathew JE, Shenoy GG, Mallikarjuna Rao C, Chatti K, V L Parsa K, Pal M. CuCl 2-catalyzed inexpensive, faster and ligand/additive free synthesis of isoquinolin-1(2H)-one derivatives via the coupling-cyclization strategy: Evaluation of a new class of compounds as potential PDE4 inhibitors. Bioorg Chem 2021; 115:105265. [PMID: 34426160 DOI: 10.1016/j.bioorg.2021.105265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022]
Abstract
In spite of possessing a wide range of pharmacological properties the anti-inflammatory activities of isoquinolin-1(2H)-ones were rarely known or explored earlier. PDE4 inhibitors on the other hand in addition to their usefulness in treating inflammatory diseases have been suggested to attenuate the cytokine storm in COVID-19 especially TNF-α. In our effort, a new class of isoquinolin-1(2H)-ones derivatives containing an aminosulfonyl moiety were designed and explored as potential inhibitors of PDE4. Accordingly, for the first time a CuCl2-catalyzed inexpensive, faster and ligand/additive free approach has been developed for the synthesis of these predesigned isoquinolin-1(2H)-one derivatives via the coupling-cyclization strategy. Thus, the CuCl2-catalyzed reaction of 2-iodobenzamides with appropriate terminal alkynes proceeded with high chemo and regioselectivity affording the desired compounds in 77-84% yield within 1-1.5 h. The methodology also afforded simpler isoquinolin-1(2H)-ones devoid of aminosulfonyl moiety showing a broader generality and scope of this approach. Several of the synthesized compounds especially 3c, 3k and 3s showed impressive inhibition (83-90%) of PDE4B when tested at 10 µM in vitro whereas compounds devoid of aminosulfonyl moiety was found to be less active. In spite of high inhibition showed at 10 µM these compounds did not show proper concertation dependent inhibition below 1 µM that was reflected in their IC50 values e.g. 2.43 ± 0.32, 3.26 ± 0.24 and 3.63 ± 0.80 µM for 3k, 3o and 3s respectively. The anti-inflammatory potential of these compounds was indicated by their TNF-α inhibition (60-50% at 10 µM). The in silico docking studies of these molecules suggested good interactions with PDE4B and selective inhibition of PDE4B by 3k over PDE4D that was supported by in vitro assay results. These observations together with the favorable ADME and safety predicted for 3kin silico not only suggested 3k as an interesting hit molecule for further studies but also reveal the first example of isoquinolin-1(2H)-one based inhibitor of PDE4B.
Collapse
Affiliation(s)
- B Thirupataiah
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Guntipally Mounika
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Gangireddy Sujeevan Reddy
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Jetta Sandeep Kumar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Ravikumar Kapavarapu
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Jayesh Mudgal
- Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Jessy E Mathew
- Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Gautham G Shenoy
- Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - C Mallikarjuna Rao
- Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Kiranam Chatti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Kishore V L Parsa
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India.
| |
Collapse
|
10
|
Long Q, Zou K, Dong W, Xie D, An D. Palladium-catalyzed oxidative annulation of N-(8-quinolinyl) aryl carboxamides with 1-aryl-2-tosyloxy ethanones. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1952433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qinghuang Long
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Keran Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Wanrong Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Dexun Xie
- Aneo Chem-Tech Co., Ltd., Guangzhou, China
| | - Delie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
11
|
Pati BV, Sagara PS, Ghosh A, Mohanty SR, Ravikumar PC. Ruthenium-Catalyzed Cross Dehydrogenative Annulation of N-(7-Azaindole)benzamides with Maleimides: One-Step Access to Highly Functionalized Pyrroloisoquinoline. J Org Chem 2021; 86:6551-6565. [DOI: 10.1021/acs.joc.1c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| | - Prateep Singh Sagara
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Asit Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| | - Smruti Ranjan Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| | - Ponneri Chandrababu Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
12
|
Hu XQ, Liu ZK, Hou YX, Zhang G, Gao Y. Ru-catalysed C(sp 2)-H vinylation/annulation of benzoic acids and alkynes: rapid access to medium-sized lactones. Chem Commun (Camb) 2021; 57:1113-1116. [PMID: 33410434 DOI: 10.1039/d0cc07573f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An unprecedented ruthenium catalysed [4+4] annulation of readily available benzoic acids and alkynes is reported for the first time. The carboxylate group acts as both a directing group and an internal nucleophilic reagent to facilitate a C(sp2)-H vinylation/annulation cascade. This reaction avoids the classically oxidative [4+2] annulation, allowing the efficient synthesis of a wide array of eight-membered lactones under oxidant-free conditions. Moreover, this catalytic system can be successfully extended to [4+3] and [4+5] annulations for the assembly of seven- and nine-membered lactones.
