1
|
Natarajan P, Chatterjee A, J SJS, Peruncheralathan S. Unexpected dearomatization of N-protected 5-aminopyrazoles at ambient temperature: a simple route to highly functionalized pyrazolines. Org Biomol Chem 2024; 22:6288-6293. [PMID: 39041174 DOI: 10.1039/d4ob00879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We present a new strategy for the dearomatized hydroxylation of 5-aminopyrazoles using a hypervalent iodine reagent at room temperature. This method produces a series of 4-hydroxy-5-iminopyrazolines with good to excellent yields within 2 hours. Additionally, we demonstrate a domino reaction for the synthesis of 4-hydroxy-pyrazolones. Mechanistic studies indicate that the dearomatization proceeds through a cationic intermediate.
Collapse
Affiliation(s)
- Pradeep Natarajan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Arpita Chatterjee
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Siddharth Jaya Sajeevan J
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| |
Collapse
|
2
|
Noël F, El Kaïm L, Masson G, Claraz A. Electrocatalytic dehydrogenative and defluorinative coupling between aldehyde-derived N, N-dialkylhydrazones and fluoromalonates: synthesis of 2-pyrazolines. Org Biomol Chem 2024; 22:4269-4273. [PMID: 38742988 DOI: 10.1039/d4ob00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An electrocatalytic synthesis of 2-pyrazolines via dehydrogenative and defluorinative cross-coupling reactions between (hetero)arylaldehyde-derived N,N-dialkylhydrazones and fluoromalonates is disclosed. Salient features of this work include (i) readily available starting materials, (ii) practical reaction conditions, and (ii) a formal oxidative (4 + 1)-cycloaddition via triple C-H bond functionalization. Cyclic voltammetry analyses support the electrocatalytic formation of an α-fluoromalonyl radical.
Collapse
Affiliation(s)
- Florent Noël
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Laurent El Kaïm
- Laboratoire de Synthèse Organique (LSO-UMR 76523), CNRS, Ecole Polytechnique, ENSTA-Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91128 Palaiseau Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, Porcheville, France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
3
|
Sharma YB, Das D, Guru MM. Cu(II)-Catalyzed Aminocyclization of N-Propargyl Hydrazones to Substituted Pyrazolines. J Org Chem 2023; 88:16340-16351. [PMID: 37947756 DOI: 10.1021/acs.joc.3c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
An efficient route for the copper(II)-catalyzed synthesis of substituted pyrazolines from readily accessible N-propargyl hydrazones has been reported under open flask conditions via intramolecular C-N bond formation. N-acyl and N-tosyl-substituted pyrazolines have been prepared in moderate to excellent yields. Mechanistic investigations using NMR, high-resolution mass spectrometry (HRMS), and Hammett analyses suggest that the Cu(II) catalyst generally acts as a Lewis acid to form an iminium-ion intermediate via cyclization, which afforded the desired pyrazolines upon hydrolysis. One progesterone receptor antagonist has also been synthesized utilizing this reaction methodology.
Collapse
Affiliation(s)
- Yogesh Brijwashi Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Debosmita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Murali Mohan Guru
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| |
Collapse
|
4
|
Xue Y, Wu C, Li H, Wang C. Acetic Acid-Catalyzed (3 + 2) Cyclization of 2-Aroyl-3-aryl-1,1-dicyanocyclopropanes with Arylhydrazines: To trans-4-Dicyanomethyl-1,3,5-triaryl-4,5-dihydropyrazoles. J Org Chem 2023; 88:15478-15485. [PMID: 37824753 DOI: 10.1021/acs.joc.3c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Acetic acid-catalyzed (3 + 2) cyclization reaction of substituted 2-aroyl-3-aryl-1,1-dicyanocyclopropanes with arylhydrazines was investigated for the efficient synthesis of 4-dicyanomethyl-1,3,5-triaryl-4,5-dihydropyrazoles in good yields, in which 4,5-double substituents are predominantly trans selective. This approach included the consecutive condensation, ring opening, and double nucleophilic cyclization reaction.
