1
|
Hsu TW, Fang JM. Advances and prospects of analytic methods for bacterial transglycosylation and inhibitor discovery. Analyst 2024; 149:2204-2222. [PMID: 38517346 DOI: 10.1039/d3an01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.
Collapse
Affiliation(s)
- Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Ramírez AS, Locher KP. Structural and mechanistic studies of the N-glycosylation machinery: from lipid-linked oligosaccharide biosynthesis to glycan transfer. Glycobiology 2023; 33:861-872. [PMID: 37399117 PMCID: PMC10859629 DOI: 10.1093/glycob/cwad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
N-linked protein glycosylation is a post-translational modification that exists in all domains of life. It involves two consecutive steps: (i) biosynthesis of a lipid-linked oligosaccharide (LLO), and (ii) glycan transfer from the LLO to asparagine residues in secretory proteins, which is catalyzed by the integral membrane enzyme oligosaccharyltransferase (OST). In the last decade, structural and functional studies of the N-glycosylation machinery have increased our mechanistic understanding of the pathway. The structures of bacterial and eukaryotic glycosyltransferases involved in LLO elongation provided an insight into the mechanism of LLO biosynthesis, whereas structures of OST enzymes revealed the molecular basis of sequon recognition and catalysis. In this review, we will discuss approaches used and insight obtained from these studies with a special emphasis on the design and preparation of substrate analogs.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| |
Collapse
|
3
|
Cao J, Vincent SP. Synthesis of Spirocyclic Cyclopropyl Glycosyl-1-phosphate Analogues. Org Lett 2022; 24:4165-4169. [PMID: 35666228 DOI: 10.1021/acs.orglett.2c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general methodology allowing the preparation of phosphonylated 1-spirocyclopropyl analogues of glycosyl-1-phosphates is reported. The scope of this reaction has been assessed using various exo-glycals easily obtained from the corresponding pyranoses and furanoses. The cyclopropanation was found to be stereospecific, and the cis/trans selectivity only depends on the E/Z configuration of the starting exo-glycal. The four possible isomers of spirocyclopropyl ribose-1-phosphonate could thus be prepared in a controlled manner, protected and deprotected.
Collapse
Affiliation(s)
- Jun Cao
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
4
|
Tran TV, Désiré J, Auberger N, Blériot Y. Stereoselective Synthesis of 1- C-Diethylphosphonomethyl and -difluoromethyl Iminosugars from Sugar Lactams. J Org Chem 2022; 87:7581-7585. [PMID: 35584044 DOI: 10.1021/acs.joc.2c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy allowing the straightforward synthesis of 1-C-phosphonomethyl and 1-C-phosphonodifluoromethyl iminosugars is reported. Conversion of sugar lactams to the corresponding imines with Schwartz's reagent followed by their reaction with LiCH2P(O)(OEt)2 and LiCF2P(O)(OEt)2 stereoselectively afforded the 1,2-cis and 1,2-trans glycosyl phosphonates, respectively, in modest to good yields. Application of this methodology to C-2 orthogonally protected sugar lactams paved the way to 2-acetamido- and 2-deoxy-1-C-phosphonomethyl iminosugars.
Collapse
Affiliation(s)
- Thanh Van Tran
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| |
Collapse
|
5
|
Zhu S, Jagadeesh Y, Tran AT, Imaeda S, Boraston A, Alonzi DS, Poveda A, Zhang Y, Désiré J, Charollais-Thoenig J, Demotz S, Kato A, Butters TD, Jiménez-Barbero J, Sollogoub M, Blériot Y. Iminosugar C-Glycosides Work as Pharmacological Chaperones of NAGLU, a Glycosidase Involved in MPS IIIB Rare Disease*. Chemistry 2021; 27:11291-11297. [PMID: 34106504 DOI: 10.1002/chem.202101408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Mucopolysaccharidosis type IIIB is a devastating neurological disease caused by a lack of the lysosomal enzyme, α-N-acetylglucosaminidase (NAGLU), leading to a toxic accumulation of heparan sulfate. Herein we explored a pharmacological chaperone approach to enhance the residual activity of NAGLU in patient fibroblasts. Capitalizing on the three-dimensional structures of two modest homoiminosugar-based NAGLU inhibitors in complex with bacterial homolog of NAGLU, CpGH89, we have synthesized a library of 17 iminosugar C-glycosides mimicking N-acetyl-D-glucosamine and bearing various pseudo-anomeric substituents of both α- and β-configuration. Elaboration of the aglycon moiety results in low micromolar selective inhibitors of human recombinant NAGLU, but surprisingly it is the non-functionalized and wrongly configured β-homoiminosugar that was proved to act as the most promising pharmacological chaperone, promoting a 2.4 fold activity enhancement of mutant NAGLU at its optimal concentration.
