1
|
Murphy AJ, Li AH, Li P, Sun H. Therapeutic Targeting of Alternative Splicing: A New Frontier in Cancer Treatment. Front Oncol 2022; 12:868664. [PMID: 35463320 PMCID: PMC9027816 DOI: 10.3389/fonc.2022.868664] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
The ability for cells to harness alternative splicing enables them to diversify their proteome in order to carry out complex biological functions and adapt to external and internal stimuli. The spliceosome is the multiprotein-RNA complex charged with the intricate task of alternative splicing. Aberrant splicing can arise from abnormal spliceosomes or splicing factors and drive cancer development and progression. This review will provide an overview of the alternative splicing process and aberrant splicing in cancer, with a focus on serine/arginine-rich (SR) proteins and their recently reported roles in cancer development and progression and beyond. Recent mapping of the spliceosome, its associated splicing factors, and their relationship to cancer have opened the door to novel therapeutic approaches that capitalize on the widespread influence of alternative splicing. We conclude by discussing small molecule inhibitors of the spliceosome that have been identified in an evolving era of cancer treatment.
Collapse
Affiliation(s)
- Anthony J. Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Alex H. Li
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
2
|
Ghosh AK, Mishevich JL, Jurica MS. Spliceostatins and Derivatives: Chemical Syntheses and Biological Properties of Potent Splicing Inhibitors. JOURNAL OF NATURAL PRODUCTS 2021; 84:1681-1706. [PMID: 33974423 PMCID: PMC8919379 DOI: 10.1021/acs.jnatprod.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Spliceostatins and thailanstatins are intriguing natural products due to their structural features as well as their biological significance. This family of natural products has been the subject of immense synthetic interest because they exhibit very potent cytotoxicity in representative human cancer cell lines. The cytotoxic properties of these natural products are related to their ability to inhibit spliceosomes. FR901564 and spliceostatins have been shown to inhibit spliceosomes by binding to their SF3B component. Structurally, these natural products contain two highly functionalized tetrahydropyran rings with multiple stereogenic centers joined by a diene moiety and an acyclic side chain linked with an amide bond. Total syntheses of this family of natural products led to the development of useful synthetic strategies, which enabled the synthesis of potent derivatives. The spliceosome modulating properties of spliceostatins and synthetic derivatives opened the door for understanding the underlying spliceosome mechanism as well as the development of new therapies based upon small-molecule splicing modulators. This review outlines the total synthesis of spliceostatins, synthetic studies of structural derivatives, and their bioactivity.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jennifer L Mishevich
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Melissa S Jurica
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
3
|
Nicolaou KC, Rekula SR, Kumar SM, Podilapu AR, Matuszak RP, Jung PM, Lam LT, Phillips AC, Lyssikatos J, Munneke S, Gu C, Sarvaiya H, Sandoval J, Hammond M, Aujay M, Purcell JW, Reilly RM, Gavrilyuk J. Design, Synthesis, and Biological Investigation of Thailanstatin A and Spliceostatin D Analogues Containing Tetrahydropyran, Tetrahydrooxazine, and Fluorinated Structural Motifs. J Org Chem 2021; 86:2499-2521. [PMID: 33417458 DOI: 10.1021/acs.joc.0c02643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thailanstatin A and spliceostatin D, two naturally occurring molecules endowed with potent antitumor activities by virtue of their ability to bind and inhibit the function of the spliceosome, and their natural siblings and designed analogues, constitute an appealing family of compounds for further evaluation and optimization as potential drug candidates for cancer therapies. In this article, the design, synthesis, and biological investigation of a number of novel thailanstatin A analogues, including some accommodating 1,1-difluorocyclopropyl and tetrahydrooxazine structural motifs within their structures, are described. Important findings from these studies paving the way for further investigations include the identification of several highly potent compounds for advancement as payloads for antibody-drug conjugates (ADCs) as potential targeted cancer therapies and/or small molecule drugs, either alone or in combination with other anticancer agents.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Santhosh Reddy Rekula
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - S Mothish Kumar
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ananda Rao Podilapu
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ryan P Matuszak
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Paul M Jung
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Lloyd T Lam
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew C Phillips
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Joseph Lyssikatos
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Stefan Munneke
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Christine Gu
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Hetal Sarvaiya
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Joseph Sandoval
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Mikhail Hammond
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Monette Aujay
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - James W Purcell
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Regina M Reilly