Collapse
Affiliation(s)
- Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | | | | | | | | |
Collapse
|
13
|
Wang RH, Li JF, Li Y, Qi SL, Zhang T, Luan YX, Ye M. Selective C(sp3)–H Cleavage of Enamides for Synthesis of 2-Pyridones via Ligand-Enabled Ni–Al Bimetallic Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong-Hua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shao-Long Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Thorat VH, Aman H, Tsai YL, Pallikonda G, Chuang GJ, Hsieh JC. Cobalt-catalyzed coupling reactions of 2-halobenzamides with alkynes: investigation of ligand-controlled dual pathways. Org Chem Front 2021. [DOI: 10.1039/d1qo01402a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Co-catalyzed reactions of 2-halobenzamides and alkynes to form quinolinones or 2-vinyl benzamides are described here. These two reactions can be controlled merely by ligands.
Collapse
Affiliation(s)
- Vijaykumar H. Thorat
- Department of Chemistry, Tamkang University, New Taipei City, 251301, Taiwan (R.O.C.)
| | - Hasil Aman
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan (R.O.C.)
| | - Yu-Lin Tsai
- Department of Chemistry, Tamkang University, New Taipei City, 251301, Taiwan (R.O.C.)
| | - Gangaram Pallikonda
- Department of Chemistry, Tamkang University, New Taipei City, 251301, Taiwan (R.O.C.)
| | - Gary Jing Chuang
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan (R.O.C.)
| | - Jen-Chieh Hsieh
- Department of Chemistry, Tamkang University, New Taipei City, 251301, Taiwan (R.O.C.)
| |
Collapse
|
15
|
Zhang P, Chang W, Kang YS, Zhao W, Cui PP, Liang Y, Sun WY, Lu Y. Rhodium(III)-Catalyzed C(sp 2)-H Chemoselective Annulation to O-Cyclized Isochromen-imines from Benzamides. Org Lett 2020; 22:9462-9467. [PMID: 33275440 DOI: 10.1021/acs.orglett.0c03425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through the development of ligands and reaction conditions, the Rh(III)-catalyzed selective annulation of benzamides with internal alkynes has been achieved to the formation of O-cyclized isochromen-imines. Various substituents are well-tolerated under mild reaction conditions. Density functional theory calculations indicate that silver carbonate could act as a Lewis acid to assist the ligand to improve the chemical selectivity of the reaction in a catalytic system.
Collapse
Affiliation(s)
- Ping Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wenju Chang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan-Shang Kang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pei-Pei Cui
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Sen C, Sarvaiya B, Sarkar S, Ghosh SC. Room-Temperature Synthesis of Isoindolone Spirosuccinimides: Merger of Visible-Light Photocatalysis and Cobalt-Catalyzed C-H Activation. J Org Chem 2020; 85:15287-15304. [PMID: 33141591 DOI: 10.1021/acs.joc.0c02120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A room-temperature C-H bond functionalization of benzamides has been developed by merging a photocatalyst with a cobalt catalyst for the synthesis of isoindolone spirosuccinimides. The reaction proceeds in aerobic conditions and does not require any sacrificial external oxidants such as Ag(I) or Mn(III) salts. Visible light activates the photocatalyst, and it acts as an electron-transfer reagent and helps in the fundamental organometallic steps by modulating the oxidation state of the cobalt complex. This C-H bond functionalization and spirocyclization showed wide substrate scope and good functional group tolerance. A possible reaction mechanism was proposed from the experimental outcome, showing that C-H bond activation is irreversible and not the rate-determining step.