Collapse
Affiliation(s)
- Yuhang Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Chengjun Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Haiwen Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
5
|
Singh V, Mishra BK, Kumar D, Tiwari B. Construction of Highly Functionalized C4-Oxyacylated and Aminated Pyrazolines. Org Lett 2023; 25:7089-7094. [PMID: 37748130 DOI: 10.1021/acs.orglett.3c02366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Pyrazolines and pyrazolones are prevalent cores in drugs and bioactive molecules. Functionalizing them with heteroatoms on the ring improves or expands their clinical efficacy. However, a general method to selectively heterofunctionalize them at C4 and C5 is still elusive. Herein, we have demonstrated an iodine(III)-mediated construction of C4-heterofunctionalized pyrazolines from α,β-unsaturated hydrazones. The oxyacylated and aminated products, bearing a tertiary as well as a secondary stereocenter, were obtained via aza-Michael, followed by a C-O/C-N bond formation. A deprotection/oxidation sequence produced pyrazolones in a quantitative yield.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bal Krishna Mishra
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Deepak Kumar
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
6
|
Zhang X, Wang H, Li Z, Shu Y, Gan S, Zhang X, Shao H, Wang C. Chemodivergent Synthesis of Aza-Heterocycles with a Quarternary Carbon Center via [4 + 1] Annulation between Azoalkenes and α-Bromo Carbonyl Compounds. ACS OMEGA 2022; 7:40963-40972. [PMID: 36406503 PMCID: PMC9670695 DOI: 10.1021/acsomega.2c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
An efficient [4 + 1] annulation reaction between in situ generated azoalkene intermediates and α-bromocarbonyls has been established. A series of skeletally diverse aza-heterocycles with a functionalized quaternary center were obtained in up to 89% yield under mild conditions.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
- Zunyi
Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Haibo Wang
- Zhejiang
Hongyuan Pharmaceutical Co., Ltd., Chem & APIs, Industrial Zone, Linhai, Taizhou 310001, Zhejiang, P.R. China
| | - Ziwei Li
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
| | - Yan Shu
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
| | - Song Gan
- Zunyi
Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xuefang Zhang
- Zunyi
Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Huawu Shao
- Natural
Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 100045, P.R. China
| | - Chaoyong Wang
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
| |
Collapse
|
7
|
Sun Y, Yang Z, Lu SN, Chen Z, Wu XF. Formal [4+1] Annulation of Azoalkenes with CF 3-Imidoyl Sulfoxonium Ylides and Dual Double Bond Isomerization Cascade: Synthesis of Trifluoromethyl-Containing Pyrazole Derivatives. Org Lett 2022; 24:6822-6827. [PMID: 36082936 DOI: 10.1021/acs.orglett.2c02746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A straightforward strategy for the metal-free construction of trifluoromethyl-containing pyrazole derivatives has been achieved from readily available α-halo hydrazones and CF3-imidoyl sulfoxonium ylides. The cascade transformation proceeds through the formal [4+1] cycloaddition followed by an unexpected dual double bond isomerization. The protocol features mild conditions, easy operation, excellent substrate compatibility, and good regioselectivity. The synthetic utility is demonstrated by scale-up reaction and further elaboration of the obtained pyrazole products.
Collapse
Affiliation(s)
- Yue Sun
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuguang Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shu-Ning Lu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
8
|
Katiyar S, Kumar A, Sashidhara KV. Silver-catalyzed decarboxylative cyclization for the synthesis of substituted pyrazoles from 1,2-diaza-1,3-dienes and α-keto acids. Chem Commun (Camb) 2022; 58:7297-7300. [PMID: 35678363 DOI: 10.1039/d2cc01793h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A silver-catalyzed decarboxylative cyclization process has been developed for the synthesis of substituted pyrazoles from the readily available 1,2-diaza-1,3-dienes and α-keto acids. Under the optimized conditions, a series of multisubstituted pyrazoles were well prepared in moderate to good yields. In addition, the synthetic utility of this protocol has been demonstrated by synthesizing analogs of FDA approved drugs such as anti-inflammatory drug, lonazolac and antiobesity drug, rimonabant.
Collapse
Affiliation(s)
- Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India. .,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh - 201002, India
| | - Abhishek Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India. .,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh - 201002, India.,Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| |
Collapse
|
9
|
Brambilla E, Abbiati G, Caselli A, Pirovano V, Rossi E. Coinage metal carbenes in heterocyclic synthesis via formation of new carbon-heteroatom bonds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wang Y, Wu S, Wang L, Sun J, Yan CG, Han Y. Synthesis of dihydropyrazoles enabled by Pd-catalyzed carboamination of alkenyl hydrazones with alkenyl and aryl halides. Org Chem Front 2022. [DOI: 10.1039/d2qo00653g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of dihydropyrazoles enabled by Pd-catalyzed carboamination of alkenyl hydrazones with alkenyl or aryl halides is described. This method provides a practical and efficient route towards the synthesis of functionalized dihydropyrazoles.
Collapse
Affiliation(s)
- Yinqiang Wang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Shuaijie Wu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lei Wang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
11
|
Addition of malonic esters to azoalkenes generated in situ from α-bromo- and α-chlorohydrazones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Wang C, Fang L, Wang Z. Base-induced inverse-electron-demand aza-Diels-Alder reaction of azoalkenes and 1,3,5-triazinanes: Facile approaches to tetrahydro-1,2,4-triazines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Zhao P, Li Z, He J, Liu X, Feng X. Asymmetric catalytic 1,3-dipolar cycloaddition of α-diazoesters for synthesis of 1-pyrazoline-based spirochromanones and beyond. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1027-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Ye R, Sun J, Han Y, Yan CG. Molecular diversity of TEMPO-mediated cycloaddition of ketohydrazones and 3-phenacylideneoxindoles. NEW J CHEM 2021. [DOI: 10.1039/d0nj06036d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This reaction selectively proceeded via aza-Diels–Alder reaction, [3+2] cycloaddition and ring-opening of oxindole to give diverse spirooxindoles and polysubstituted pyrazoles.