Collapse
Affiliation(s)
- Sha Zhu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Yerri Jagadeesh
- Glycochemistry Group of "OrgaSynth" Team, IC2MP, UMR-CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France
| | - Anh Tuan Tran
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Shuki Imaeda
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Alisdair Boraston
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Station CSC V8W 3P6, Victoria, BC, Canada
| | - Dominic S Alonzi
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Ana Poveda
- CIC bioGUNE, Bizkaia Technological Park, Building 801A-1°, 48160, Derio-Bizkaia, Spain
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Jérôme Désiré
- Glycochemistry Group of "OrgaSynth" Team, IC2MP, UMR-CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France
| | | | - Stéphane Demotz
- Dorphan SA, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Terry D Butters
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technological Park, Building 801A-1°, 48160, Derio-Bizkaia, Spain
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Yves Blériot
- Glycochemistry Group of "OrgaSynth" Team, IC2MP, UMR-CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France
| |
Collapse
|
6
|
Abstract
Iminosugars are naturally occurring carbohydrate analogues known since 1967. These natural compounds and hundreds of their synthetic derivatives prepared over five decades have been mainly exploited to inhibit the glycosidases, the enzymes catalysing the glycosidic bond cleavage, in order to find new drugs for the treatment of type 2 diabetes and other diseases. However, iminosugars are also inhibitors of glycosyltransferases, the enzymes responsible for the synthesis of oligosaccharides and glycoconjugates. The selective inhibition of specific glycosyltransferases involved in cancer or bacterial infections could lead to innovative therapeutic agents. The synthesis and biological properties of all the iminosugars assayed to date as glycosyltransferase inhibitors are reviewed in the present article.
Collapse
Affiliation(s)
- Irene Conforti
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.
| |
Collapse
|
7
|
N-Alkylated Iminosugar Based Ligands: Synthesis and Inhibition of Human Lysosomal β-Glucocerebrosidase. Molecules 2020; 25:molecules25204618. [PMID: 33050585 PMCID: PMC7594070 DOI: 10.3390/molecules25204618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
The scope of a series of N-alkylated iminosugar based inhibitors in the d-gluco as well as d-xylo configuration towards their interaction with human lysosomal β-glucocerebrosidase has been evaluated. A versatile synthetic toolbox has been developed for the synthesis of N-alkylated iminosugar scaffolds conjugated to a variety of terminal groups via a benzoic acid ester linker. The terminal groups such as nitrile, azide, alkyne, nonafluoro-tert-butyl and amino substituents enable follow-up chemistry as well as visualisation experiments. All compounds showed promising inhibitory properties as well as selectivities for β-glucosidases, some exhibiting activities in the low nanomolar range for β-glucocerebrosidase.
Collapse
|
8
|
Chen X, Wong CH, Ma C. Targeting the Bacterial Transglycosylase: Antibiotic Development from a Structural Perspective. ACS Infect Dis 2019; 5:1493-1504. [PMID: 31283163 DOI: 10.1021/acsinfecdis.9b00118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One of the major threats to human life nowadays is widespread antibiotic resistance. Antibiotics are used to treat bacterial infections by targeting their essential pathways, such as the biosynthesis of bacterial cell walls. Bacterial transglycosylase, particularly glycosyltransferase family 51 (GT51), is one critical player in the cell wall biosynthesis and has long been known as a promising yet challenging target for antibiotic development. Here, we review the structural studies of this protein and summarize recent progress in developing its specific inhibitors, including synthetic substrate analogs and novel compounds identified from high-throughput screens. A detailed analysis of the protein-ligand interface has also provided us with valuable insights into the future antibiotic development against the bacterial transglycosylase.