Collapse
Affiliation(s)
- Chiranjit Sen
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavesh Sarvaiya
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Souvik Sarkar
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Chen J, Zhang L, Zheng X, Zhou J, Zhong T, Yu C. Synthesis of isoquinolinone derivatives by Rh (III)-catalyzed C–H functionalization of N-ethoxybenzamides. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1755984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Junyu Chen
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Lei Zhang
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Xiangyun Zheng
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Jian Zhou
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Tianshuo Zhong
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Chuanming Yu
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| |
Collapse
|
18
|
Isoquinolone Synthesis via Zn(OTf)2-Catalyzed Aerobic Cyclocondensation of 2-(1-Alkynyl)-benzaldehydes with Arylamines. Catalysts 2020. [DOI: 10.3390/catal10060683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A zinc(II) triflate-catalyzed cyclocondensation of ortho-alkynylbenzaldehydes with arylamines in the presence of base under an oxygen atmosphere affording isoquinolones in good to high yields has been developed. The advantages of the present catalyst system include the use of an air-stable and cheap commercially available Lewis acid as the catalyst, high atom utilization and easily available starting materials.
Collapse
|
19
|
Affiliation(s)
- Quan Zheng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chen‐Fu Liu
- College of Pharmaceutical ScienceGannan Medical University Ganzhou 341000 People's Republic of China
| | - Jie Chen
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Guo‐Wu Rao
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
20
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
21
|
Wen LR, Ren GY, Geng RS, Zhang LB, Li M. Fast construction of isoquinolin-1(2H)-ones by direct intramolecular C-H/N-H functionalization under metal-free conditions. Org Biomol Chem 2020; 18:225-229. [PMID: 31833525 DOI: 10.1039/c9ob02430a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The general protocol for the synthesis of isoxazolidine-fused isoquinolin-1(2H)-ones was established with the help of bench stable hypervalent iodine reagent PIDA. Polycyclic six-, seven- and eight-membered N-heterocycles can be rapidly synthesized from available amides under metal-free conditions within 1 min at room temperature through C-H/N-H functionalization. Moreover, the protocol has the merits of broad substrate scope, atom economy and operational simplicity.
Collapse
Affiliation(s)
- Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | | | |
Collapse
|
22
|
Yuan Y, Guo X, Zhang X, Li B, Huang Q. Access to 5H-benzo[a]carbazol-6-ols and benzo[6,7]cyclohepta[1,2-b]indol-6-ols via rhodium-catalyzed C–H activation/carbenoid insertion/aldol-type cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rhodium-catalyzed mono-ortho C–H activation/carbenoid insertion/aldol-type cyclization of 3-aldehyde-2-phenyl-1H-indoles with diazo compounds has been developed.
Collapse
Affiliation(s)
- Yumeng Yuan
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiemin Guo
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Buhong Li
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine
- Fujian Key Laboratory for Photonics Technology
- Fujian Normal University
- Fuzhou
- P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| |
Collapse
|
23
|
Wootton TL, Porter JA, Grewal KS, Chirila PG, Forbes S, Coles SJ, Horton PN, Hamilton A, Whiteoak CJ. Merging Cu-catalysed C–H functionalisation and intramolecular annulations: computational and experimental studies on an expedient construction of complex fused heterocycles. Org Chem Front 2020. [DOI: 10.1039/d0qo00283f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalysed protocol for the synthesis of fused dihydrobenzofuran-isoquinolone compounds through an intramolecular annulation of readily accessible benzamide substrates is reported, along with a full DFT study into the mechanism.