Collapse
Affiliation(s)
- Rong Ye
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Jing Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Ying Han
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| |
Collapse
|
15
|
Tu L, Gao L, Wang X, Shi R, Ma R, Li J, Lan X, Zheng Y, Liu J. [3 + 2] Cycloaddition of Nitrile Imines with Enamides: An Approach to Functionalized Pyrazolines and Pyrazoles. J Org Chem 2020; 86:559-573. [PMID: 33301335 DOI: 10.1021/acs.joc.0c02244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient [3 + 2] cycloaddition of in situ generated nitrile imines with enamides has been established. A wide range of functionalized pyrazoline derivatives (53 examples) were obtained in moderate to good yields (up to 96%) under very mild conditions. This protocol features broad substrate scope, good functional group tolerance, and operational simplicity. Practical transformation of the products into useful pyrazoles via a one-pot process and the scalability of this protocol highlight the utility of this synthetic methodology.
Collapse
Affiliation(s)
- Liang Tu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Limei Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiaomeng Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ruijie Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Rupei Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Junfei Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiaoshuang Lan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yongsheng Zheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
16
|
Zhang X, Pan Y, Wang H, Liang C, Ma X, Jiao W, Shao H. Strategy to Construct 1,2,3‐Triazoles by K
2
CO
3
‐Mediated [4+1] Annulation Reactions of
N
‐Acetyl Hydrazones with Bifunctional Amino Reagents. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoke Zhang
- Natural Products Research Centre,Chengdu Institute of Biology Chinese Academy of Sciences Chengdu People's Republic of China
- Zunyi Medical University Zunyi Guizhou People's Republic of China
- University of Chinese Academy of Sciences People's Republic of China
| | - Yang Pan
- Natural Products Research Centre,Chengdu Institute of Biology Chinese Academy of Sciences Chengdu People's Republic of China
- University of Chinese Academy of Sciences People's Republic of China
| | - Haibo Wang
- Natural Products Research Centre,Chengdu Institute of Biology Chinese Academy of Sciences Chengdu People's Republic of China
- Zhejiang Hongyuan Pharmaceutical Co., Ltd. Chem & APIs. Industrial Zone, Linhai Taizhou Zhejiang People's Republic of China
- University of Chinese Academy of Sciences People's Republic of China
| | - Chong Liang
- Natural Products Research Centre,Chengdu Institute of Biology Chinese Academy of Sciences Chengdu People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Centre,Chengdu Institute of Biology Chinese Academy of Sciences Chengdu People's Republic of China
| | - Wei Jiao
- Natural Products Research Centre,Chengdu Institute of Biology Chinese Academy of Sciences Chengdu People's Republic of China
| | - Huawu Shao
- Natural Products Research Centre,Chengdu Institute of Biology Chinese Academy of Sciences Chengdu People's Republic of China
| |
Collapse
|
17
|
Matsuzaki H, Takeda N, Yasui M, Ito Y, Konishi K, Ueda M. Synthesis of Pyrazoles Utilizing the Ambiphilic Reactivity of Hydrazones. Org Lett 2020; 22:9249-9252. [PMID: 33196204 DOI: 10.1021/acs.orglett.0c03465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Brønsted acid-mediated synthesis of pyrazoles from conjugated hydrazones through a β-protonation/nucleophilic addition/cyclization/aromatization sequence was developed. This protocol utilizing the ambiphilic reactivity of hydrazones enables not only self-condensation but also cross-condensation, affording multisubstituted pyrazoles in high yields, with a broad substrate scope. This sequential reaction proceeds under mild conditions via a simple operation. Moreover, the method can be applied to the synthesis of a nonsteroidal anti-inflammatory drug, Lonazolac.