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Julia Gavrilyuk
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| |
Collapse
|
4
|
Zhang D, Meng F. A Comprehensive Overview of Structure-Activity Relationships of Small-Molecule Splicing Modulators Targeting SF3B1 as Anticancer Agents. ChemMedChem 2020; 15:2098-2120. [PMID: 33037739 DOI: 10.1002/cmdc.202000642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/19/2020] [Indexed: 02/06/2023]
Abstract
The pre-mRNA splicing factor SF3B1 shows recurrent mutations among hematologic malignancies and some solid tumors. In 2007, the identification of two cytotoxic natural products, which showed splicing inhibition by binding to SF3b, prompted the development of small-molecule splicing modulators of SF3B1 as therapeutics for cancer. Recent studies suggested that spliceosome-mutant cells are preferentially sensitive to pharmacologic splicing modulation; therefore, exploring the clinical utility of splicing modulator therapies in patients with spliceosome-mutant hematologic malignancies who have failed current therapies is greatly needed, as these patients have few treatment options. H3B-8800 had unique pharmacological activity and exhibited favorable data in phase I clinical trials to treat patients with advanced myeloid malignancies, indicating that further clinical trials are promising. The most established small-molecule modulators of SF3B1 can be categorized into three classes: the bicycles, the monopyranes, and the 12-membered macrolides. This review provides a comprehensive overview of the structure-activity relationships of small-molecule SF3B1 modulators, with a detailed analysis of interactions between modulators and protein binding pocket. The future strategy for splicing modulators development is also discussed.
Collapse
Affiliation(s)
- Datong Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, P. R. China
| | - Fancui Meng
- Tianjin Institute of Pharmaceutical Research, 306 Huiren Road, Tianjin, 300301, P. R. China
| |
Collapse
|
5
|
Gartshore C, Tadano S, Chanda PB, Sarkar A, Chowdari NS, Gangwar S, Zhang Q, Vite GD, Momirov J, Boger DL. Total Synthesis of Meayamycin and O-Acyl Analogues. Org Lett 2020; 22:8714-8719. [PMID: 33074680 DOI: 10.1021/acs.orglett.0c03308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A short, scalable total synthesis of meayamycin is described by an approach that entails a longest linear sequence of 12 steps (22 steps overall) from commercially available chiral pool materials (ethyl l-lactate, BocNH-Thr-OH, and d-ribose) and introduces the most straightforward preparation of the right-hand subunit detailed to date. The use of the approach in the divergent synthesis of a representative series of O-acyl analogues is exemplified.
Collapse
Affiliation(s)
- Christopher Gartshore
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shinji Tadano
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Prem B Chanda
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Anindya Sarkar
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Naidu S Chowdari
- Bristol Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Sanjeev Gangwar
- Bristol Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Qian Zhang
- Bristol Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Gregory D Vite
- Bristol Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States.,Bristol Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543 United States
| | - Jelena Momirov
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Baindara P, Mandal SM. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020; 177:164-189. [PMID: 32827604 DOI: 10.1016/j.biochi.2020.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of deaths worldwide, though significant advances have occurred in its diagnosis and treatment. The development of resistance against chemotherapeutic agents, their side effects, and non-specific toxicity urge to screen for the novel anticancer agent. Hence, the development of novel anticancer agents with a new mechanism of action has become a major scientific challenge. Bacteria and bacterially produced bioactive compounds have recently emerged as a promising alternative for cancer therapeutics. Bacterial anticancer agents such as antibiotics, bacteriocins, non-ribosomal peptides, polyketides, toxins, etc. These are adopted different mechanisms of actions such as apoptosis, necrosis, reduced angiogenesis, inhibition of translation and splicing, and obstructing essential signaling pathways to kill cancer cells. Also, live tumor-targeting bacteria provided a unique therapeutic alternative for cancer treatment. This review summarizes the anticancer properties and mechanism of actions of the anticancer agents of bacterial origin and antitumor bacteria along with their possible future applications in cancer therapeutics.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|
7
|
Donaldson WA. Syntheses of spliceostatins and thailanstatins: a review. Beilstein J Org Chem 2020; 16:1991-2006. [PMID: 32831956 PMCID: PMC7431757 DOI: 10.3762/bjoc.16.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/01/2020] [Indexed: 11/23/2022] Open
Abstract
The spliceostatins/thailanstatins are a family of linear peptides/polyketides that inhibit pre-mRNA splicing, and as such act as potent cytotoxic compounds. These compounds generally contain 9 stereocenters spread over a common (2Z,4S)-4-acetoxy-2-butenamide fragment, an (all-cis)-2,3,5,6-tetrasubstituted tetrahydropyran fragment and a terminal oxane ring joined by a dienyl chain. Due to the impressive antitumor properties of these compounds, along with their complex structure, a number of total syntheses have been reported. This review will compare the synthetic strategies reported through the end of 2019.