Collapse
Affiliation(s)
- Timothy L. Wootton
- Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry
- Faculty of Health and Wellbeing
- Sheffield Hallam University
- Sheffield
- UK
| | - Jack A. Porter
- Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry
- Faculty of Health and Wellbeing
- Sheffield Hallam University
- Sheffield
- UK
| | - Karmjit S. Grewal
- Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry
- Faculty of Health and Wellbeing
- Sheffield Hallam University
- Sheffield
- UK
| | - Paula G. Chirila
- Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry
- Faculty of Health and Wellbeing
- Sheffield Hallam University
- Sheffield
- UK
| | - Sarah Forbes
- Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry
- Faculty of Health and Wellbeing
- Sheffield Hallam University
- Sheffield
- UK
| | - Simon J. Coles
- UK National Crystallographic Service
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
| | - Peter N. Horton
- UK National Crystallographic Service
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
| | - Alex Hamilton
- Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry
- Faculty of Health and Wellbeing
- Sheffield Hallam University
- Sheffield
- UK
| | - Christopher J. Whiteoak
- Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry
- Faculty of Health and Wellbeing
- Sheffield Hallam University
- Sheffield
- UK
| |
Collapse
|
24
|
Sagara PS, Siril PF, Ravikumar PC. N-Amino-7-azaindole as the N,N′-Bidentate Directing Group: Ruthenium-Catalyzed Oxidative Annulation of N-(7-Azaindole)benzamides with Alkynes via C–H Bond Activation. J Org Chem 2019; 84:12314-12323. [DOI: 10.1021/acs.joc.9b01598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prateep Singh Sagara
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Prem Felix Siril
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Ponneri Chandrababu Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani Campus, Odisha 752050, India
| |
Collapse
|
25
|
Rakshit A, Sau P, Ghosh S, Patel BK. One‐Pot Sequential Synthesis of Fused Isoquinolines via Intramolecular Cyclization/Annulation and their Photophysical Investigation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Amitava Rakshit
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039, Assam India
| | - Prasenjit Sau
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039, Assam India
| | - Subhendu Ghosh
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039, Assam India
| | - Bhisma K. Patel
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039, Assam India
| |
Collapse
|
26
|
Gattaiah D, Reddy AS, Khan SA, Swamy KK. Reactions of alkynes- copper-catalyzed cyclization of functionalized alkynes with elemental sulfur/selenium to form oxathiines/oxaselenines. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Padmavathi R, Babu SA. Palladium‐Catalyzed 8‐Aminoquinoline‐Aided sp
2
δ
‐C−H Intramolecular Amidation/Annulation: A Route to Tricyclic Quinolones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rayavarapu Padmavathi
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
28
|
Omer H, Liu P. Computational Study of the Ni-Catalyzed C-H Oxidative Cycloaddition of Aromatic Amides with Alkynes. ACS OMEGA 2019; 4:5209-5220. [PMID: 31459693 PMCID: PMC6648058 DOI: 10.1021/acsomega.9b00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/01/2019] [Indexed: 06/10/2023]
Abstract
The mechanism of Ni-catalyzed ortho C(sp2)-H oxidative cycloaddition of aromatic amides with internal alkynes containing 2-pyridinylmethylamine directing group was investigated using density functional theory (DFT) calculations. The C-H cleavage step proceeds via σ-complex-assisted metathesis (σ-CAM) with an alkenyl-Ni(II) complex. This is in contrast to the more common carboxylate/carbonate-assisted concerted metalation-deprotonation mechanism in related Ni-catalyzed C-H bond functionalization reactions with N,N-bidentate directing groups. In this reaction, the alkyne not only serves as the coupling partner, but also facilitates the σ-CAM C-H metalation both kinetically and thermodynamically. The subsequent functionalization of the five-membered nickelacycle proceeds via alkyne insertion into the Ni-C bond to form a seven-membered nickelacycle. This process proceeds with high levels of regioselectivity to form a C-C bond with sterically more encumbered alkyne terminus. This unusual regioselectivity is due to steric repulsions with the directing group that is coplanar with the alkyne in the migratory insertion transition state. The C-N bond reductive elimination to form the isoquinolone cycloadduct is promoted by PPh3 complexation to the Ni center and the use of flexible 2-pyridinylmethylamine directing group. The origin of the cis-trans isomerism of alkene byproduct was also explained by computations.
Collapse
Affiliation(s)
- Humair
M. Omer
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
29
|
Manoharan R, Jeganmohan M. Cobalt-catalyzed cyclization of benzamides with alkynes: a facile route to isoquinolones with hydrogen evolution. Org Biomol Chem 2019; 16:8384-8389. [PMID: 30209503 DOI: 10.1039/c8ob01924j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of benzamides with alkynes assisted by an 8-aminoquinoline ligand in the presence of Co(OAc)2·4H2O and pivalic acid under an air atmosphere provided isoquinolone derivatives in good to excellent yields. In this reaction, the active Co(iii) species is regenerated by the reaction of Co(i) species with pivalic acid under an air atmosphere with hydrogen evolution. The proposed mechanism was supported by competition experiments, deuterium labelling studies, radical scavenger experiments and kinetic studies.