Collapse
Affiliation(s)
- Haruo Matsuzaki
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Norihiko Takeda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Motohiro Yasui
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Yuta Ito
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Keiji Konishi
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Masafumi Ueda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| |
Collapse
|
18
|
Yuan WC, Quan BX, Zhao JQ, You Y, Wang ZH, Zhou MQ. [4 + 2] Annulation Reaction of In Situ Generated Azoalkenes with Azlactones: Access to 4,5-Dihydropyridazin-3(2 H)-Ones. J Org Chem 2020; 85:11812-11821. [PMID: 32856456 DOI: 10.1021/acs.joc.0c01592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unprecedented [4 + 2] annulation reaction between in situ formed azoalkenes and azlactones has been developed. This reaction provides a facile access to an array of 4,5-dihydropyridazin-3(2H)-one derivatives, which are very promising in medicinal applications as potential biologically active candidates. Notably, these dihydropyridazinones could also be synthesized via a one-pot reaction protocol by using the in situ formed azlactones from N-acyl amino acids and in situ generated azoalkenes from α-halogeno hydrazones. The potential applications of the methodology were also demonstrated by gram-scale experiments and the versatile conversions of the products into other nitrogen-containing compounds.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Bao-Xue Quan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
19
|
Li Z, Li S, Kan T, Wang X, Xin X, Hou Y, Gong P. Silver(I)‐ and Base‐Mediated formal [4+3] Cycloaddition of
in Situ
generated 1,2‐Diaza‐1,3‐dienes with
C,N
‐Cyclic Azomethine Imines: An Efficient Protocol for the Synthesis of Tetrazepine Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zefei Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Shuaikang Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Tianjiao Kan
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Xinyue Wang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Xin Xin
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yunlei Hou
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Ping Gong
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| |
Collapse
|
20
|
Pan L, Jin F, Fu R, Gao K, Zhou S, Bao X. Oxidative Ring-Opening of 1H
-Pyrazol-5-amines and Its Application in Constructing Pyrazolo-Pyrrolo-Pyrazine Scaffolds by Domino Cyclization. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Pan
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road, Suzhou Industrial Park 215123 Suzhou Jiangsu China
| | - Feng Jin
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road, Suzhou Industrial Park 215123 Suzhou Jiangsu China
| | - Rui Fu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road, Suzhou Industrial Park 215123 Suzhou Jiangsu China
| | - Ke Gao
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road, Suzhou Industrial Park 215123 Suzhou Jiangsu China
| | - Shaofang Zhou
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road, Suzhou Industrial Park 215123 Suzhou Jiangsu China
| | - Xiaoguang Bao
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road, Suzhou Industrial Park 215123 Suzhou Jiangsu China
| |
Collapse
|
21
|
Quan BX, Zhuo JR, Zhao JQ, Zhang ML, Zhou MQ, Zhang XM, Yuan WC. [4 + 1] annulation reaction of cyclic pyridinium ylides with in situ generated azoalkenes for the construction of spirocyclic skeletons. Org Biomol Chem 2020; 18:1886-1891. [PMID: 32104832 DOI: 10.1039/c9ob02733e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two new types of cyclic pyridinium ylides were designed and further used in reactions with azoalkenes to access structurally diverse spirocyclic compounds. A range of spiropyrazoline oxindoles could be smoothly obtained in up to 99% yield via a [4 + 1] annulation process with oxindole 3-pyridinium ylides as C1 synthons. Similarly, a series of spiropyrazoline indanones could be prepared with indanone 2-pyridinium ylides as C1 synthons. This work represents the first example of cyclic pyridinium ylides as C1 synthons for the efficient construction of spirocyclic compounds.
Collapse
Affiliation(s)
- Bao-Xue Quan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Rui Zhuo
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Ming-Liang Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China. and Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
22
|
Ding R, Lu R, Fang Z, Liu Y, Wang S, Liang X, Zhang C, Huang T, Hu J. Synthesis of 4,5-Dihydropyrazoles via Palladium-Catalyzed Cyclization Reactions of β,γ-Unsaturated Hydrazones with Aryl Iodides. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rongcai Ding
- School of Pharmacy, Weifang Medical University, Weifang 261053 People’s Republic of China
| | - Rongmei Lu
- School of Pharmacy, Weifang Medical University, Weifang 261053 People’s Republic of China
| | - Zixuan Fang
- School of Pharmacy, Weifang Medical University, Weifang 261053 People’s Republic of China
| | - Yanjun Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053 People’s Republic of China
| | - Shaoyu Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053 People’s Republic of China
| | - Xiaoxia Liang
- School of Pharmacy, Weifang Medical University, Weifang 261053 People’s Republic of China
| | - Cheng Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053 People’s Republic of China
| | - Tianyi Huang
- School of Pharmacy, Weifang Medical University, Weifang 261053 People’s Republic of China
| | - Jinxing Hu
- School of Pharmacy, Weifang Medical University, Weifang 261053 People’s Republic of China
| |
Collapse
|
23
|
Sequential MCR via Staudinger/Aza-Wittig versus Cycloaddition Reaction to Access Diversely Functionalized 1-Amino-1 H-Imidazole-2(3 H)-Thiones. Molecules 2019; 24:molecules24203785. [PMID: 31640206 PMCID: PMC6832714 DOI: 10.3390/molecules24203785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 11/28/2022] Open
Abstract
A multicomponent reaction (MCR) strategy, alternative to the known cycloaddition reaction, towards variously substituted 1-amino-1H-imidazole-2(3H)-thione derivatives has been successfully developed. The novel approach involves α-halohydrazones whose azidation process followed by tandem Staudinger/aza-Wittig reaction with CS2 in a sequential MCR regioselectively leads to the target compounds avoiding the formation of the regioisomer iminothiazoline heterocycle. The approach can be applied to a range of differently substituted α-halohydrazones bearing also electron-withdrawing groups confirming the wide scope and the substituent tolerance of the process for the synthesis of the target compounds. Interestingly, the concurrent presence of reactive functionalities in the scaffolds so obtained ensures post-modifications in view of N-bridgeheaded heterobicyclic structures.
