1
|
Datta D, Theile CS, Wassarman K, Qin J, Racie T, Schmidt K, Jiang Y, Sigel R, Janas MM, Egli M, Manoharan M. Rational optimization of siRNA to ensure strand bias in the interaction with the RNA-induced silencing complex. Chem Commun (Camb) 2023; 59:6347-6350. [PMID: 37144553 DOI: 10.1039/d3cc01143g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
To ensure specificity of small interfering RNAs (siRNAs), the antisense strand must be selected by the RNA-induced silencing complex (RISC). We have previously demonstrated that a 5'-morpholino-modified nucleotide at the 5'-end of the sense strand inhibits its interaction with RISC ensuring selection of the desired antisense strand. To improve this antagonizing binding property even further, a new set of morpholino-based analogues, Mo2 and Mo3, and a piperidine analogue, Pip, were designed based on the known structure of Argonaute2, the slicer enzyme component of RISC. Sense strands of siRNAs were modified with these new analogues, and the siRNAs were evaluated in vitro and in mice for RNAi activity. Our data demonstrated that Mo2 is the best RISC inhibitor among the modifications tested and that it effectively mitigates sense strand-based off-target activity of siRNA.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Christopher S Theile
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Kelly Wassarman
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - June Qin
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Tim Racie
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Karyn Schmidt
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Rachel Sigel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| |
Collapse
|
2
|
Carvalho JO, Oliveira Neto JG, Silva Filho JG, de Sousa FF, Freire PTC, Santos AO, Façanha Filho PF. Physicochemical properties calculated using DFT method and changes of 5-methyluridine hemihydrate crystals at high temperatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121594. [PMID: 35841856 DOI: 10.1016/j.saa.2022.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
5-methyluridine hemihydrate (5 mU) single crystals were synthesized by the slow solvent evaporation method. The physicochemical properties, such as frontier molecular orbitals, global reactivity indices and vibrational were computationally studied through density functional theory (DFT). In addition, structural, vibrational, and thermal properties were obtained by powder X-ray diffraction (PXRD), Raman spectroscopy, thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). PXRD evaluated the structural behavior of 5 mU crystal in the temperature range of 300-460 K. The high-temperature PXRD results suggested that the crystal undergoes two dehydration processes, being a first occurring from the orthorhombic structure (P21212) to triclinic (P1), in which the water losses occurred around 380 K. A second dehydration triggers the change from the triclinic structure to monoclinic (P21) within the 420-435 K temperature range. Furthermore, after this temperature, the anhydrous 5 mU suffers a melting process near 460 K, which is remarkably characterized as an irreversible process. Raman spectroscopy was carried out to identify the vibrational modes linked to the water molecule and the noticeable changes in these bands due to high-temperature effects around 380 K and 410 K. Indeed, changes on Raman bands, such as intensity inversion, the disappearance of bands associated with the hydrogen bonds formed from the water molecules and uracil group, and the ribose group were observed. Finally, this study provided details on the structural and vibrational changes caused by the dehydration of 5 mU crystals and the importance of hydrogen bonds for understanding the intermolecular interactions of the 5 mU, a methylated nucleoside with important biological functions.
Collapse
Affiliation(s)
- Jhonatam O Carvalho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto Federal do Maranhão, Campus Açailândia, MA 65930-000, Brazil
| | - João G Oliveira Neto
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - José G Silva Filho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Francisco F de Sousa
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - Paulo T C Freire
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE 60455-760, Brazil
| | - Adenilson O Santos
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Pedro F Façanha Filho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil.
| |
Collapse
|
3
|
New MraY AA Inhibitors with an Aminoribosyl Uridine Structure and an Oxadiazole. Antibiotics (Basel) 2022; 11:antibiotics11091189. [PMID: 36139968 PMCID: PMC9495235 DOI: 10.3390/antibiotics11091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
New inhibitors of the bacterial transferase MraY from Aquifex aeolicus (MraYAA), based on the aminoribosyl uridine central core of known natural MraY inhibitors, have been designed to generate interaction of their oxadiazole linker with the key amino acids (H324 or H325) of the enzyme active site, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin. A panel of ten compounds was synthetized notably thanks to a robust microwave-activated one-step sequence for the synthesis of the oxadiazole ring that involved the O-acylation of an amidoxime and subsequent cyclization. The synthetized compounds, with various hydrophobic substituents on the oxadiazole ring, were tested against the MraYAA transferase activity. Although with poor antibacterial activity, nine out of the ten compounds revealed the inhibition of the MraYAA activity in the range of 0.8 µM to 27.5 µM.