Collapse
Affiliation(s)
- William A Donaldson
- Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881, USA
| |
Collapse
|
8
|
Yoshikawa Y, Ishibashi A, Takehara T, Suzuki T, Murai K, Kaneda Y, Nimura K, Arisawa M. Design and Synthesis of 1,2-Deoxy-pyranose Derivatives of Spliceostatin A toward Prostate Cancer Treatment. ACS Med Chem Lett 2020; 11:1310-1315. [PMID: 32551017 DOI: 10.1021/acsmedchemlett.0c00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/01/2020] [Indexed: 01/03/2023] Open
Abstract
We designed and synthesized a novel 1,2-deoxy-pyranose and terminal epoxide methyl substituted derivatives of spliceostatin A using Julia-Kocienski olefination as a key step. With respect to the biological activity, the 1,2-deoxy-pyranose analogue of spliceostatin A suppressed AR-V7 expression at the nano level (IC50 = 3.3 nM). In addition, the in vivo toxicity test showed that the 1,2-deoxy-pyranose analogue was able to avoid severe toxicity compared to spliceostatin A.
Collapse
Affiliation(s)
- Yusuke Yoshikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Airi Ishibashi
- Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tsunayoshi Takehara
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka
8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka
8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasufumi Kaneda
- Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Keisuke Nimura
- Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Ghosh AK, Born JR, Veitschegger AM, Jurica MS. Copper-Catalyzed Stille Cross-Coupling Reaction and Application in the Synthesis of the Spliceostatin Core Structure. J Org Chem 2020; 85:8111-8120. [PMID: 32515594 DOI: 10.1021/acs.joc.0c00976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient palladium-free Stille cross-coupling reaction of allylic bromides and functionalized organostannylfuran using catalytic copper halide has been developed. The coupling reaction was optimized using CuI and low catalyst loading (down to 5 mol %). The reaction was conveniently carried out at ambient temperature in the presence of inorganic base to afford the coupling product in good-to-excellent yields. The utility of this reaction was demonstrated in the synthesis of a furan with sensitive functionalities. A sulfolene moiety was utilized as a masking group for the sensitive diene. Noyori asymmetric reduction, Achmatowicz reaction, and Kishi reduction steps converted sulfolene to a highly substituted tetrahydropyran intermediate used in the synthesis of the highly potent antitumor agents, spliceostatins, and their derivatives.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Joshua R Born
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Anne M Veitschegger
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
10
|
Yoshikawa Y, Ishibashi A, Murai K, Kaneda Y, Nimura K, Arisawa M. Design and synthesis of a phenyl C-glycoside derivative of Spliceostatin A and its biological evaluation toward prostate cancer treatment. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Ghosh AK, Reddy GC, Kovela S, Relitti N, Urabe VK, Prichard BE, Jurica MS. Enantioselective Synthesis of a Cyclopropane Derivative of Spliceostatin A and Evaluation of Bioactivity. Org Lett 2018; 20:7293-7297. [PMID: 30394756 PMCID: PMC6519444 DOI: 10.1021/acs.orglett.8b03228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spliceostatin A is a potent inhibitor of spliceosomes and exhibits excellent anticancer activity against multiple human cancer cell lines. We describe here the design and synthesis of a stable cyclopropane derivative of spliceostatin A. The synthesis involved a cross-metathesis or a Suzuki cross-coupling reaction as the key step. The functionalized epoxy alcohol ring was constructed from commercially available optically active tri- O-acetyl-d-glucal. The biological properties of the cyclopropyl derivative revealed that it is active in human cells and inhibits splicing in vitro comparable to spliceostatin A.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Guddeti Chandrashekar Reddy
- Department of Chemistry and Department of Medicinal Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Satish Kovela
- Department of Chemistry and Department of Medicinal Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Nicola Relitti
- Department of Chemistry and Department of Medicinal Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Veronica K Urabe
- Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA , University of California , Santa Cruz , California 95064 , United States
| | - Beth E Prichard
- Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA , University of California , Santa Cruz , California 95064 , United States
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA , University of California , Santa Cruz , California 95064 , United States
| |
Collapse
|
12
|
Ghosh AK, Simpson HM, Veitschegger AM. Enantioselective total synthesis of decytospolide A and decytospolide B using an Achmatowicz reaction. Org Biomol Chem 2018; 16:5979-5986. [PMID: 30083684 DOI: 10.1039/c8ob01529e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantioselective syntheses of decytospolide A and decytospolide B are described here. The current synthesis highlights an Achmatowicz rearrangement of an optically active furanyl alcohol followed by reduction of the resulting dihydropyranone hemiacetal with BF3·OEt2 and Et3SiH to provide the saturated tetrahydropyranyl alcohol directly. This reduction was investigated with a variety of other Lewis acids. The synthesis also features Noyori asymmetric transfer hydrogenation and Friedel-Crafts acylation. Overall, the synthesis provides ready access to the natural products and may be useful in the preparation of bioactive derivatives.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA.