Collapse
|
24
|
Mari G, Ciccolini C, De Crescentini L, Favi G, Santeusanio S, Mancinelli M, Mantellini F. Metal and Oxidant-Free Brønsted Acid-Mediated Cascade Reaction to Substituted Benzofurans. J Org Chem 2019; 84:10814-10824. [PMID: 31407579 DOI: 10.1021/acs.joc.9b01363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Substituted hydroxy-benzofurans are easily accessible by treatment of resorcinols and 1,2-diaza-1,3-dienes (DDs) under acidic conditions. The reaction happens through an uncommon Michael reaction between aromatic derivatives as aromatic C(sp2)-H nucleophiles and DDs as acceptors. Also, the behavior of different phenols and 2-naphthol was investigated.
Collapse
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Cecilia Ciccolini
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Michele Mancinelli
- Department of Industrial Chemistry "Toso Montanari" , University of Bologna , Viale del Risorgimento 4 , 40136 Bologna (Bo) , Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| |
Collapse
|
25
|
Yin W, Fang L, Wang Z, Gao F, Li Z, Wang Z. Synthesis of Bicyclo[4.1.0]tetrahydropyridazines by a Sequential [4 + 2] and [1 + 2] Annulation Reaction of Azoalkenes and Crotonate-Derived Sulfur Ylides. Org Lett 2019; 21:7361-7364. [PMID: 31483675 DOI: 10.1021/acs.orglett.9b02661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The base-induced unprecedented tandem [4 + 2] and [1 + 2] annulation reaction of in situ formed 1,2-diaza-1,3-dienes and crotonate-derived sulfur ylides is reported. This protocol provides a novel and practical method for the synthesis of cyclopropane-fused tetrahydropyridazines with a quaternary carbon center in synthetically useful yield. In this tandem reaction, three new bonds were formed in one pot, and the crotonate-derived sulfur ylide serves as a C3 synthon.
Collapse
Affiliation(s)
- Wenhao Yin
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 401331 , China
| | - Ling Fang
- College of Environment and Resources , Chongqing Technology and Business University , Chongqing 400067 , China
| | - Zhiyong Wang
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 401331 , China
| | - Fang Gao
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 401331 , China
| | - Zhefeng Li
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 401331 , China
| | - Zhiyong Wang
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 401331 , China
| |
Collapse
|
26
|
Zhang Y, Cao Y, Lu L, Zhang S, Bao W, Huang S, Rao Y. Perylenequinonoid-Catalyzed [4 + 1] and [4 + 2] Annulations of Azoalkenes: Photocatalytic Access to 1,2,3-Thiadiazole/1,4,5,6-Tetrahydropyridazine Derivatives. J Org Chem 2019; 84:7711-7721. [PMID: 31117482 DOI: 10.1021/acs.joc.9b00545] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitrogen-containing heterocycles are especially considered "privileged" structural scaffolds for the development of new drugs. However, traditional methods of organic synthesis are mainly based on thermal cycloaddition reaction; thus, the exploration of new strategies for the rapid assembly of N-heterocycles under mild conditions is highly desirable. Here, we developed a new method that visible light along with 1 mol % cercosporin, which is one of the perylenequinonoid pigments with excellent properties of photosensitization and can be easily produced by a new isolated endophytic fungus Cercospora sp. JNU001 strain with high yield through microbial fermentation, catalyzes the synthesis of 1,2,3-thiadiazoles and 1,4,5,6-tetrahydropyridazines by a photocatalytic process with good regioselectivity and broad functional-group compatibility under mild conditions. Thus, a bridge between microbial fermentation and organic photocatalysis for the construction of nitrogen-containing heterocycles was set up in a sustainable, environmentally friendly manner.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuping Huang
- College of Chemistry , Fuzhou University, Fuzhou , Fujian 350108 , P. R. China
| | | |
Collapse
|
27
|
Chen Z, Meng L, Ding Z, Hu J. Construction of Versatile N-Heterocycles from in situ Generated 1,2-Diaza-1,3-dienes. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190227162840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-Heterocyclic architectures are omnipresent in many bioactive natural
products, synthetic drugs, and materials science, thus have evoked a vast research interest
of academic, as well as industrial chemists. Recently, several efficient methods have been
developed for the preparation of various nitrogen-containing compounds with in situ generated
1,2-diaza-1,3-dienes from the easily available precursors including α -haloketohydrazones,
α-hydroxyl ketohydrazones, thiadiazole dioxides or their analogues, and
other simple hydrazones. These methods are considered powerful tools in the synthesis of
five-, six- and seven-membered ring heterocyclic compounds with good to excellent levels
of conversions and selectivities. This review mainly summarizes recent advances on the
chemistry of construction of versatile N-heterocycles from in situ generated 1,2-diaza-1,3-
dienes and presents an extensive summary of the application scopes and limitations of the corresponding cyclization
reactions. Moreover, enantioselective approaches are also covered.
Collapse
Affiliation(s)
- Zhangpei Chen
- Center for Molecular Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Lingxin Meng
- Center for Molecular Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Zhiqiang Ding
- Center for Molecular Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
28
|
Chen B, Chu WD, Liu QZ. Formal [4 + 1] cycloaddition of in situ generated 1,2-diaza-1,3-dienes with diazo esters: facile approaches to dihydropyrazoles containing a quaternary center. RSC Adv 2019; 9:1487-1490. [PMID: 35518004 PMCID: PMC9059575 DOI: 10.1039/c8ra08909d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/02/2019] [Indexed: 01/04/2023] Open
Abstract
A Cu(ii)/bisoxazoline ligand-promoted formal [4 + 1] cycloaddition of diazo esters with azoalkenes formed in situ has been developed. This strategy provides a potential protocol for the construction of dihydropyrazoles containing a quaternary center with good to excellent yields.