Collapse
Affiliation(s)
- Ramasamy Manoharan
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411021, India
| | | |
Collapse
|
30
|
A “Thiocarbonyl‐Directed” Regiospecific C−H/S−H Annulation of Quinoline‐4(1
H
)‐thiones with Alkynes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
He Y, Yuan C, Jiang Z, Shuai L, Xiao Q. Expeditious Synthesis of Isoquinolone Derivatives by Rhodium(I)-Catalyzed Annulation Reaction through C–C Bond Cleavage. Org Lett 2018; 21:185-189. [DOI: 10.1021/acs.orglett.8b03653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yiyi He
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Chengsha Yuan
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Zeqi Jiang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Li Shuai
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Qing Xiao
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
32
|
Duarah G, Kaishap PP, Begum T, Gogoi S. Recent Advances in Ruthenium(II)-Catalyzed C−H Bond Activation and Alkyne Annulation Reactions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800755] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- G. Duarah
- Chemical Sciences & Technology Division; CSIR - North East Institute of Science and Technology; Jorhat - 785006, AcSIR India
| | - P. P. Kaishap
- Chemical Sciences & Technology Division; CSIR - North East Institute of Science and Technology; Jorhat - 785006, AcSIR India
| | - T. Begum
- Chemical Sciences & Technology Division; CSIR - North East Institute of Science and Technology; Jorhat - 785006, AcSIR India
| | - S. Gogoi
- Chemical Sciences & Technology Division; CSIR - North East Institute of Science and Technology; Jorhat - 785006, AcSIR India
| |
Collapse
|
33
|
Shan G, Flegel J, Li H, Merten C, Ziegler S, Antonchick AP, Waldmann H. C−H Bond Activation for the Synthesis of Heterocyclic Atropisomers Yields Hedgehog Pathway Inhibitors. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809680] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gang Shan
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Jana Flegel
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technische Universität Dortmund; Fakultät Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Houhua Li
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Christian Merten
- Ruhr-Universität Bochum; Lehrstuhl für Organische Chemie II; Universitätsstrasse 150 44801 Bochum Germany
| | - Slava Ziegler
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Andrey P. Antonchick
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technische Universität Dortmund; Fakultät Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technische Universität Dortmund; Fakultät Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
34
|
Shan G, Flegel J, Li H, Merten C, Ziegler S, Antonchick AP, Waldmann H. C−H Bond Activation for the Synthesis of Heterocyclic Atropisomers Yields Hedgehog Pathway Inhibitors. Angew Chem Int Ed Engl 2018; 57:14250-14254. [DOI: 10.1002/anie.201809680] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Gang Shan
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Jana Flegel
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technische Universität Dortmund; Fakultät Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Houhua Li
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Christian Merten
- Ruhr-Universität Bochum; Lehrstuhl für Organische Chemie II; Universitätsstrasse 150 44801 Bochum Germany
| | - Slava Ziegler
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Andrey P. Antonchick
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technische Universität Dortmund; Fakultät Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technische Universität Dortmund; Fakultät Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
35
|
Zhang L, Yu L, Zhou J, Chen Y. Meta-Selective C-H Alkylation of 2-Phenylpyridine Catalyzed by Ruthenium: DFT Study on the Mechanism and Regioselectivity. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling; School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. of China
| | - Lu Yu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling; School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. of China
| | - Jianguo Zhou
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling; School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. of China
| | - Yu Chen
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling; School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. of China
- Department of Chemistry; School of Science; Tianjin University; 300354 Tianjin P. R. of China
| |
Collapse
|
36
|
New reactions of allenes, alkynes, ynamides, enynones and isothiocyanates. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Sharma N, Bahadur V, Sharma UK, Saha D, Li Z, Kumar Y, Colaers J, Singh BK, Van der Eycken EV. Microwave-Assisted Ruthenium-Catalysed ortho
-C−H Functionalization of N
-Benzoyl α
-Amino Ester Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800458] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nandini Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F, B- 3001 Leuven Belgium
| | - Vijay Bahadur
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F, B- 3001 Leuven Belgium
- Bioorganic laboratory; Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F, B- 3001 Leuven Belgium
