1
|
Todkari IA, Chaudhary P, Kulkarni MJ, Ganesh KN. Supramolecular polyplexes from Janus peptide nucleic acids (bm-PNA-G5): self-assembled bm-PNA G-quadruplex and its tetraduplex with DNA. Org Biomol Chem 2024; 22:6810-6821. [PMID: 39113548 DOI: 10.1039/d4ob00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nucleic acids (DNA and RNA) can form diverse secondary structures ranging from hairpins to duplex, triplex, G4-tetraplex and C4-i-motifs. Many of the DNA analogues designed as antisense oligonucleotides (ASO) are also adept at embracing such folded structures, although to different extents with altered stabilities. One such analogue, peptide nucleic acid (PNA), which is uncharged and achiral, forms hybrids with complementary DNA/RNA with greater stability and specificity than DNA:DNA/RNA hybrids. Like DNAs, these single-stranded PNAs can form PNA:DNA/RNA duplexes, PNA:DNA:PNA triplexes, PNA-G4 tetraplexes and PNA-C4-i-motifs. We have recently designed Janus-like bimodal PNAs endowed with two different nucleobase sequences on either side of a single aminoethylglycyl (aeg) PNA backbone and shown that these can simultaneously bind to two complementary DNA sequences from both faces of PNA. This leads to the formation of supramolecular polyplexes such as double duplexes, triple duplexes and triplexes of double duplexes with appropriate complementary DNA/RNA. Herein, we demonstrate that Janus/bimodal PNA with a poly G-sequence on the triazole side of the PNA backbone and mixed bases on the t-amide side, templates the initial formation of a (PNA-G5)4 tetraplex (triazole side), followed by the formation of a PNA:DNA duplex (t-amide side). Such a polyplex shows synergistic overall stabilisation compared to the isolated duplexes/quadruplex. The assembly of polyplexes with a shared backbone for duplexes and tetraplexes is programmable and may have potential applications in the self-assembly of nucleic acid nano- and origami structures. It is also shown that Janus PNAs enter the cells better than the standard aeg-PNA oligomers, and hence have implications for in vivo applications as well.
Collapse
Affiliation(s)
- Iranna Annappa Todkari
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Preeti Chaudhary
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
| | - Mahesh J Kulkarni
- Division of Biochemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411008, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, India
| |
Collapse
|
2
|
Graczyk A, Radzikowska-Cieciura E, Kaczmarek R, Pawlowska R, Chworos A. Modified Nucleotides for Chemical and Enzymatic Synthesis of Therapeutic RNA. Curr Med Chem 2023; 30:1320-1347. [PMID: 36239720 DOI: 10.2174/0929867330666221014111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
In recent years, RNA has emerged as a medium with a broad spectrum of therapeutic potential, however, for years, a group of short RNA fragments was studied and considered therapeutic molecules. In nature, RNA plays both functions, with coding and non-coding potential. For RNA, like any other therapeutic, to be used clinically, certain barriers must be crossed. Among them, there are biocompatibility, relatively low toxicity, bioavailability, increased stability, target efficiency and low off-target effects. In the case of RNA, most of these obstacles can be overcome by incorporating modified nucleotides into its structure. This may be achieved by both, in vitro and in vivo biosynthetic methods, as well as chemical synthesis. Some advantages and disadvantages of each approach are summarized here. The wide range of nucleotide analogues has been tested for their utility as monomers for RNA synthesis. Many of them have been successfully implemented, and a lot of pre-clinical and clinical studies involving modified RNA have been carried out. Some of these medications have already been introduced into clinics. After the huge success of RNA-based vaccines that were introduced into widespread use in 2020, and the introduction to the market of some RNA-based drugs, RNA therapeutics containing modified nucleotides appear to be the future of medicine.