Collapse
Affiliation(s)
- Xiaorui Chen
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
| |
Collapse
|
9
|
Foucart Q, Marrot J, Désiré J, Blériot Y. Site-Selective Debenzylation of C-Allyl Iminosugars Enables Their Stereocontroled Structure Diversification at the C-2 Position. Org Lett 2019; 21:4821-4825. [DOI: 10.1021/acs.orglett.9b01712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Quentin Foucart
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe “Synthèse Organique”,
Groupe Glycochimie, 4 rue Michel Brunet, Poitiers 86073 Cedex 9, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, UMR-CNRS 8180,
Université de Versailles, 45 avenue des États-Unis, Versailles 78035 Cedex, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe “Synthèse Organique”,
Groupe Glycochimie, 4 rue Michel Brunet, Poitiers 86073 Cedex 9, France
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe “Synthèse Organique”,
Groupe Glycochimie, 4 rue Michel Brunet, Poitiers 86073 Cedex 9, France
| |
Collapse
|
10
|
Zoidl M, Wolfsgruber A, Schalli M, Nasseri SA, Weber P, Stütz AE, Withers SG, Wrodnigg TM. Synthesis of modified 1,5-imino-d-xylitols as ligands for lysosomal β-glucocerebrosidase. MONATSHEFTE FUR CHEMIE 2019; 150:831-842. [PMID: 31178604 PMCID: PMC6534063 DOI: 10.1007/s00706-019-02427-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT Modified 1,5-dideoxy-1,5-imino-d-xylitol analogues with different substitution patterns involving position C-1 and/or the ring nitrogen were prepared, which were designed to serve as precursors for the preparation of iminoxylitol-based ligands and tools for the elucidation and modulation of human lysosomal β-glucocerebrosidase. Biological evaluation of the synthesized glycomimetics with a series of glycoside hydrolases revealed that these substitution patterns elicit excellent β-glucosidase selectivities. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Manuel Zoidl
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Andreas Wolfsgruber
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Michael Schalli
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Seyed A. Nasseri
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Patrick Weber
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Arnold E. Stütz
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Tanja M. Wrodnigg
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
11
|
Verma AK, Dubbu S, Chennaiah A, Vankar YD. Synthesis of di- and trihydroxy proline derivatives from D-glycals: Application in the synthesis of polysubstituted pyrrolizidines and bioactive 1C-aryl/alkyl pyrrolidines. Carbohydr Res 2019; 475:48-55. [PMID: 30825721 DOI: 10.1016/j.carres.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Six different types of O-benzyl protected proline derivatives have been synthesized from D-glycals and 2C-formyl-glycals. One of the di-O-benzyl protected proline derivatives has been utilized for the synthesis of polysubstituted pyrrolizidines via [3 + 2] cycloaddition in a stereoselective manner. Further, we also report on the stereoselective synthesis of biologically active 1C-aryl/alkyl pyrrolidines i.e. 4-epi-radicamine B, 4-epi-radicamine A, 1C-butyl and 1C-methyl pyrrolidines through double reductive amination of a variety of D-glucal derived diketones with p-methoxybenzylamine.
Collapse
Affiliation(s)
- Ashish Kumar Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sateesh Dubbu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Ande Chennaiah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Yashwant D Vankar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
12
|
Wang X, Krasnova L, Wu KB, Wu WS, Cheng TJ, Wong CH. Towards new antibiotics targeting bacterial transglycosylase: Synthesis of a Lipid II analog as stable transition-state mimic inhibitor. Bioorg Med Chem Lett 2018; 28:2708-2712. [PMID: 29602680 PMCID: PMC6182773 DOI: 10.1016/j.bmcl.2018.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Described here is the asymmetric synthesis of iminosugar 2b, a Lipid II analog, designed to mimic the transition state of transglycosylation catalyzed by the bacterial transglycosylase. The high density of functional groups, together with a rich stereochemistry, represents an extraordinary challenge for chemical synthesis. The key 2,6-anti- stereochemistry of the iminosugar ring was established through an iridium-catalyzed asymmetric allylic amination. The developed synthetic route is suitable for the synthesis of focused libraries to enable the structure-activity relationship study and late-stage modification of iminosugar scaffold with variable lipid, peptide and sugar substituents. Compound 2b showed 70% inhibition of transglycosylase from Acinetobacter baumannii, providing a basis for further improvement.