| | - Debasmita Saha
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F, B- 3001 Leuven Belgium
| | - Zhenghua Li
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F, B- 3001 Leuven Belgium
| | - Yogesh Kumar
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F, B- 3001 Leuven Belgium
- Bioorganic laboratory; Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Jona Colaers
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F, B- 3001 Leuven Belgium
| | - Brajendra K Singh
- Bioorganic laboratory; Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F, B- 3001 Leuven Belgium
- Peoples Friendship University of Russia; (RUDN University); Miklukho-Maklaya street 6 117198 Moscow Russia
| |
Collapse
|
38
|
Liu M, Gong W, You E, Zhang H, Shi L, Cao W, Shi J. Synthesis of Isoquinolines through IrIII
-Catalyzed C-H Activation/Annulation from Benzimidates with Hydroxylisopropylalkynes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mingliang Liu
- School of Environmental and Chemical Engineering; Shanghai University; 99 Shangda Road 200444 Shanghai P. R. China
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road 201203 Shanghai P. R. China
| | - Wanchun Gong
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road 201203 Shanghai P. R. China
| | - Erli You
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road 201203 Shanghai P. R. China
| | - Haizhen Zhang
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road 201203 Shanghai P. R. China
| | - Lei Shi
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road 201203 Shanghai P. R. China
| | - Weiguo Cao
- School of Environmental and Chemical Engineering; Shanghai University; 99 Shangda Road 200444 Shanghai P. R. China
- Department of Chemistry; Innovative Drug Research Center; Shanghai University; 99 Shangda Road 200444 Shanghai P. R. China
| | - Jingjing Shi
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road 201203 Shanghai P. R. China
| |
Collapse
|
39
|
Tulichala RNP, Shankar M, Swamy KCK. Palladium-Catalyzed Decarboxylative ortho-Amidation of Indole-3-carboxylic Acids with Isothiocyanates Using Carboxyl as a Deciduous Directing Group. J Org Chem 2018; 83:4375-4383. [PMID: 29554415 DOI: 10.1021/acs.joc.8b00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Palladium-catalyzed ortho-amidation of indole-3-carboxylic acids with isothiocyanates by using the deciduous directing group nature of carboxyl functionality to afford indole-2-amides is demonstrated. Both C-H functionalization and decarboxylation took place in one pot, and hence, this carboxyl group served as a unique, deciduous (or traceless) directing group. This reaction offers a broad substrate scope as demonstrated for several other heterocyclic carboxylic acids like chromene-3-carboxylic acid, imidazo[1,2- a]pyridine-2-carboxylic acid, benzofuran-2-carboxylic acid, pyrrole-2-carboxylic acid, and thiophene-2-carboxylic acid. In the reaction using 2-naphthoic acid, of the two possible isomers, only one isomer of the amide was exclusively formed. The indole-2-amide product underwent palladium-catalyzed C-H functionalization to afford the diindole-fused 2-pyridones by combining two molecules of the indole moiety, with the elimination of an amide group from one of them, attached at the C3-position for the C-C/C-N bond formation. The structures of key products are confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- R N Prasad Tulichala
- School of Chemistry , University of Hyderabad , Hyderabad , Telangana 500 046 , India
| | - Mallepalli Shankar
- School of Chemistry , University of Hyderabad , Hyderabad , Telangana 500 046 , India
| | - K C Kumara Swamy
- School of Chemistry , University of Hyderabad , Hyderabad , Telangana 500 046 , India
| |
Collapse
|
40
|
Xie C, Dai Z, Niu Y, Ma C. Cascade One-Pot Method To Synthesize Isoquinolin-1(2H)-ones with α-Bromo Ketones and Benzamides via Pd-catalyzed C–H Activation. J Org Chem 2018; 83:2317-2323. [DOI: 10.1021/acs.joc.7b03224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Caixia Xie
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Zhen Dai
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Yadi Niu
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Chen Ma
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| |
Collapse
|
41
|
Mondal S, Hajra A. Ruthenium(ii)-catalyzed remote C–H addition of 8 aminoquinoline amide to activated aldehyde. Org Biomol Chem 2018; 16:2846-2850. [DOI: 10.1039/c8ob00537k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Remote C–H addition of 8-aminoquinoline amides at C-5 position to activated aldehydes have been developed using Ru(ii)-catalyst.
Collapse
Affiliation(s)
- Susmita Mondal
- Department of Chemistry
- Visva-Bharati (A Central University)
- India
| | - Alakananda Hajra
- Department of Chemistry
- Visva-Bharati (A Central University)
- India
| |
Collapse
|
42
|
Li P, Wang GW, Chen H, Wang L. Nickel-catalyzed regioselective arylation of aromatic amides with aryl iodides enabled by an N,O-bidentate directing group. Org Biomol Chem 2018; 16:8783-8790. [DOI: 10.1039/c8ob02237b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A bidentate directing group enabled ortho-arylation of C(sp2)–H bonds in aromatic carboxamides with aryl iodides under nickel-catalysis was developed.