Collapse
Affiliation(s)
- Anna Graczyk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Renata Kaczmarek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
3
|
Beck KM, Nielsen P. Double-Headed 2'-Deoxynucleotides That Hybridize to DNA and RNA Targets via Normal and Reverse Watson-Crick Base Pairs. J Org Chem 2022; 87:5113-5124. [PMID: 35363467 DOI: 10.1021/acs.joc.1c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through the use of modified nucleotides, synthetic nucleic acids have found several fields of application within biotechnology and in the pharmaceutical industry. We have previously introduced nucleotides with an additional functional nucleobase linked to C2' of arabinonucleotides (BX). These double-headed nucleotides fit neatly into DNA·DNA duplexes, where they can replace the corresponding natural dinucleotides and thus condense the molecular information. Here, we introduce a 2'-deoxy version of the BX design with inversion of the C2' stereochemistry (dSBX) with the aim of obtaining improved RNA recognition. Specifically, dSBX analogues with cytosine or isocytosine attached to C2' of 2'-deoxyuridine (dSUC and dSUiC) were synthesized and evaluated in duplexes. Whereas the dSBX design did not outperform the BX design in terms of mimicking dinucleotides in nucleic acid duplexes, it was able to engage in reverse Watson-Crick pairing using its 2'-base. This was evident from the ability of the dSUC cytosine to form stable mis-matching base pairs with opposite cytosines identified as hemiprotonated C·C+ pairs. Furthermore, specific base-pairing with guanine was only observed for the isocytosine-bearing dSUiC monomer. Very stable duplexes were obtained with dSUC/iC monomers in each strand indicating that fully modified double-headed nucleic acid sequences could be based on the dSBX design.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
4
|
Beck KM, Pham RL, Nanim RA, Laustsen A, Nielsen P. Double‐Headed Nucleotides with Increased Base‐Pairing Affinity and Specificity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kasper M. Beck
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Robert L. Pham
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Rita A. Nanim
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Anders Laustsen
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
5
|
Beck KM, Sharma PK, Hornum M, Risgaard NA, Nielsen P. Double-headed nucleic acids condense the molecular information of DNA to half the number of nucleotides. Chem Commun (Camb) 2021; 57:9128-9131. [PMID: 34498649 DOI: 10.1039/d1cc03539h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleotide monomers that hold two nucleobases each, i.e. double-headed nucleotides, have been shown to form two sets of functional Watson-Crick base pairs when incorporated into dsDNA, and they hereby behave as dinucleotides. To form the basis for fully modified double-headed nucleic acids (DhNA), we have prepared three new DhNA monomers and can now demonstrate that the molecular information of 10 Watson-Crick base pairs can be condensed to highly stable 5-mer DhNA duplexes.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| | - Nikolaj A Risgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| |
Collapse
|
6
|
Verma V, Maity J, Maikhuri VK, Sharma R, Ganguly HK, Prasad AK. Double-headed nucleosides: Synthesis and applications. Beilstein J Org Chem 2021; 17:1392-1439. [PMID: 34194579 PMCID: PMC8204177 DOI: 10.3762/bjoc.17.98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Double-headed nucleoside monomers have immense applications for studying secondary nucleic acid structures. They are also well-known as antimicrobial agents. This review article accounts for the synthetic methodologies and the biological applications of double-headed nucleosides.
Collapse
Affiliation(s)
- Vineet Verma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen’s College, University of Delhi, Delhi-110 007, India
| | - Vipin K Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Ritika Sharma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Himal K Ganguly
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata-700 054, India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| |
Collapse
|
7
|
Beck KM, Ruder L, Nicolai TS, Pham RL, Risgaard NA, Hornum M, Nielsen P. Double‐Headed Nucleotides with Non‐Native Nucleobases: Synthesis and Duplex Studies. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kasper M. Beck
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Linette Ruder
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Tine S. Nicolai
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Robert L. Pham
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Nikolaj A. Risgaard
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Mick Hornum
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Poul Nielsen
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
8
|
Mishra UK, Sanghvi YS, Egli M, Ramesh NG. Supramolecular Architecture through Self-Organization of Janus-Faced Homoazanucleosides. J Org Chem 2021; 86:367-378. [PMID: 33284627 DOI: 10.1021/acs.joc.0c02140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Design of Janus-faced or double-headed homoazanucleosides with the possibility to undergo self-organization through base pairing has been conceptualized and accomplished. The synthetic strategy demonstrates the unique ability to introduce two similar or complementary nucleobases on opposite arms of a chiral polyhydroxypyrrolidine while also ensuring that their faces are anti to each other to allow only intermolecular interactions between the nucleobases, an essential requisite for self-assembly. Single-crystal X-ray structures were determined for all three types of homoazanucleosides, one possessing two adenine molecules, the other with two thymine moieties, and the third containing both adenine and thymine. The crystal structures of all three display noncovalent interactions, including Watson-Crick base pairing, Hoogsteen H-bonding, and π-π stacking, resulting in unusual supramolecular patterns. The most striking supramolecular motif among them, which emerged from the crystal structure of the homoazanucleoside containing both adenine and thymine, is a left-handed helix formed through Watson-Crick pairing between nucleobases. The present study thus forms a prelude to the design of Janus-faced building blocks to establish helical pillars as well as lateral branches that together define a three-dimensional (3D) lattice. The ready accessibility of these molecules is expected to spur the next generation of discoveries in the design of functional nanomaterials.
