1
|
Zhao H, Luo Z, Yang J, Li B, Han J, Xu L, Lai W, Walsh PJ. Ligand‐Promoted Rh
I
‐Catalyzed C2‐Selective C−H Alkenylation and Polyenylation of Imidazoles with Alkenyl Carboxylic Acids. Chemistry 2022; 28:e202200441. [DOI: 10.1002/chem.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
- Department of Chemistry School of Chinese Pharmacy Beijing University of Chinese Medicine Beijing 102488 P. R. China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Ji Yang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Jiahong Han
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Wenzhen Lai
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
2
|
Abstract
For several decades, coumarins have attracted considerable attention due to the fact of their application in diverse fields such as medical science and biomedical research as well as several industrial branches. Recently, many compounds containing the coumarin moiety have been intensively studied, mainly due to the fact of their biological activities such as antitumor, antioxidative, anti-HIV, vasorelaxant, antimicrobial, and anticancer. They are also widely used as fluorescent dyes and probes because of their great structural flexibility and large fluorescent quantum yields. For this reason, numerous attempts have been made to develop new and more practical methods for the synthesis of these compounds. This review aims at providing a comprehensive overview of coumarin synthesis methods by direct C–H bond activation in order to demonstrate the current state-of-the-art methods as well as the current limitations.
Collapse
|
3
|
Zheng Y, Wang ZW, Cheng WS, Xie ZZ, He XC, Chen YS, Chen K, Xiang HY, Chen XQ, Yang H. Phosphine-Mediated Morita-Baylis-Hillman-Type/Wittig Cascade: Access to E-Configured 3-Styryl- and 3-(Benzopyrrole/furan-2-yl) Quinolinones. J Org Chem 2022; 87:974-984. [PMID: 34985275 DOI: 10.1021/acs.joc.1c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A phosphine-mediated, well-designed Morita-Baylis-Hillman-type/Wittig cascade for the rapid assembly of a quinolinone framework from benzaldehyde derivatives is developed for the first time. By rationally combining I2/NIS-mediated cyclization, biologically relevant 3-(benzopyrrole/furan-2-yl) quinolinones were facilely synthesized in a one-pot process by starting from 3-styryl-quinolinones bearing an o-hydroxy/amino group, significantly expanding the chemical space of this privileged skeleton. Further utility of this protocol is illustrated by successfully performing this transformation in a catalytic manner through in situ reduction of phosphine oxide by phenylsilane.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Wei Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wen-Shuo Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Shan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
4
|
Tao M, Wang A, Guo P, Li W, Zhao L, Tong J, Wang H, Yu Y, He C. Visible‐Light‐Induced Regioselective Deaminative Alkylation of Coumarins via Photoredox Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maoling Tao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - An‐Jun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - Peng Guo
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - Weipiao Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education School of Pharmacy Zunyi Medical University Zunyi Guizhou People's Republic of China
| | - Jie Tong
- School of Medicine Yale University New Haven Connecticut 06510 United States
| | - Haoyang Wang
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| | - Yanbo Yu
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| | - Chun‐Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education School of Pharmacy Zunyi Medical University Zunyi Guizhou People's Republic of China
| |
Collapse
|
5
|
Joshi H, Meena N, Kumar S, Shinde VN, Reddy SR, Bhuvanesh N, Kumar A. Bulky selenium ligand stabilized trans-palladium dichloride complexes as catalyst for silver-free decarboxylative coupling of coumarin-3-carboxylic acids. Chem Asian J 2021; 17:e202101199. [PMID: 34919329 DOI: 10.1002/asia.202101199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/14/2021] [Indexed: 11/06/2022]
Abstract
This report describes synthesis of three new trans -palladium dichloride complexes of bulky selenium ligands. These complexes possess a Cl-Pd-Cl rotor spoke attached to a Se-Pd-Se axle. The new ligands and palladium complexes ( C1 - C3 ) were characterized with the help of NMR, HRMS, UV-Vis., IR, and elemental analysis. The single crystal structure of metal complex C2 confirmed a square planer geometry of complex with trans -orientation. The X-ray structure revealed intramolecular secondary interactions (SeCH---Cl) between chlorine of PdCl 2 and CH 2 proton of selenium ligand. Variable temperature NMR data shows coalescence of diastereotopic protons, which indicates pyramidal inversion of selenium atom at elevated temperature. The relaxed potential energy scan of C2 suggests a rotational barrier of ~12.5 kcal/mol for rotation of chlorine atom through Cl-Pd-Cl rotor. The complex C3 possess dual intramolecular secondary interactions (OCH 2 ---Cl and SeCH 2 ---Cl) with stator ligand. Molecular rotor C2 was found to be most efficient catalyst for the decarboxylative Heck-coupling under mild reaction conditions. The protocol is applicable to a broad range of substrates with large functional group tolerance and low catalyst loading (2.5 mol %). The mechanism of decarboxylative Heck-coupling reaction was investigated through experimental and computational studies. Importantly the reaction works under silver-free conditions which reduces the cost of overall protocol. Further, the catalyst also worked for decarboxylative arylation and decarboxylative Suzuki-Miyaura coupling reactions with good yields of the coupled products.