Collapse
Affiliation(s)
- Pinhua Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
- Department of Chemistry
| | - Guan-Wu Wang
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Hao Chen
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P R China
| | - Lei Wang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P R China
| |
Collapse
|
43
|
Mariappan A, Das KM, Jeganmohan M. Remote alkylation of N-(quinolin-8-yl)benzamides with alkyl bromides via ruthenium(ii)-catalyzed C–H bond activation. Org Biomol Chem 2018; 16:3419-3427. [PMID: 29675524 DOI: 10.1039/c8ob00581h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ruthenium(ii) catalyzed remote C-5 alkylation of the quinoline ring of N-(quinolin-8-yl)benzamides with alkyl bromides via C–H bond activation is described.
Collapse
Affiliation(s)
- Arumugam Mariappan
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Krishna Mohan Das
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | | |
Collapse
|
44
|
Shu Z, Guo Y, Li W, Wang B. Pd/C-catalyzed synthesis of N -aryl and N -alkyl isoquinolones via C H/N H activation. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Reddy CR, Yarlagadda S, Sridhar B, Reddy BVS. Arylative Cyclization of Indole-1-carboxamides with 1,6-Enynes for the Synthesis of Polycyclic Indole Scaffolds. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chatrala Ravikumar Reddy
- Centre for Semiochemicals; CSIR - Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - Suresh Yarlagadda
- Centre for Semiochemicals; CSIR - Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - Balasubramanian Sridhar
- Laboratory of X-ray Crystallography; CSIR - Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - Basi V. Subba Reddy
- Centre for Semiochemicals; CSIR - Indian Institute of Chemical Technology; 500007 Hyderabad India
| |
Collapse
|
46
|
Yang F, Yu J, Liu Y, Zhu J. Rhodium(III)-Catalyzed Oxadiazole-Directed Alkenyl C-H Activation for Synthetic Access to 2-Acylamino and 2-Amino Pyridines. J Org Chem 2017; 82:9978-9987. [PMID: 28861991 DOI: 10.1021/acs.joc.7b01303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report herein a Rh(III)-catalyzed alkenyl C-H activation protocol for the coupling of oxadiazoles with alkynes and synthesis of 2-acylamino and 2-amino pyridines, an important heterocyclic scaffold for various naturals products and synthetic pharmaceuticals bearing a readily reacting functional group. The selective protection/deprotection of amino groups through simple solvent switching, good functional group compatibility, superior product yield, and high regioselectivity are some of the notable synthetic features witnessed in this reaction protocol.
Collapse
Affiliation(s)
- Fan Yang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, China
| | - Jiaojiao Yu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, China
| | - Yun Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, China
| |
Collapse
|
47
|
Tulichala RNP, Shankar M, Swamy KCK. Ruthenium-Catalyzed Oxidative Annulation and Hydroarylation of Chromene-3-carboxamides with Alkynes via Double C–H Functionalization. J Org Chem 2017; 82:5068-5079. [DOI: 10.1021/acs.joc.7b00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Mallepalli Shankar
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K. C. Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
48
|
Ruthenium (II)-catalyzed synthesis of phthalides via the cascade addition and cyclization of aromatic acids with aldehydes. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9046-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Shibata K, Natsui S, Chatani N. Rhodium-Catalyzed Alkenylation of C–H Bonds in Aromatic Amides with Alkynes. Org Lett 2017; 19:2234-2237. [DOI: 10.1021/acs.orglett.7b00709] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaname Shibata
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoko Natsui
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Petrova E, Rasina D, Jirgensons A. N-Sulfonylcarboxamide as an Oxidizing Directing Group for Ruthenium-Catalyzed C-H Activation/Annulation. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601582] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elina Petrova
- Latvian Institute of Organic Synthesis; Aizkraukles 21 1006 Riga Latvia
| | - Dace Rasina
- Latvian Institute of Organic Synthesis; Aizkraukles 21 1006 Riga Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis; Aizkraukles 21 1006 Riga Latvia
| |
Collapse
|