Collapse
Affiliation(s)
- Umesh K Mishra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Gupta MK, Madhanagopal BR, Ganesh KN. Peptide Nucleic Acid with Double Face: Homothymine–Homocytosine Bimodal Cα-PNA (bm-Cα-PNA) Forms a Double Duplex of the bm-PNA2:DNA Triplex. J Org Chem 2020; 86:414-428. [DOI: 10.1021/acs.joc.0c02158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Manoj Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Bharath Raj Madhanagopal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Krishna N. Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| |
Collapse
|
10
|
Beck KM, Krogh MB, Hornum M, Ludford PT, Tor Y, Nielsen P. Double-headed nucleotides as xeno nucleic acids: information storage and polymerase recognition. Org Biomol Chem 2020; 18:7213-7223. [PMID: 32909574 PMCID: PMC7517788 DOI: 10.1039/d0ob01426e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Xeno nucleic acids (XNAs) are artificial genetic systems based on sugar-modified nucleotides. Herein, we investigate double-headed nucleotides as a new XNA. A new monomer, AT, is presented, and together with previous double-headed nucleotide monomers, new nucleic acid motifs consisting of up to five consecutive A·T base pairs have been obtained. Sections composed entirely of double-headed nucleotides are well-tolerated within a DNA duplex and can condense the genetic information. For instance, a 13-mer duplex is condensed to an 11-mer modified duplex containing four double-headed nucleotides while simultaneously improving duplex thermal stability with +14.0 °C. Also, the transfer of information from double-headed to natural nucleotides by DNA polymerases has been examined. The first double-headed nucleoside triphosphate was prepared but could not be recognized and incorporated by the tested DNA polymerases. On the other hand, it proved possible for Therminator DNA polymerase to transfer the information of a double-headed nucleotide in a template sequence to natural DNA under controlled conditions.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Marie B Krogh
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Paul T Ludford
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|
11
|
Hornum M, Stendevad J, Sharma PK, Kumar P, Nielsen RB, Petersen M, Nielsen P. Base-Pairing Properties of Double-Headed Nucleotides. Chemistry 2019; 25:7387-7395. [PMID: 30942502 DOI: 10.1002/chem.201901077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 12/28/2022]
Abstract
Nucleotides that contain two nucleobases (double-headed nucleotides) have the potential to condense the information of two separate nucleotides into one. This presupposes that both bases must successfully pair with a cognate strand. Here, double-headed nucleotides that feature cytosine, guanine, thymine, adenine, hypoxanthine, and diaminopurine linked to the C2'-position of an arabinose scaffold were developed and examined in full detail. These monomeric units were efficiently prepared by convergent synthesis and incorporated into DNA oligonucleotides by means of the automated phosphoramidite method. Their pairing efficiency was assessed by UV-based melting-temperature analysis in several contexts and extensive molecular dynamics studies. Altogether, the results show that these double-headed nucleotides have a well-defined structure and invariably behave as functional dinucleotide mimics in DNA duplexes.