Collapse
Affiliation(s)
- Xiaolei Wang
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92122, USA
| | - Larissa Krasnova
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92122, USA
| | - Kevin Binchia Wu
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92122, USA
| | - Wei-Shen Wu
- Genomics Research Center, Academia Sinica, 128 Sec 2 Academia Road, Taipei, Nankang 115, Taiwan
| | - Ting-Jen Cheng
- Genomics Research Center, Academia Sinica, 128 Sec 2 Academia Road, Taipei, Nankang 115, Taiwan
| | - Chi-Huey Wong
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92122, USA; Genomics Research Center, Academia Sinica, 128 Sec 2 Academia Road, Taipei, Nankang 115, Taiwan.
| |
Collapse
|
13
|
Fontelle N, Yamamoto A, Arda A, Jiménez-Barbero J, Kato A, Désiré J, Blériot Y. 2-Acetamido-2-deoxy-l-iminosugarC-Alkyl andC-Aryl Glycosides: Synthesis and Glycosidase Inhibition. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nathalie Fontelle
- IC2MP-UMR CNRS 7285; Université de Poitiers; Equipe “Synthèse Organique”; Université de Poitiers; 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Arisa Yamamoto
- Department of Hospital Pharmacy; University of Toyama; 2630 Sugitani 930-0194 Toyama Japan
| | - Ana Arda
- Parque Tecnológico de Bizkaia; CIC bioGUNE; Edif. 801A-1° 48160 Derio-Bizkaia Spain
| | | | - Atsushi Kato
- Department of Hospital Pharmacy; University of Toyama; 2630 Sugitani 930-0194 Toyama Japan
| | - Jérôme Désiré
- IC2MP-UMR CNRS 7285; Université de Poitiers; Equipe “Synthèse Organique”; Université de Poitiers; 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Yves Blériot
- IC2MP-UMR CNRS 7285; Université de Poitiers; Equipe “Synthèse Organique”; Université de Poitiers; 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| |
Collapse
|
14
|
1-C-phosphonomethyl- and 1-C-difluorophosphonomethyl-1,4-imino-l-arabinitols as Galf transferase inhibitors: A comparison. Carbohydr Res 2018; 461:45-50. [DOI: 10.1016/j.carres.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
|
15
|
Johnson S, Bagdi AK, Tanaka F. C-Glycosidation of Unprotected Di- and Trisaccharide Aldopyranoses with Ketones Using Pyrrolidine-Boric Acid Catalysis. J Org Chem 2018; 83:4581-4597. [DOI: 10.1021/acs.joc.8b00340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sherida Johnson
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Avik Kumar Bagdi
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
16
|
Ramírez AS, Boilevin J, Mehdipour AR, Hummer G, Darbre T, Reymond JL, Locher KP. Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase. Nat Commun 2018; 9:445. [PMID: 29386647 PMCID: PMC5792488 DOI: 10.1038/s41467-018-02880-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/02/2018] [Indexed: 11/09/2022] Open
Abstract
The membrane-associated, processive and retaining glycosyltransferase PglH from Campylobacter jejuni is part of the biosynthetic pathway of the lipid-linked oligosaccharide (LLO) that serves as the glycan donor in bacterial protein N-glycosylation. Using an unknown counting mechanism, PglH catalyzes the transfer of exactly three α1,4 N-acetylgalactosamine (GalNAc) units to the growing LLO precursor, GalNAc-α1,4-GalNAc-α1,3-Bac-α1-PP-undecaprenyl. Here, we present crystal structures of PglH in three distinct states, including a binary complex with UDP-GalNAc and two ternary complexes containing a chemo-enzymatically generated LLO analog and either UDP or synthetic, nonhydrolyzable UDP-CH2-GalNAc. PglH contains an amphipathic helix ("ruler helix") that has a dual role of facilitating membrane attachment and glycan counting. The ruler helix contains three positively charged side chains that can bind the pyrophosphate group of the LLO substrate and thus limit the addition of GalNAc units to three. These results, combined with molecular dynamics simulations, provide the mechanism of glycan counting by PglH.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), CH-8093, Zürich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Berne, CH-3012, Berne, Switzerland
| | - Ahmad Reza Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, DE-60438, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, DE-60438, Frankfurt, Germany.,Institute of Biophysics, Goethe University, DE-60438, Frankfurt, Germany
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, CH-3012, Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, CH-3012, Berne, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), CH-8093, Zürich, Switzerland.