| | | | | |
Collapse
|
13
|
Roscales S, Ortega V, Csákÿ AG. Selective Functionalization of Achmatowicz Rearrangement Products by Reactions with Potassium Organotrifluoroborates under Transition-Metal-Free Conditions. J Org Chem 2018; 83:11425-11436. [PMID: 30036474 DOI: 10.1021/acs.joc.8b01643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The repertoire of synthetic transformations of the products of the Achmatowicz rearrangement has been expanded by exploring their reactivity with potassium organotrifluoroborates in the absence of transition metals. Depending on the reaction conditions and the substitution pattern of the starting material, the reaction may lead to the stereoselective synthesis of dihydropyranones (2,6- trans), tetrahydropyranones (2,3- cis-2,6- cis) or functionalized 1,4-dicarbonyl compounds. The method has also been adapted for the one-pot synthesis of functionalized pyrroles.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa , Paseo de Juan XXIII, 1 , 28040 Madrid , Spain
| | - Víctor Ortega
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa , Paseo de Juan XXIII, 1 , 28040 Madrid , Spain
| | - Aurelio G Csákÿ
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa , Paseo de Juan XXIII, 1 , 28040 Madrid , Spain
| |
Collapse
|
14
|
Ghosh AK, Brindisi M. Nature Inspired Molecular Design: Stereoselective Synthesis of Bicyclic and Polycyclic Ethers for Potent HIV-1 Protease Inhibitors. ASIAN J ORG CHEM 2018; 7:1448-1466. [PMID: 31595212 PMCID: PMC6781882 DOI: 10.1002/ajoc.201800255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 12/14/2022]
Abstract
We have developed a conceptually new generation of non-peptidic HIV-1 protease inhibitors incorporating novel structural templates inspired by nature. This has resulted in protease inhibitors with exceptional potency and excellent pharmacological and drug-resistance profiles. The design of a stereochemically defined bis-tetrahydrofuran (bis-THF) scaffold followed by modifications to promote hydrogen bonding interactions with the backbone atoms of HIV-1 protease led to darunavir, the first clinically approved drug for treatment of drug resistant HIV. Subsequent X-ray crystal structure-based design efforts led us to create a range of exceptionally potent inhibitors incorporating other intriguing molecular templates possessing fused ring polycyclic ethers with multiple stereocenters. These structural templates are critical to inhibitors' exceptional potency and drug-like properties. Herein, we will highlight the synthetic strategies that provided access to these complex scaffolds in a stereoselective and optically active form, enabling our medicinal chemistry and drug development efforts.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907 (USA)
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907 (USA)
| |
Collapse
|
15
|
Nicolaou KC, Rhoades D, Kumar SM. Total Syntheses of Thailanstatins A-C, Spliceostatin D, and Analogues Thereof. Stereodivergent Synthesis of Tetrasubstituted Dihydro- and Tetrahydropyrans and Design, Synthesis, Biological Evaluation, and Discovery of Potent Antitumor Agents. J Am Chem Soc 2018; 140:8303-8320. [PMID: 29943984 DOI: 10.1021/jacs.8b04634] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient and selective total syntheses of spliceosome modulating natural products thailanstatins A-C and spliceostatin D are reported. A number of stereoselective methods for the construction of various tetrasubstituted dihydro- and tetrahydropyrans were developed as a prerequisite for the syntheses of these naturally occurring molecules and variations thereof. The pyran-forming reactions utilize a Heck/Saegusa-Ito cascade sequence to generate hydroxy α,β,γ,δ-unsaturated aldehyde precursors followed by a catalyst-controlled oxa-Michael cyclization to furnish tetrasubstituted dihydropyrans with high stereocontrol. Subsequent optimized homogeneous or heterogeneous hydrogenations of these dihydropyran systems afford their tetrahydropyran counterparts, also in a highly stereoselective manner. The synthesized thailanstatins and related analogues were biologically evaluated for their cytotoxic properties, leading to the identification of a number of compounds with exceptionally potent antitumor activities suitable for further development as potential antibody-drug conjugate payloads, single drugs, or drug combinations for cancer therapies. Important structure-activity relationships within the thailanstatin family and structurally related compounds are discussed and are expected to be path-pointing for future studies.