Collapse
Affiliation(s)
- Bo Chen
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University No. 1, Shida Road Nanchong 637002 P. R. China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University No. 1, Shida Road Nanchong 637002 P. R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University No. 1, Shida Road Nanchong 637002 P. R. China
| |
Collapse
|
29
|
Wei L, Shen C, Hu YZ, Tao HY, Wang CJ. Enantioselective synthesis of multi-nitrogen-containing heterocycles using azoalkenes as key intermediates. Chem Commun (Camb) 2019; 55:6672-6684. [PMID: 31134230 DOI: 10.1039/c9cc02371b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chiral multi-nitrogen-containing heterocycles, such as pyrazole, imidazole and pyridazine, are widely found in naturally occurring organic compounds and pharmaceuticals, and hence, their stereoselective and efficient synthesis is an important issue in organic synthesis. Out of the variety of methods that have been developed over the past century, the catalytic asymmetric cyclization and cycloaddition reactions are recognized as the most synthetically useful strategies due to their step-, atom- and redox-economic nature. In particular, the recently developed annulation reactions using azoalkenes as key intermediates show their great ability to construct diverse types of multi-nitrogen-containing heterocycles. In this feature article, we critically analyse the strategic development and the efficient transformation of azoalkenes to chiral heterocycles and α-functionalized ketone derivatives since 2010. The plausible mechanism for each reaction model is also discussed.
Collapse
Affiliation(s)
- Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | |
Collapse
|
30
|
Dong K, Pei C, Zeng Q, Qiu L, Hu W, Qian Y, Xu X. Copper-catalyzed [4+1]-annulation of 2-alkenylindoles with diazoacetates: a facile access to dihydrocyclopenta[b]indoles. Chem Commun (Camb) 2019; 55:6393-6396. [DOI: 10.1039/c9cc02257k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A copper-catalyzed [4+1]-annulation of 2-vinylindoles with diazoacetates: a facile access to the dihydrocyclopenta[b]indoles bearing two contiguous all-carbon quaternary centers.
Collapse
Affiliation(s)
- Kuiyong Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Chao Pei
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Qian Zeng
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lihua Qiu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
31
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. 1,2-Diaza-1,3-diene-Based Multicomponent Reactions in Sequential Protocols to Synthesize Arylamino-5-hydrazonothiophene-3-carboxylates. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences; Section of Organic Chemistry and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences; Section of Organic Chemistry and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences; Section of Organic Chemistry and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences; Section of Organic Chemistry and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences; Section of Organic Chemistry and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| |
Collapse
|
32
|
Liu BB, Bai HW, Liu H, Wang SY, Ji SJ. Cascade Trisulfur Radical Anion (S3•–) Addition/Electron Detosylation Process for the Synthesis of 1,2,3-Thiadiazoles and Isothiazoles. J Org Chem 2018; 83:10281-10288. [DOI: 10.1021/acs.joc.8b01450] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bei-Bei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Hui-Wen Bai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Huan Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
33
|
Shao J, Chen W, Zhao M, Shu K, Liu H, Tang P. Substrate-Controlled Synthesis of Spirocyclopropylpyrazolones and Bicyclic 4,5-Dihydropyrazoles from 1,2-Diaza-1,3-dienes with Sulfur Ylides. Org Lett 2018; 20:3992-3995. [DOI: 10.1021/acs.orglett.8b01562] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaan Shao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Wenteng Chen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Menghao Zhao
- Innovation Center of Chinese Medicine, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| | - Ke Shu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Huan Liu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Pai Tang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
34
|
Metal-catalyzed synthesis of cyclic imines: a versatile scaffold in organic synthesis. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2264-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Yu J, Cai C. Photocatalytic oxidative cyclization of α-halo hydrazones with tetrahydroisoquinoline for construction of isoquino[3,4-a][1,2,4]-triazines. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Wang Z, Yang Y, Gao F, Wang Z, Luo Q, Fang L. Synthesis of 5-(Trifluoromethyl)pyrazolines by Formal [4 + 1]-Annulation of Fluorinated Sulfur Ylides and Azoalkenes. Org Lett 2018; 20:934-937. [DOI: 10.1021/acs.orglett.7b03811] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhiyong Wang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yanzhou Yang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Fang Gao
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Zhiyong Wang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Qian Luo
- College
of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ling Fang
- College
of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
37
|
Zhang ZJ, Song J. An isothiourea-catalyzed asymmetric formal [4 + 2] cycloaddition of in situ generated azoalkenes with C1 ammonium enolates. Org Chem Front 2018. [DOI: 10.1039/c8qo00657a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient isothiourea-catalyzed stereoselective formal [4 + 2] cycloaddition of α-chloro cyclic hydrazones with carboxylic acids has been developed.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| | - Jin Song
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| |
Collapse
|
38
|
Zhao J, Jiang M, Liu JT. Transition metal-free aminofluorination of β,γ-unsaturated hydrazones: base-controlled regioselective synthesis of fluorinated dihydropyrazole and tetrahydropyridazine derivatives. Org Chem Front 2018. [DOI: 10.1039/c7qo01105a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various base-controlled regioselective reactions of β,γ-unsaturated hydrazones with Selectfluor were achieved under transition metal-free conditions.