Collapse
|
4
|
Maverick MA, Gaillard M, Vasseur J, Debart F, Smietana M. Direct Access to Unique C‐5’‐Acyl Modified Nucleosides through Liebeskind–Srogl Cross‐Coupling Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mary Anne Maverick
- Institut des Biomolécules Max Mousseron Université de Montpellier CNRS ENSCM 1919, route de Mende 34293 Montpellier
| | - Marie Gaillard
- Institut des Biomolécules Max Mousseron Université de Montpellier CNRS ENSCM 1919, route de Mende 34293 Montpellier
| | - Jean‐Jacques Vasseur
- Institut des Biomolécules Max Mousseron Université de Montpellier CNRS ENSCM 1919, route de Mende 34293 Montpellier
| | - Françoise Debart
- Institut des Biomolécules Max Mousseron Université de Montpellier CNRS ENSCM 1919, route de Mende 34293 Montpellier
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron Université de Montpellier CNRS ENSCM 1919, route de Mende 34293 Montpellier
| |
Collapse
|
5
|
Oliver M, Le Corre L, Poinsot M, Corio A, Madegard L, Bosco M, Amoroso A, Joris B, Auger R, Touzé T, Bouhss A, Calvet-Vitale S, Gravier-Pelletier C. Synthesis, biological evaluation and molecular modeling of urea-containing MraY inhibitors. Org Biomol Chem 2021; 19:5844-5866. [PMID: 34115086 DOI: 10.1039/d1ob00710f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The straightforward synthesis of aminoribosyl uridines substituted by a 5'-methylene-urea is described. Their convergent synthesis involves the urea formation from various activated amides and an azidoribosyl uridine substituted at the 5' position by an aminomethyl group. This common intermediate resulted from the diastereoselective glycosylation of a phthalimido uridine derivative with a ribosyl fluoride as a ribosyl donor. The inhibition of the MraY transferase activity by the synthetized 11 urea-containing inhibitors was evaluated and 10 compounds revealed MraY inhibition with IC50 ranging from 1.9 μM to 16.7 μM. Their antibacterial activity was also evaluated on a panel of Gram-positive and Gram-negative bacteria. Four compounds exhibited a good activity against Gram-positive bacterial pathogens with MIC ranging from 8 to 32 μg mL-1, including methicillin resistant Staphylococcus aureus (MRSA) and Enterococcus faecium. Interestingly, one compound also revealed antibacterial activity against Pseudomonas aeruginosa with MIC equal to 64 μg mL-1. Docking experiments predicted two modes of positioning of the active compounds urea chain in different hydrophobic areas (HS2 and HS4) within the MraY active site from Aquifex aeolicus. However, molecular dynamics simulations showed that the urea chain adopts a binding mode similar to that observed in structural model and targets the hydrophobic area HS2.
Collapse
Affiliation(s)
- Martin Oliver
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Laurent Le Corre
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Mélanie Poinsot
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Alessandra Corio
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Léa Madegard
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Michaël Bosco
- Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France.