Collapse
Affiliation(s)
- Hemant Joshi
- Central University of Rajasthan, Ajmer, Chemistry, Department of Chemistry, Central University of Rajasthan, 305817, Bandarsindri, Ajmer, INDIA
| | - Neha Meena
- BITS Pilani: Birla Institute of Technology and Science, Chemistry, INDIA
| | - Sunil Kumar
- Central University of Rajasthan, Chemistry, INDIA
| | - Vikki N Shinde
- BITS: Birla Institute of Technology and Science Pilani, Chemistry, INDIA
| | | | - Nattamai Bhuvanesh
- Texas A&M University College Station: Texas A&M University, Chemistry, UNITED STATES
| | - Anil Kumar
- BITS: Birla Institute of Technology and Science Pilani, Chemistry, INDIA
| |
Collapse
|
6
|
Ortiz-de-Elguea V, Carral-Menoyo A, Simón-Vidal L, Martinez-Nunes M, Barbolla I, Lete MG, Sotomayor N, Lete E. Pd(II)-Catalyzed Fujiwara-Moritani Reactions for the Synthesis and Functionalization of Substituted Coumarins. ACS OMEGA 2021; 6:29483-29494. [PMID: 34778620 PMCID: PMC8581981 DOI: 10.1021/acsomega.1c03469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/12/2021] [Indexed: 05/08/2023]
Abstract
Highly substituted coumarins, privileged and versatile scaffolds for bioactive natural products and fluorescence imaging, are obtained via a Pd(II)-catalyzed direct C-H alkenylation reaction (Fujiwara-Moritani reaction), which has emerged as a powerful tool for the construction and functionalization of heterocyclic compounds because of its chemical versatility and its environmental advantages. Thus, a selective 6-endo cyclization led to 4-substituted coumarins in moderate yields. Selected examples have been further functionalized in C3 through a second intermolecular C-H alkenylation reaction to give coumarin-acrylate hybrids, whose fluorescence spectra have been measured.