Collapse
Affiliation(s)
- Juan Zhao
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Min Jiang
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Jin-Tao Liu
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
39
|
Mari G, Verboni M, De Crescentini L, Favi G, Santeusanio S, Mantellini F. Assembly of fully substituted 2,5-dihydrothiophenes via a novel sequential multicomponent reaction. Org Chem Front 2018. [DOI: 10.1039/c8qo00343b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A sequential multicomponent reaction between ketoesters, isothiocyanates and 1,2-diaza-1,3-dienes to create 2,5-dihydrothiophenes that can be converted into thiophenes.
Collapse
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences
- Section of Organic Chemistry and Organic Natural Compounds
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| | - Michele Verboni
- Department of Biomolecular Sciences
- Section of Organic Chemistry and Organic Natural Compounds
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences
- Section of Organic Chemistry and Organic Natural Compounds
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences
- Section of Organic Chemistry and Organic Natural Compounds
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences
- Section of Organic Chemistry and Organic Natural Compounds
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences
- Section of Organic Chemistry and Organic Natural Compounds
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| |
Collapse
|
40
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Lillini S, Mantellini F. Unexpected Synthesis of 2,3,5,6-Tetrahydro-1H
-pyrrolo[3,4-c
]pyridine-1,3,6-triones by a Double Michael Addition/CS2
Extrusion/Double Cyclization Sequence. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences; Organic Chemistry Section and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences; Organic Chemistry Section and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences; Organic Chemistry Section and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences; Organic Chemistry Section and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Samuele Lillini
- Organic Chemistry Section and Organic Natural Compounds; Dompé Farmaceutici s.p.a.; 80131 Naples Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences; Organic Chemistry Section and Organic Natural Compounds; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| |
Collapse
|
41
|
Yang MN, Yan DM, Zhao QQ, Chen JR, Xiao WJ. Synthesis of Dihydropyrazoles via Ligand-Free Pd-Catalyzed Alkene Aminoarylation of Unsaturated Hydrazones with Diaryliodonium Salts. Org Lett 2017; 19:5208-5211. [DOI: 10.1021/acs.orglett.7b02480] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meng-Nan Yang
- CCNU−uOttawa
Joint Research Centre, Hubei International Scientific and Technological
Cooperation Base of Pesticide and Green Synthesis, Key Laboratory
of Pesticides and Chemical Biology, Ministry of Education, College
of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Dong-Mei Yan
- CCNU−uOttawa
Joint Research Centre, Hubei International Scientific and Technological
Cooperation Base of Pesticide and Green Synthesis, Key Laboratory
of Pesticides and Chemical Biology, Ministry of Education, College
of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Quan-Qing Zhao
- CCNU−uOttawa
Joint Research Centre, Hubei International Scientific and Technological
Cooperation Base of Pesticide and Green Synthesis, Key Laboratory
of Pesticides and Chemical Biology, Ministry of Education, College
of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jia-Rong Chen
- CCNU−uOttawa
Joint Research Centre, Hubei International Scientific and Technological
Cooperation Base of Pesticide and Green Synthesis, Key Laboratory
of Pesticides and Chemical Biology, Ministry of Education, College
of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Wen-Jing Xiao
- CCNU−uOttawa
Joint Research Centre, Hubei International Scientific and Technological
Cooperation Base of Pesticide and Green Synthesis, Key Laboratory
of Pesticides and Chemical Biology, Ministry of Education, College
of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
Zhao QQ, Chen J, Yan DM, Chen JR, Xiao WJ. Photocatalytic Hydrazonyl Radical-Mediated Radical Cyclization/Allylation Cascade: Synthesis of Dihydropyrazoles and Tetrahydropyridazines. Org Lett 2017. [DOI: 10.1021/acs.orglett.7b01609] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Quan-Qing Zhao
- CCNU-uOttawa
Joint Research Centre, Key Laboratory of Pesticides and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jun Chen
- CCNU-uOttawa
Joint Research Centre, Key Laboratory of Pesticides and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Dong-Mei Yan
- CCNU-uOttawa
Joint Research Centre, Key Laboratory of Pesticides and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa
Joint Research Centre, Key Laboratory of Pesticides and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa
Joint Research Centre, Key Laboratory of Pesticides and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
43
|
Mari G, Crescentini LD, Favi G, Lombardi P, Fiorillo G, Giorgi G, Mantellini F. Heteroring-Annulated Pyrrolino-Tetrahydroberberine Analogues. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Giacomo Mari
- Biomolecular Science Department; Organic Chemistry and Organic Natural Compounds Section; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Lucia De Crescentini
- Biomolecular Science Department; Organic Chemistry and Organic Natural Compounds Section; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Gianfranco Favi
- Biomolecular Science Department; Organic Chemistry and Organic Natural Compounds Section; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Paolo Lombardi
- Naxospharma; Via Giuseppe Di Vittorio 70 20026 Novate Milanese (MI) Italy
| | - Gaetano Fiorillo
- Naxospharma; Via Giuseppe Di Vittorio 70 20026 Novate Milanese (MI) Italy
| | - Gianluca Giorgi
- Department of Chemistry; University of Siena; Via Aldo Moro 53100 Siena Italy
| | - Fabio Mantellini
- Biomolecular Science Department; Organic Chemistry and Organic Natural Compounds Section; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| |
Collapse
|
44
|
Zhao HW, Pang HL, Zhao YD, Liu YY, Zhao LJ, Chen XQ, Song XQ, Feng NN, Du J. Construction of 2,3,4,5-tetrahydro-1,2,4-triazines via [4 + 2] cycloaddition of α-halogeno hydrazones to imines. RSC Adv 2017. [DOI: 10.1039/c6ra27767e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the presence of sodium carbonate, the [4 + 2] cycloaddition of α-halogeno hydrazones to imines proceeded readily, and furnished 2,3,4,5-tetrahydro-1,2,4-triazines in moderate to high chemical yields.