| | - Ana Amoroso
- Unité de Physiologie et Génétique Bactériennes, Centre d'Ingénierie des Protéines, Département des Sciences de la Vie, Université de Liège, Sart Tilman, B4000 Liège 1, Belgique
| | - Bernard Joris
- Unité de Physiologie et Génétique Bactériennes, Centre d'Ingénierie des Protéines, Département des Sciences de la Vie, Université de Liège, Sart Tilman, B4000 Liège 1, Belgique
| | - Rodolphe Auger
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris Sud, CEA, F-91405, Orsay, France
| | - Thierry Touzé
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris Sud, CEA, F-91405, Orsay, France
| | - Ahmed Bouhss
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | | | | |
Collapse
|
6
|
Nakamura H, Tsukano C, Yoshida T, Yasui M, Yokouchi S, Kobayashi Y, Igarashi M, Takemoto Y. Total Synthesis of Caprazamycin A: Practical and Scalable Synthesis of syn-β-Hydroxyamino Acids and Introduction of a Fatty Acid Side Chain to 1,4-Diazepanone. J Am Chem Soc 2019; 141:8527-8540. [PMID: 31067040 DOI: 10.1021/jacs.9b02220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The first total synthesis of caprazamycin A (1), a representative liponucleoside antibiotic, is described. Diastereoselective aldol reactions of aldehydes 12 and 25-27, derived from uridine, with diethyl isocyanomalonate 13 and phenylcarbamate 21 were investigated using thiourea catalysts 14 or bases to synthesize syn-β-hydroxyamino acid derivatives. The 1,4-diazepanone core of 1 was constructed using a Mitsunobu reaction, and the fatty acid side chain was introduced using a stepwise sequence based on model studies. Notably, global deprotection was realized using palladium black and formic acid without hydrogenating the olefin in the uridine unit.
Collapse
Affiliation(s)
- Hugh Nakamura
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Chihiro Tsukano
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Takuma Yoshida
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Motohiro Yasui
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shinsuke Yokouchi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo , 3-14-23 Kamiosaki , Shinagawa-ku, Tokyo 141-0021 , Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
7
|
Du LH, Shen JH, Dong Z, Zhou NN, Cheng BZ, Ou ZM, Luo XP. Enzymatic synthesis of nucleoside analogues from uridines and vinyl esters in a continuous-flow microreactor. RSC Adv 2018; 8:12614-12618. [PMID: 35541271 PMCID: PMC9079605 DOI: 10.1039/c8ra01030g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/19/2018] [Indexed: 02/05/2023] Open
Abstract
We achieved the effective controllable regioselective acylation of the primary hydroxyl group of uridine derivatives catalyzed by Lipase TL IM from Thermomyces lanuginosus with excellent conversion and regioselectivity. Various reaction parameters were studied. These regioselective acylations performed in continuous flow microreactors are a proof-of-concept opening the use of enzymatic microreactors in uridine derivative biotransformations. We achieved the effective controllable regioselective acylation of the primary hydroxyl group of uridine derivatives catalyzed by Lipase TL IM from Thermomyces lanuginosus with excellent conversion and regioselectivity.![]()
Collapse
Affiliation(s)
- Li-Hua Du
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Jia-Hong Shen
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Zhen Dong
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Na-Ni Zhou
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Bing-Zhuo Cheng
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Zhi-Min Ou
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Xi-Ping Luo
- Department of Environmental Science and Technology
- Zhejiang A&F University
- Hangzhou
- China
| |
Collapse
|
8
|
Ben Othman R, Fer MJ, Le Corre L, Calvet-Vitale S, Gravier-Pelletier C. Effect of uridine protecting groups on the diastereoselectivity of uridine-derived aldehyde 5'-alkynylation. Beilstein J Org Chem 2017; 13:1533-1541. [PMID: 28845198 PMCID: PMC5550804 DOI: 10.3762/bjoc.13.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
The 5'-alkynylation of uridine-derived aldehydes is described. The addition of alkynyl Grignard reagents on the carbonyl group is significantly influenced by the 2',3'-di-O-protecting groups (R1): O-alkyl groups led to modest diastereoselectivities (65:35) in favor of the 5'R-isomer, whereas O-silyl groups promoted higher diastereoselectivities (up to 99:1) in favor of the 5'S-isomer. A study related to this protecting group effect on the diastereoselectivity is reported.