Collapse
Affiliation(s)
- Verónica Ortiz-de-Elguea
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Asier Carral-Menoyo
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Lorena Simón-Vidal
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Mikel Martinez-Nunes
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Iratxe Barbolla
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
- Instituto
Biofisika (UPV/EHU-CSIC), Leioa 48940, Spain
| | - Marta G. Lete
- CIC
bioGUNE, Bizkaia Technology Park, Building 801A, Derio 48170, Spain
| | - Nuria Sotomayor
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Esther Lete
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| |
Collapse
|
7
|
Xiao P, Pannecoucke X, Bouillon J, Couve‐Bonnaire S. Palladium‐Catalysed Oxidative Decarboxylative Cross‐Coupling of Heteroarenes with CF
3
‐Acrylic Acids. ChemistrySelect 2021. [DOI: 10.1002/slct.202102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pan Xiao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014) 76000 Rouen France
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014) 76000 Rouen France
| | | | | |
Collapse
|
8
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
9
|
Zhou DG. Mechanisms of Csp3-H functionalization of acetonitrile or acetone with coumarins: A DFT investigation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Kanchana U, Diana EJ, Mathew TV, Anilkumar G. Palladium‐catalyzed cross‐coupling reactions of coumarin derivatives: An overview. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- U.S. Kanchana
- Department of Chemistry St. Thomas College Pala Arunapuram P.O. Kottayam Kerala 686574 India
| | - Elizabeth J. Diana
- Department of Chemistry St. Thomas College Pala Arunapuram P.O. Kottayam Kerala 686574 India
| | - Thomas V. Mathew
- Department of Chemistry St. Thomas College Pala Arunapuram P.O. Kottayam Kerala 686574 India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University P D Hills PO Kottayam Kerala 686560 India
- Institute for Integrated Programmes and Research in Basic Sciences Mahatma Gandhi University Priyadarshini Hills P O Kottayam Kerala 686560 India
| |
Collapse
|
11
|
Wang YJ, Wang TT, Yao L, Wang QL, Zhao LM. Access to 4-Alkenylated Coumarins via Ruthenium-Catalyzed Olefinic C-H Alkenylation of Coumarins with Modifiable and Removable Directing Groups. J Org Chem 2020; 85:9514-9524. [PMID: 32515197 DOI: 10.1021/acs.joc.0c00249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ruthenium-catalyzed activation of the C4 position of coumarins for coupling with acrylates was described using modifiable ketone as a directing group. The alkenylation reaction provided a direct approach to prepare previously inaccessible 4-alkenylated coumarins with operational simplicity and high atom-economy. This protocol also worked well with coumarin-3-carboxylic acids to unveil a rare instance of a tandem alkenylation/decarboxylation reaction. The potential value of this approach was further highlighted by the efficient synthesis of several heterocyclic fused coumarin derivatives.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Tong-Tong Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Lan Yao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qian-Long Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Chen L, Zhang L, Yan G, Huang D. Recent Advances of Cinnamic Acids in Organic Synthesis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lihua Chen
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Ling Zhang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| |
Collapse
|
13
|
Song Z, Ding C, Wang S, Dai Q, Sheng Y, Zheng Z, Liang G. Metal-free regioselective C-H chalcogenylation of coumarins/(hetero)arenes at ambient temperature. Chem Commun (Camb) 2020; 56:1847-1850. [PMID: 31950956 DOI: 10.1039/c9cc09001k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel, practical and metal-free approach for the regioselective selenation of coumarins employing (bis(trifluoroacetoxy)iodo)benzene (PIFA) at room temperature is presented. The developed method is suitable for a wide substrate scope and affords 3-selenyl coumarins in good to excellent yields with high selectivity. A radical mechanism is proposed for this new transformation. Furthermore, the application of sulfenylation with coumarines and selenation with other (hetero)arenes in this transformation is successful.
Collapse
Affiliation(s)
- Zengqiang Song
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Chaochao Ding
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Shaoli Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Qian Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Yaoguang Sheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Zhilong Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
14
|
Vivek Kumar S, Banerjee S, Punniyamurthy T. Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterocyclic alkenes and their derivatives are an important class of reactive feedstock and valuable synthons. This review highlights the transition-metal-catalyzed coupling of heterocyclic alkenes via a C–H functionalization strategy.
Collapse
|
15
|
Zhao H, Xu X, Luo Z, Cao L, Li B, Li H, Xu L, Fan Q, Walsh PJ. Rhodium(i)-catalyzed C6-selective C-H alkenylation and polyenylation of 2-pyridones with alkenyl and conjugated polyenyl carboxylic acids. Chem Sci 2019; 10:10089-10096. [PMID: 32055363 PMCID: PMC6991184 DOI: 10.1039/c9sc03672e] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/09/2019] [Indexed: 01/02/2023] Open
Abstract
A versatile Rh(i)-catalyzed C6-selective decarbonylative C-H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C-H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc2O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C-H bond cleavage is likely the turnover-limiting step.