| |
Collapse
|
17
|
Cocaud C, Maujoin A, Zheng RB, Lowary TL, Rodrigues N, Percina N, Chartier A, Buron F, Routier S, Nicolas C, Martin OR. Triazole-Linked Iminosugars and Aromatic Systems as Simplified UDP-Galf
Mimics: Synthesis and Preliminary Evaluation as Galf
-Transferase Inhibitors. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chloé Cocaud
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Audrey Maujoin
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Ruixiang B. Zheng
- Alberta Glycomics Centre and Department of Chemistry; University of Alberta; GunningLemieux Chemistry Centre; 11227 Saskatchewan Drive T6G 2G2 Edmonton, Alberta Canada
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry; University of Alberta; GunningLemieux Chemistry Centre; 11227 Saskatchewan Drive T6G 2G2 Edmonton, Alberta Canada
| | - Nuno Rodrigues
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Nathalie Percina
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Agnes Chartier
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Frédéric Buron
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Olivier R. Martin
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| |
Collapse
|
18
|
Cocaud C, Nicolas C, Poisson T, Pannecoucke X, Legault CY, Martin OR. Tunable Approach for the Stereoselective Synthesis of 1-C-Diethylphosphono(difluoromethyl) Iminosugars as Glycosyl Phosphate Mimics. J Org Chem 2017; 82:2753-2763. [DOI: 10.1021/acs.joc.6b03071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chloé Cocaud
- Institut
de Chimie Organique et Analytique, UMR 7311, Université d’Orléans et CNRS, Rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Cyril Nicolas
- Institut
de Chimie Organique et Analytique, UMR 7311, Université d’Orléans et CNRS, Rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Thomas Poisson
- Normandie
Université, COBRA, UMR 6014 et FR 3038, Université de Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont Saint-Aignan Cedex, France
| | - Xavier Pannecoucke
- Normandie
Université, COBRA, UMR 6014 et FR 3038, Université de Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont Saint-Aignan Cedex, France
| | - Claude Y. Legault
- Department
of Chemistry, Centre in Green Chemistry and Catalysis, University of Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Olivier R. Martin
- Institut
de Chimie Organique et Analytique, UMR 7311, Université d’Orléans et CNRS, Rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| |
Collapse
|
19
|
Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics (Basel) 2016; 5:antibiotics5010012. [PMID: 27025527 PMCID: PMC4810414 DOI: 10.3390/antibiotics5010012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
Peptidoglycan (PG) is an essential macromolecular sacculus surrounding most bacteria. It is assembled by the glycosyltransferase (GT) and transpeptidase (TP) activities of multimodular penicillin-binding proteins (PBPs) within multiprotein complex machineries. Both activities are essential for the synthesis of a functional stress-bearing PG shell. Although good progress has been made in terms of the functional and structural understanding of GT, finding a clinically useful antibiotic against them has been challenging until now. In contrast, the TP/PBP module has been successfully targeted by β-lactam derivatives, but the extensive use of these antibiotics has selected resistant bacterial strains that employ a wide variety of mechanisms to escape the lethal action of these antibiotics. In addition to traditional β-lactams, other classes of molecules (non-β-lactams) that inhibit PBPs are now emerging, opening new perspectives for tackling the resistance problem while taking advantage of these valuable targets, for which a wealth of structural and functional knowledge has been accumulated. The overall evidence shows that PBPs are part of multiprotein machineries whose activities are modulated by cofactors. Perturbation of these systems could lead to lethal effects. Developing screening strategies to take advantage of these mechanisms could lead to new inhibitors of PG assembly. In this paper, we present a general background on the GTs and TPs/PBPs, a survey of recent issues of bacterial resistance and a review of recent works describing new inhibitors of these enzymes.