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, BioScience Research Collaborative , Rice University , 6100 Main Street , Houston , Texas 77005 , United States
| | - Derek Rhoades
- Department of Chemistry, BioScience Research Collaborative , Rice University , 6100 Main Street , Houston , Texas 77005 , United States
| | - S Mothish Kumar
- Department of Chemistry, BioScience Research Collaborative , Rice University , 6100 Main Street , Houston , Texas 77005 , United States
| |
Collapse
|
16
|
Ghosh AK, Veitschegger AM, Nie S, MacRae NRAJ, Jurica MS. Enantioselective Synthesis of Thailanstatin A Methyl Ester and Evaluation of in Vitro Splicing Inhibition. J Org Chem 2018; 83:5187-5198. [PMID: 29696980 PMCID: PMC5972027 DOI: 10.1021/acs.joc.8b00593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thailanstatin A has been isolated recently from the fermentation broth of B. thailandensis MSMB43. We describe here an enantioselective convergent synthesis of thailanstatin A methyl ester and evaluation of its splicing activity. Synthesis of both highly functionalized tetrahydropyran rings were carried out from commercially available tri- O-acetyl-d-glucal as the key starting material. Our convergent synthesis involved the synthesis of both tetrahydropyran fragments in a highly stereoselective manner. The fragments were then coupled using cross-metathesis as the key step. The synthesis of the diene subunit included a highly stereoselective Claisen rearrangement, a Cu(I)-mediated conjugate addition of MeLi to set the C-14 methyl stereochemistry, a reductive amination reaction to install the C16-amine functionality, and a Wittig olefination reaction to incorporate the diene unit. The epoxy alcohol subunit was synthesized by a highly selective anomeric allylation, a Peterson olefination, and a vanadium catalyzed epoxidation that installed the epoxide stereoselectively. Cross-metathesis of the olefins provided the methyl ester derivative of thailanstatin A. We have carried out in vitro splicing studies of the methyl ester derivative, which proved to be a potent inhibitor of the spliceosome.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907
| | - Anne M. Veitschegger
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907
| | - Shenyou Nie
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907
| | - Nicola Relitti Andrew J. MacRae
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064
| | - Melissa S. Jurica
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064
| |
Collapse
|
17
|
Ghosh AK, Reddy GC, MacRae AJ, Jurica MS. Enantioselective Synthesis of Spliceostatin G and Evaluation of Bioactivity of Spliceostatin G and Its Methyl Ester. Org Lett 2017; 20:96-99. [PMID: 29218995 DOI: 10.1021/acs.orglett.7b03456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An enantioselective total synthesis of spliceostatin G has been accomplished. The synthesis involved a Suzuki cross-coupling reaction as a key step. The functionalized tetrahydropyran ring was constructed from commercially available optically active tri-O-acetyl-d-glucal. Other key reactions include a highly stereoselective Claisen rearrangement, a Cu(I)-mediated 1,4 addition of MeLi to install the C8 methyl group, and a reductive amination to incorporate the C10 amine functionality of spliceostatin G. Biological evaluation of synthetic spliceostatin G and its methyl ester revealed that it does not inhibit splicing in vitro.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Guddeti Chandrashekar Reddy