Collapse
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| | - Xin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Zhenli Luo
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lei Cao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Bohan Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Huanrong Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lijin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Qinghua Fan
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| |
Collapse
|
16
|
Jin C, Yan Z, Sun B, Yang J. Visible-Light-Induced Regioselective Alkylation of Coumarins via Decarboxylative Coupling with N-Hydroxyphthalimide Esters. Org Lett 2019; 21:2064-2068. [DOI: 10.1021/acs.orglett.9b00327] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Can Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiyang Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
17
|
Kong H, Li Q, Yin Y, Huang M, Kim JK, Zhu Y, Li Y, Wu Y. An efficient light on–off one-pot method for the synthesis of 3-styryl coumarins from aryl alkynoates. Org Biomol Chem 2019; 17:4621-4628. [DOI: 10.1039/c9ob00421a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient one-pot stepwise method to synthesize 3-styryl-4-arylcoumarins from simple alkynoates is demonstrated.
Collapse
Affiliation(s)
- Hongjun Kong
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Qingrui Li
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yunnian Yin
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Mengmeng Huang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Jung Keun Kim
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yu Zhu
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yabo Li
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| |
Collapse
|
18
|
Golshani M, Khoobi M, Jalalimanesh N, Jafarpour F, Ariafard A. A transition-metal-free fast track to flavones and 3-arylcoumarins. Chem Commun (Camb) 2018; 53:10676-10679. [PMID: 28905058 DOI: 10.1039/c7cc02107k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly regioselective and transition-metal free one-pot arylation of chromenones with arylboronic acids has been achieved employing K2S2O8. The procedure consists of a sequence of some reactions including an arylation/decarboxylation cascade and proceeds well in aqueous media to afford biologically interesting flavones and 3-arylcoumarins. This method exhibited excellent selectivity and functional group tolerance under mild conditions. The reaction also showed perfect efficacy for the preparation of styryl coumarins.
Collapse
Affiliation(s)
- Mostafa Golshani
- Nanobiomaterials group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 141761411, Iran.
| | | | | | | | | |
Collapse
|
19
|
Jafarpour F, Darvishmolla M. Peroxy mediated Csp2–Csp3 dehydrogenative coupling: regioselective functionalization of coumarins and coumarin-3-carboxylic acids. Org Biomol Chem 2018; 16:3396-3401. [DOI: 10.1039/c7ob02771k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Regioselective functionalization of coumarins/coumarin carboxylic acids at C-3 via activation of Csp3–H bonds of ethers under metal-free conditions is developed.
Collapse
Affiliation(s)
- Farnaz Jafarpour
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | | |
Collapse
|
20
|
Xu J, Chen C, Zhao H, Xu C, Pan Y, Xu X, Li H, Xu L, Fan B. Rhodium(i)-catalysed decarbonylative direct C–H vinylation and dienylation of arenes. Org Chem Front 2018. [DOI: 10.1039/c7qo00959c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rh(i)-Catalyzed decarbonylative direct C–H bond vinylation and dienylation of arenes with acrylic acid and (E)-penta-2,4-dienoic acid have been developed.
Collapse
Affiliation(s)
- Jianbin Xu
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| | - Changjun Chen
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| | - Haoqiang Zhao
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| | - Conghui Xu
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| | - Yixiao Pan
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| | - Xin Xu
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| | - Huanrong Li
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| | - Lijin Xu
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| | - Baomin Fan
- MU-HKBU Joint Laboratory of Traditional Natural Medicine
- Yunnan Minzu University
- Kunming 650504
- China
| |
Collapse
|
21
|
Warde U, Sekar N. Fluorescent Benzocoumarin-π-Extended Styryl Hybrids: Solvatochromism, Excess Dipole Moment, NLO Properties and DFT Study. J Fluoresc 2017; 28:293-309. [DOI: 10.1007/s10895-017-2192-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
|
22
|
Kumbhar A. Functionalized nitrogen ligands for palladium catalyzed cross-coupling reactions (part I). J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Rouchet JBEY, Hachem M, Schneider C, Hoarau C. Pd-Catalyzed Regioselective Decarboxylative/C–H α-Alkoxyalkenylation of Heterocycles Using α-Carboxyvinylethers. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01330] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Mahmoud Hachem
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Cédric Schneider
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Christophe Hoarau
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
24
|
Benzocoumarin-Styryl Hybrids: Aggregation and Viscosity Induced Emission Enhancement. J Fluoresc 2017; 27:1747-1758. [PMID: 28500536 DOI: 10.1007/s10895-017-2113-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Two benzo[h]chromen-3-yl)ethylidene) malononitrile styryl hybrid dyes are synthesized and characterized by NMR and elemental analysis. One is based on nitrogen donor and other on oxygen (3b and 3b respectively). Dyes are low emissive in the solution but dramatically showed increase in emission intensity in aggregates form in the THF (tetrahydrofuran) /water system. Dyes are also sensitive to viscosity and showed increased emission intensity in the DCM:PEG 400 system and DMF:PEG 400 system respectively. Dyes 3a and 3b showed higher viscosity sensitivity constant (0.67 and 0.39 respectively) in DMF:PEG 400 system compared to DCM:PEG 400 (0.47 and 0.21 respectively) system which is contrary to the traditional concept of FMRs. Results shows that lowering of twisted intramolecular charge transfer (TICT) and increase in intramolecular charge transfer (ICT) in the excited state could be the reason for such behavior in the aggregate and highly viscous state. This study may provide the new insights into the field of AIEE and FMR research of such hybrid molecules.