Collapse
Affiliation(s)
- Hong-Wu Zhao
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Hai-Liang Pang
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Yu-Di Zhao
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Yue-Yang Liu
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Li-Jiao Zhao
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Xiao-Qin Chen
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Xiu-Qing Song
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Ning-Ning Feng
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Juan Du
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|
45
|
Yu JM, Lu GP, Cai C. Photocatalytic radical cyclization of α-halo hydrazones with β-ketocarbonyls: facile access to substituted dihydropyrazoles. Chem Commun (Camb) 2017; 53:5342-5345. [DOI: 10.1039/c7cc01470h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mild and efficient method for the photocatalytic radical cyclization of α-halo hydrazones with β-ketocarbonyls has been described.
Collapse
Affiliation(s)
- Jing-miao Yu
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| | - Guo-Ping Lu
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| | - Chun Cai
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| |
Collapse
|
46
|
Sathishkannan G, Tamilarasan VJ, Srinivasan K. Nucleophilic ring-opening reactions of trans-2-aroyl-3-aryl-cyclopropane-1,1-dicarboxylates with hydrazines. Org Biomol Chem 2017; 15:1400-1406. [DOI: 10.1039/c6ob02552h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
trans-2-Aroyl-3-aryl-cyclopropane-1,1-dicarboxylates gave dihydropyrazoles when treated with arylhydrazines in refluxing EtOH, whereas they afforded cyclopropane-fused pyridazinones upon treatment with hydrazines in refluxing AcOH.
Collapse
|
47
|
Deng Y, Pei C, Arman H, Dong K, Xu X, Doyle MP. Syntheses of Tetrahydropyridazine and Tetrahydro-1,2-diazepine Scaffolds through Cycloaddition Reactions of Azoalkenes with Enol Diazoacetates. Org Lett 2016; 18:5884-5887. [DOI: 10.1021/acs.orglett.6b02965] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongming Deng
- Department
of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Chao Pei
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hadi Arman
- Department
of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kuiyong Dong
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xinfang Xu
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Michael P. Doyle
- Department
of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
48
|
Bakanas IJ, Moura-Letts G. Synthesis of Tetrasubstituted Pyrazoles from Substituted Hydrazines and β-Keto Esters. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ian J. Bakanas
- Department of Chemistry and Biochemistry; Rowan University; 201 Mullica Hill Rd. Glassboro New Jersey USA
| | - Gustavo Moura-Letts
- Department of Chemistry and Biochemistry; Rowan University; 201 Mullica Hill Rd. Glassboro New Jersey USA
| |
Collapse
|
49
|
Yang W, Yuan C, Liu Y, Mao B, Sun Z, Guo H. [4 + 3] Cycloaddition of Phthalazinium Dicyanomethanides with Azoalkenes Formed in Situ: Synthesis of Triazepine Derivatives. J Org Chem 2016; 81:7597-603. [PMID: 27467599 DOI: 10.1021/acs.joc.6b01296] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[4 + 3] cycloaddition of phthalazinium dicyanomethanides with in situ formed azoalkenes was achieved, providing an access to various 1,2,4-triazepine derivatives in moderate to excellent yields.
Collapse
|
50
|
Shelke AM, Suryavanshi G. Fluoride-Assisted Synthesis of 1,4,5,6-Tetrahydropyridazines via [4 + 2] Cyclodimerization of in Situ-Generated Azoalkenes Followed by a C–N Bond Cleavage. Org Lett 2016; 18:3968-71. [DOI: 10.1021/acs.orglett.6b01551] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anil M. Shelke
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|