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Andrew J MacRae
- Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California , Santa Cruz, California 95064, United States
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California , Santa Cruz, California 95064, United States
| |
Collapse
|
18
|
Kumar D, Kashyap MK, La Clair JJ, Villa R, Spaanderman I, Chien S, Rassenti LZ, Kipps TJ, Burkart MD, Castro JE. Selectivity in Small Molecule Splicing Modulation. ACS Chem Biol 2016; 11:2716-2723. [PMID: 27499047 DOI: 10.1021/acschembio.6b00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dysregulation of RNA splicing is a molecular hallmark of disease, including different and often complex cancers. While gaining recognition as a target for therapeutic discovery, understanding the complex mechanisms guiding RNA splicing remains a challenge for chemical biology. The discovery of small molecule splicing modulators has recently enabled an evaluation of the mechanisms of aberrant splicing. We now report on three unique features within the selectivity of splicing modulators. First, we provide evidence that structural modifications within a splicing modulator can alter the splicing of introns in specific genes differently. These studies indicate that structure activity relationships not only have an effect on splicing activity but also include specificity for specific introns within different genes. Second, we find that these splicing modulators also target the mRNAs encoding components of the spliceosome itself. Remarkably, this effect includes the genes for the SF3B complex, a target of pladienolide B and related splicing modulators. Finally, we report on the first observation of a temporal phenomenon associated with small molecule splicing modulation. Combined, these three observations provide an important new perspective for the exploration of splicing modulation in terms of both future medicinal chemistry programs as well as understanding the key facets underlying its timing.
Collapse
Affiliation(s)
- Deepak Kumar
- The Moores Cancer Center, University of California San Diego , La Jolla, California 92093, United States
| | - Manoj K Kashyap
- The Moores Cancer Center, University of California San Diego , La Jolla, California 92093, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California , San Diego, La Jolla, California 92093-0358, United States
| | - Reymundo Villa
- Department of Chemistry and Biochemistry, University of California , San Diego, La Jolla, California 92093-0358, United States
| | - Ide Spaanderman
- The Moores Cancer Center, University of California San Diego , La Jolla, California 92093, United States
| | - Stephen Chien
- The Moores Cancer Center, University of California San Diego , La Jolla, California 92093, United States
| | - Laura Z Rassenti
- The Moores Cancer Center, University of California San Diego , La Jolla, California 92093, United States
- CLL Research Consortium, and Department of Medicine, University of California , San Diego, La Jolla, California 92093-0358, United States
| | - Thomas J Kipps
- The Moores Cancer Center, University of California San Diego , La Jolla, California 92093, United States
- CLL Research Consortium, and Department of Medicine, University of California , San Diego, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California , San Diego, La Jolla, California 92093-0358, United States
| | - Januario E Castro
- The Moores Cancer Center, University of California San Diego , La Jolla, California 92093, United States
- CLL Research Consortium, and Department of Medicine, University of California , San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
19
|
Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3681094. [PMID: 27610372 PMCID: PMC5004037 DOI: 10.1155/2016/3681094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/27/2016] [Accepted: 07/03/2016] [Indexed: 02/06/2023]
Abstract
In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics.