Collapse
|
20
|
McDonagh AW, Mahon MF, Murphy PV. Lewis Acid Induced Anomerization of Se-Glycosides. Application to Synthesis of α-Se-GalCer. Org Lett 2016; 18:552-5. [DOI: 10.1021/acs.orglett.5b03591] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anthony W. McDonagh
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Paul V. Murphy
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
21
|
Harit VK, Ramesh NG. Amino-functionalized iminocyclitols: synthetic glycomimetics of medicinal interest. RSC Adv 2016. [DOI: 10.1039/c6ra23513a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A review on the syntheses and biological activities of unnatural glycomimetics highlighting the effect of replacement of hydroxyl groups of natural iminosugars by amino functionalities is presented.
Collapse
Affiliation(s)
- Vimal Kant Harit
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| | - Namakkal G. Ramesh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| |
Collapse
|
22
|
Johnson S, Tanaka F. Direct synthesis of C-glycosides from unprotected 2-N-acyl-aldohexoses via aldol condensation–oxa-Michael reactions with unactivated ketones. Org Biomol Chem 2016; 14:259-64. [DOI: 10.1039/c5ob02094h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-glycosides were synthesized from unprotected 2-N-acyl-aldohexoses and unactivated ketones in one pot via aldol condensation–oxa-Michael reactions.
Collapse
Affiliation(s)
- Sherida Johnson
- Chemistry and Chemical Bioengineering Unit
- Okinawa Institute of Science and Technology Graduate University
- Onna
- Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit
- Okinawa Institute of Science and Technology Graduate University
- Onna
- Japan
| |
Collapse
|
23
|
Blériot Y, Tran AT, Prencipe G, Jagadeesh Y, Auberger N, Zhu S, Gauthier C, Zhang Y, Désiré J, Adachi I, Kato A, Sollogoub M. Synthesis of 1,2-trans-2-Acetamido-2-deoxyhomoiminosugars. Org Lett 2014; 16:5516-9. [DOI: 10.1021/ol502929h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yves Blériot
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Anh Tuan Tran
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Giuseppe Prencipe
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Yerri Jagadeesh
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Nicolas Auberger
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Sha Zhu
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Charles Gauthier
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Yongmin Zhang
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Jérôme Désiré
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet,
TSA 51106, 86073 Poitiers Cedex 9, France
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Matthieu Sollogoub
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| |
Collapse
|
24
|
Blériot Y, Auberger N, Jagadeesh Y, Gauthier C, Prencipe G, Tran AT, Marrot J, Désiré J, Yamamoto A, Kato A, Sollogoub M. Synthesis of 1,2-cis-Homoiminosugars Derived from GlcNAc and GalNAc Exploiting a β-Amino Alcohol Skeletal Rearrangement. Org Lett 2014; 16:5512-5. [DOI: 10.1021/ol502926f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yves Blériot
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex
9, France
| | - Nicolas Auberger
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex
9, France
| | - Yerri Jagadeesh
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex
9, France
| | - Charles Gauthier
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex
9, France
| | - Giuseppe Prencipe
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Anh Tuan Tran
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| | - Jérôme Marrot
- Institut
Lavoisier
de Versailles, UMR-CNRS 8180, Université de Versailles, 45 avenue des États-Unis, 78035 Versailles Cedex, France
| | - Jérôme Désiré
- Glycochemistry
Group of “Organic Synthesis” Team, Université de Poitiers, UMR-CNRS
7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex
9, France
| | - Arisa Yamamoto
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Matthieu Sollogoub
- Sorbonne Universités,
UPMC Univ Paris 06, Institut Universitaire de France, UMR-CNRS 8232, IPCM, LabEx MiChem, F-75005 Paris, France
| |
Collapse
|