Collapse
Affiliation(s)
- Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Julie Stendevad
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Pawan Kumar
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Rasmus B Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Michael Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
12
|
Beck K, Reslow-Jacobsen C, Hornum M, Henriksen C, Nielsen P. A double-headed nucleotide with two cytosines: DNA with condensed information and improved duplex stability. Bioorg Med Chem Lett 2019; 29:740-743. [PMID: 30655212 DOI: 10.1016/j.bmcl.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
Double-headed nucleotide monomers are capable of condensing the genetic information of DNA. Herein, a double-headed nucleotide with two cytosine bases (CC) is constructed. The additional cytosine is connected through a methylene linker to the 2'-position of arabinocytidine. The nucleotide is incorporated into oligonucleotides and its effect on duplex stability is studied. For single incorporations, a thermal stabilization of 4.0 °C is found as compared to the unmodified duplex and it is shown that both nucleobases of CC participate in Watson-Crick base pairing. In combination with the previously published UT monomer, it is also shown that multiple incorporations are tolerated. For instance, a 16-mer sequence is targeted by a 13-mer oligonucleotide by using one CC and two UT monomers without compromising the overall duplex stability. Finally, the potential of double-headed nucleotides in triplex-forming oligonucleotides is studied, however, with the conclusion that the present design is not well-suited for this function.
Collapse
Affiliation(s)
- Kasper Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Reslow-Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Christian Henriksen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
13
|
Hornum M, Sharma PK, Reslow-Jacobsen C, Kumar P, Petersen M, Nielsen P. Condensing the information in DNA with double-headed nucleotides. Chem Commun (Camb) 2018; 53:9717-9720. [PMID: 28820207 DOI: 10.1039/c7cc05047j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A normal duplex holds as many Watson-Crick base pairs as the number of nucleotides in its constituent strands. Here we establish that single nucleotides can be designed to functionally imitate dinucleotides without compromising binding affinity. This effectively allows sequence information to be more compact and concentrated to fewer phosphates.
Collapse
Affiliation(s)
- Mick Hornum
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | | | | | | | | | | |
Collapse
|
14
|
Kumar P, Sharma PK, Nielsen P. Synthesis, hybridization and fluorescence properties of a 2'-C-pyrene-triazole modified arabino-uridine nucleotide. Bioorg Med Chem 2017; 25:2084-2090. [PMID: 28242171 DOI: 10.1016/j.bmc.2017.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/07/2017] [Indexed: 01/12/2023]
Abstract
A new pyrene-modified nucleotide monomer is introduced, wherein pyrene is attached to the 2'-position of arabino-uridine through a triazolemethyl linker. When the monomer is introduced into oligonucleotides, very stable DNA duplexes and three way junctions are obtained. An oligonucleotide featuring two modifications in the center shows four-fold increase in the intensity of the pyrene excimer signal on hybridization with an RNA target but not with a DNA target. The new nucleotide monomer has potential in DNA invader probes as well as in RNA targeting and detection.
Collapse
Affiliation(s)
- Pawan Kumar
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra 136 119, India
| | - Poul Nielsen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
15
|
Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases. Bioorg Med Chem 2016; 24:1268-76. [PMID: 26899597 DOI: 10.1016/j.bmc.2016.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 12/31/2022]
Abstract
New types of double-headed 2'-deoxycytidine 5'-O-triphosphates (dC(XC)TPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dC(XC)TPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins.
Collapse
|
16
|
Sharma PK, Kumar P, Nielsen P. Double-Headed Nucleotides: Building Blocks for New Nucleic Acid Architectures. Aust J Chem 2016. [DOI: 10.1071/ch16021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Double-headed nucleotides are nucleotides with two nucleobases. These have been investigated recently with the purpose of using the recognition potential of the additional nucleobases in various nucleic acid constructs. Presented here is a review of the double-headed nucleotide monomers investigated so far and their effects in nucleic acid duplexes and other secondary structures.
Collapse
|
17
|
Dalager M, Andersen NK, Kumar P, Nielsen P, Sharma PK. Double-headed nucleotides introducing thymine nucleobases in the major groove of nucleic acid duplexes. Org Biomol Chem 2015; 13:7040-9. [PMID: 26053231 DOI: 10.1039/c5ob00872g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Four different double-headed nucleosides each combining two thymine nucleobases with different linkers were synthesised. The 5-position of 2'-deoxyuridine was connected to the N1-position of a thymine through either m- or p-disubstituted phenyl or phenylacetylene linkers by the use of Suzuki or Sonogashira couplings. When introduced into oligonucleotides, the thermal stability of dsDNA and DNA : RNA duplexes were determined and structural information was obtained from CD- and fluorescence spectroscopy. Also the recognition of abasic sites was studied. In general, the more stable duplexes were obtained with m- rather than p-substitution and with phenylacetylene rather than phenyl linkers.
Collapse
Affiliation(s)
- Michael Dalager
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|