Collapse
|
20
|
Effenberger KA, Urabe VK, Jurica MS. Modulating splicing with small molecular inhibitors of the spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27440103 DOI: 10.1002/wrna.1381] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 12/23/2022]
Abstract
Small molecule inhibitors that target components of the spliceosome have great potential as tools to probe splicing mechanism and dissect splicing regulatory networks in cells. These compounds also hold promise as drug leads for diseases in which splicing regulation plays a critical role, including many cancers. Because the spliceosome is a complicated and dynamic macromolecular machine comprised of many RNA and protein components, a variety of compounds that interfere with different aspects of spliceosome assembly is needed to probe its function. By screening chemical libraries with high-throughput splicing assays, several labs have added to the collection of splicing inhibitors, although the mechanistic insight into splicing yielded from the initial compound hits is somewhat limited so far. In contrast, SF3B1 inhibitors stand out as a great example of what can be accomplished with small molecule tools. This group of compounds were first discovered as natural products that are cytotoxic to cancer cells, and then later shown to target the core spliceosome protein SF3B1. The inhibitors have since been used to uncover details of SF3B1 mechanism in the spliceosome and its impact on gene expression in cells. Continuing structure activity relationship analysis of the compounds is also making progress in identifying chemical features key to their function, which is critical in understanding the mechanism of SF3B1 inhibition. The knowledge is also important for the design of analogs with new and useful features for both splicing researchers and clinicians hoping to exploit splicing as pressure point to target in cancer therapy. WIREs RNA 2017, 8:e1381. doi: 10.1002/wrna.1381 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kerstin A Effenberger
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| | - Veronica K Urabe
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| |
Collapse
|
21
|
Ghosh AK, Lv K, Ma N, Cárdenas EL, Effenberger KA, Jurica MS. Design, synthesis and in vitro splicing inhibition of desmethyl and carba-derivatives of herboxidiene. Org Biomol Chem 2016; 14:5263-71. [PMID: 27188838 PMCID: PMC5333946 DOI: 10.1039/c6ob00725b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herboxidiene is a potent inhibitor of spliceosomes. It exhibits excellent anticancer activity against multiple human cancer cell lines. Herein, we describe an enantioselective synthesis of a desmethyl derivative and the corresponding carba-derivatives of herboxidiene. The synthesis involved Suzuki coupling of a vinyl iodide with boronate as the key reaction. For the synthesis of carba-derivatives, the corresponding optically active cyclohexane-1,3-dicarbonyl derivatives were synthesized using an enantioselective desymmetrization of meso-anhydride. The biological properties of these derivatives were evaluated in an in vitro splicing assay.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Nicolaou KC, Rhoades D, Lamani M, Pattanayak MR, Kumar SM. Total Synthesis of Thailanstatin A. J Am Chem Soc 2016; 138:7532-5. [DOI: 10.1021/jacs.6b04781] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K. C. Nicolaou
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | | | | | | | | |
Collapse
|
23
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Dhar S, La Clair JJ, León B, Hammons JC, Yu Z, Kashyap MK, Castro JE, Burkart MD. A Carbohydrate-Derived Splice Modulator. J Am Chem Soc 2016; 138:5063-8. [PMID: 27058259 DOI: 10.1021/jacs.5b13427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small-molecule splice modulators have recently been recognized for their clinical potential for diverse cancers. This, combined with their use as tools to study the importance of splice-regulated events and their association with disease, continues to fuel the discovery of new splice modulators. One of the key challenges found in the current class of materials arises from their instability, where rapid metabolic degradation can lead to off-target responses. We now describe the preparation of bench-stable splice modulators by adapting carbohydrate motifs as a central scaffold to provide rapid access to potent splice modulators.
Collapse
Affiliation(s)
- Sachin Dhar
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Brian León
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Justin C Hammons
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Zhe Yu
- Moores Cancer Center, University of California-San Diego , La Jolla, California 92093-0358, United States
| | - Manoj K Kashyap
- Moores Cancer Center, University of California-San Diego , La Jolla, California 92093-0358, United States
| | - Januario E Castro
- Moores Cancer Center, University of California-San Diego , La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
25
|
Yang N, Gibbs JS, Hickman HD, Reynoso GV, Ghosh AK, Bennink JR, Yewdell JW. Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs. THE JOURNAL OF IMMUNOLOGY 2016; 196:3608-17. [PMID: 27016602 DOI: 10.4049/jimmunol.1502303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
Abstract
Influenza A virus gene segment 7 encodes two proteins: the M1 protein translated from unspliced mRNA and the M2 protein produced by mRNA splicing and largely encoded by the M1 +1 reading frame. To better understand the generation of defective ribosomal products relevant to MHC class I Ag presentation, we engineered influenza A virus gene segment 7 to encode the model H-2 K(b) class I peptide ligand SIINFEKL at the M2 protein C terminus. Remarkably, after treating virus-infected cells with the RNA splicing inhibitor spliceostatin A to prevent M2 mRNA generation, K(b)-SIINFEKL complexes were still presented on the cell surface at levels ≤60% of untreated cells. Three key findings indicate that SIINFEKL is produced by cytoplasmic translation of unspliced M1 mRNA initiating at CUG codons within the +1 reading frame: 1) synonymous mutation of CUG codons in the M2-reading frame reduced K(b)-SIINFEKL generation; 2) K(b)-SIINFEKL generation was not affected by drug-mediated inhibition of AUG-initiated M1 synthesis; and 3) K(b)-SIINFEKL was generated in vitro and in vivo from mRNA synthesized in the cytoplasm by vaccinia virus, and hence cannot be spliced. These findings define a viral defective ribosomal product generated by cytoplasmic noncanonical translation and demonstrate the participation of CUG-codon-based translation initiation in pathogen immunosurveillance.