Collapse
|
25
|
Fang Z, Wei C, Lin J, Liu Z, Wang W, Xu C, Wang X, Wang Y. Silver-catalyzed decarboxylative C(sp2)–C(sp3) coupling reactions via a radical mechanism. Org Biomol Chem 2017; 15:9974-9978. [PMID: 29167848 DOI: 10.1039/c7ob02455j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A silver catalyzed decarboxylative C(sp2)–C(sp3) coupling of vinylic carboxylic acids with alcohols, alkylbenzenes, cycloalkanes and cyclic ethers was developed by using DTBP as an oxidant.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- People's Republic of China
| | - Chenlong Wei
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- People's Republic of China
| | - Jing Lin
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- People's Republic of China
| | - Zhenhua Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Wei Wang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- People's Republic of China
| | - Chenshu Xu
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- People's Republic of China
| | - Xuemin Wang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- People's Republic of China
| | - Yu Wang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- People's Republic of China
| |
Collapse
|
26
|
Xu C, Zhang L, Xu J, Pan Y, Li F, Li H, Xu L. Rhodium(I)-catalyzed Decarbonylative Direct Olefination of 6-Arylpurines with Vinyl Carboxylic Acids Directed by the Purinyl N1 Atom. ChemistrySelect 2016. [DOI: 10.1002/slct.201600200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Conghui Xu
- Department of Chemistry; Renmin University of China; Beijing 1000872 China
| | - Lingjuan Zhang
- Department of Chemistry; Renmin University of China; Beijing 1000872 China
| | - Jianbin Xu
- Department of Chemistry; Renmin University of China; Beijing 1000872 China
| | - Yixiao Pan
- Department of Chemistry; Renmin University of China; Beijing 1000872 China
| | - Faju Li
- Department of Chemistry; Renmin University of China; Beijing 1000872 China
| | - Huanrong Li
- Department of Chemistry; Renmin University of China; Beijing 1000872 China
| | - Lijin Xu
- Department of Chemistry; Renmin University of China; Beijing 1000872 China
| |
Collapse
|
27
|
Gao B, Xie Y, Yang L, Huang H. Copper-catalyzed decarboxylative cross-coupling of cinnamic acids and ACCN via single electron transfer. Org Biomol Chem 2016; 14:2399-402. [DOI: 10.1039/c5ob02677f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and convenient method for the synthesis of β,γ-unsaturated nitriles using ACCN (1,1′-azobis(cyclohexane-1-carbonitrile)) as a cyano source was described.
Collapse
Affiliation(s)
- Bao Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yinjun Xie
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Lei Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hanmin Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
28
|
Zhao W, Xu L, Ding Y, Niu B, Xie P, Bian Z, Zhang D, Zhou A. Regioselective Coupling Reactions of Coumarins with Aldehydes or Di-tert-butyl Peroxide (DTBP) through a C(sp2)-H Functionalization Process. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Abstract
Decarboxylative functionalization of α,β-unsaturated carboxylic acids is an emerging area that has been developed significantly in recent years.
Collapse
Affiliation(s)
| | - Guobing Yan
- Department of Chemistry
- Lishui University
- Lishui City
- P. R. China
| |
Collapse
|