Collapse
Affiliation(s)
- Raja Ben Othman
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| | - Mickaël J Fer
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| | - Laurent Le Corre
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| | - Sandrine Calvet-Vitale
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| | - Christine Gravier-Pelletier
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| |
Collapse
|
9
|
Nakamura H, Yoshida T, Tsukano C, Takemoto Y. Synthesis of CPZEN-45: Construction of the 1,4-Diazepin-2-one Core by the Cu-Catalyzed Intramolecular Amidation of a Vinyl Iodide. Org Lett 2016; 18:2300-3. [PMID: 27088563 DOI: 10.1021/acs.orglett.6b00943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CPZEN-45 was developed as an antibiotic against Mycobacterium tuberculosis by the chemical modification of caprazamycins. CPZEN-45 has been synthesized in this study by the Cu-catalyzed intramolecular amidation of a complex vinyl iodide precursor bearing uridine and sugar moieties with a secondary amide, allowing for the construction of its 1,4-diazepin-2-one core.
Collapse
Affiliation(s)
- Hugh Nakamura
- Graduate School of Pharmaceutical Sciences, Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuma Yoshida
- Graduate School of Pharmaceutical Sciences, Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chihiro Tsukano
- Graduate School of Pharmaceutical Sciences, Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Fer MJ, Bouhss A, Patrão M, Le Corre L, Pietrancosta N, Amoroso A, Joris B, Mengin-Lecreulx D, Calvet-Vitale S, Gravier-Pelletier C. 5'-Methylene-triazole-substituted-aminoribosyl uridines as MraY inhibitors: synthesis, biological evaluation and molecular modeling. Org Biomol Chem 2015; 13:7193-222. [PMID: 26008868 DOI: 10.1039/c5ob00707k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The straightforward synthesis of 5'-methylene-[1,4]-triazole-substituted aminoribosyl uridines is described. Two families of compounds were synthesized from a unique epoxide which was regioselectively opened by acetylide ions (for compounds II) or azide ions (for compounds III). Sequential diastereoselective glycosylation with a ribosyl fluoride derivative, Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) with various complementary azide and alkyne partners afforded the targeted compounds after final deprotection. The biological activity of the 16 resulting compounds together with that of 14 previously reported compounds I, lacking the 5' methylene group, was evaluated on the MraY transferase activity. Out of the 30 tested compounds, 18 compounds revealed MraY inhibition with IC50 ranging from 15 to 150 μM. A molecular modeling study was performed to rationalize the observed structure-activity relationships (SAR), which allowed us to correlate the activity of the most potent compounds with an interaction involving Leu191 of MraYAA. The antibacterial activity was also evaluated and seven compounds exhibited a good activity against Gram-positive bacterial pathogens with MIC ranging from 8 to 32 μg mL(-1), including the methicillin resistant Staphylococcus aureus (MRSA).
Collapse
Affiliation(s)
- Mickaël J Fer
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, CICB-Paris (Centre Interdisciplinaire Chimie Biologie-Paris), 45 rue des Saints Pères, 75270 Paris 06, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakamura H, Tsukano C, Yasui M, Yokouchi S, Igarashi M, Takemoto Y. Total Synthesis of (−)-Caprazamycin A. Angew Chem Int Ed Engl 2015; 54:3136-9. [DOI: 10.1002/anie.201411954] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 12/19/2022]
|
12
|
Nakamura H, Tsukano C, Yasui M, Yokouchi S, Igarashi M, Takemoto Y. Total Synthesis of (−)-Caprazamycin A. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Kogami M, Koketsu M. An efficient method for the synthesis of selenium modified nucleosides: its application in the synthesis of Se-adenosyl-l-selenomethionine (SeAM). Org Biomol Chem 2015; 13:9405-17. [DOI: 10.1039/c5ob01316j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A versatile method for the synthesis of 5′-selenium modified nucleosides has been explored on the basis of a 2-(trimethylsilyl)ethyl (TSE) selenyl group.
Collapse
Affiliation(s)
- Masakazu Kogami
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| |
Collapse
|