Collapse
Affiliation(s)
- Ning Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Glennys V Reynoso
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Jack R Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
26
|
Mailyan AK, Eickhoff JA, Minakova AS, Gu Z, Lu P, Zakarian A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. Chem Rev 2016; 116:4441-557. [DOI: 10.1021/acs.chemrev.5b00712] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Artur K. Mailyan
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - John A. Eickhoff
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Anastasiia S. Minakova
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ping Lu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Armen Zakarian
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Effenberger KA, Urabe VK, Prichard BE, Ghosh AK, Jurica MS. Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages. RNA (NEW YORK, N.Y.) 2016; 22:350-9. [PMID: 26742993 PMCID: PMC4748813 DOI: 10.1261/rna.053108.115] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/24/2015] [Indexed: 05/28/2023]
Abstract
The protein SF3B1 is a core component of the spliceosome, the large ribonucleoprotein complex responsible for pre-mRNA splicing. Interest in SF3B1 intensified when tumor exome sequencing revealed frequent specific SF3B1 mutations in a variety of neoplasia and when SF3B1 was identified as the target of three different cancer cell growth inhibitors. A better mechanistic understanding of SF3B1's role in splicing is required to capitalize on these discoveries. Using the inhibitor compounds, we probed SF3B1 function in the spliceosome in an in vitro splicing system. Formerly, the inhibitors were shown to block early steps of spliceosome assembly, consistent with a previously determined role of SF3B1 in intron recognition. We now report that SF3B1 inhibitors also interfere with later events in the spliceosome cycle, including exon ligation. These observations are consistent with a requirement for SF3B1 throughout the splicing process. Additional experiments aimed at understanding how three structurally distinct molecules produce nearly identical effects on splicing revealed that inactive analogs of each compound interchangeably compete with the active inhibitors to restore splicing. The competition indicates that all three types of compounds interact with the same site on SF3B1 and likely interfere with its function by the same mechanism, supporting a shared pharmacophore model. It also suggests that SF3B1 inhibition does not result from binding alone, but is consistent with a model in which the compounds affect a conformational change in the protein. Together, our studies reveal new mechanistic insight into SF3B1 as a principal player in the spliceosome and as a target of inhibitor compounds.
Collapse
Affiliation(s)
- Kerstin A Effenberger
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Veronica K Urabe
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Beth E Prichard
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
28
|
Eustáquio AS, Chang LP, Steele GL, O׳Donnell CJ, Koehn FE. Biosynthetic engineering and fermentation media development leads to gram-scale production of spliceostatin natural products in Burkholderia sp. Metab Eng 2016; 33:67-75. [DOI: 10.1016/j.ymben.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/25/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022]
|
29
|
|
30
|
Ghosh AK, Veitschegger AM, Sheri VR, Effenberger KA, Prichard BE, Jurica MS. Enantioselective synthesis of spliceostatin E and evaluation of biological activity. Org Lett 2014; 16:6200-3. [PMID: 25423085 PMCID: PMC4260646 DOI: 10.1021/ol503127r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
An
enantioselective total synthesis of spliceostatin E has been
accomplished. The δ-lactone unit A was constructed from readily
available (R)-glycidyl alcohol using a ring-closing
olefin metathesis as the key reaction. A cross-metathesis of ring
A containing δ-lactone and the functionalized tetrahydropyran B-ring provided spliceostatin E. Our biological evaluation
of synthetic spliceostatin E revealed that it does not inhibit splicing
in vitro and does not impact speckle morphology in cells. Spliceostatin
E was reported to possess potent antitumor activity.
Collapse
Affiliation(s)
- Arun K Ghosh
- †Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Anne M Veitschegger
- †Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Venkata Reddy Sheri
- †Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kerstin A Effenberger
- ‡Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, United States
| | - Beth E Prichard
- ‡Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, United States
| | - Melissa S Jurica
- ‡Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
31
|
Mahajan PS, Gonnade RG, Mhaske SB. Protecting-Group-Free Diastereoselective Total Synthesis of (±)-6-epi-Cleistenolide and Chemoenzymatic Synthesis of (-)-6-epi-Cleistenolide. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|