1
|
Gao ZX, Wang H, Su AH, Li QY, Liang Z, Zhang YQ, Liu XY, Zhu MZ, Zhang HX, Hou YT, Li X, Sun LR, Li J, Xu ZJ, Lou HX. Asymmetric Synthesis and Biological Evaluation of Platensilin, Platensimycin, Platencin, and Their Analogs via a Bioinspired Skeletal Reconstruction Approach. J Am Chem Soc 2024; 146:18967-18978. [PMID: 38973592 DOI: 10.1021/jacs.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Platensilin, platensimycin, and platencin are potent inhibitors of β-ketoacyl-acyl carrier protein synthase (FabF) in the bacterial and mammalian fatty acid synthesis system, presenting promising drug leads for both antibacterial and antidiabetic therapies. Herein, a bioinspired skeleton reconstruction approach is reported, which enables the unified synthesis of these three natural FabF inhibitors and their skeletally diverse analogs, all stemming from a common ent-pimarane core. The synthesis features a diastereoselective biocatalytic reduction and an intermolecular Diels-Alder reaction to prepare the common ent-pimarane core. From this intermediate, stereoselective Mn-catalyzed hydrogen atom-transfer hydrogenation and subsequent Cu-catalyzed carbenoid C-H insertion afford platensilin. Furthermore, the intramolecular Diels-Alder reaction succeeded by regioselective ring opening of the newly formed cyclopropane enables the construction of the bicyclo[3.2.1]-octane and bicyclo[2.2.2]-octane ring systems of platensimycin and platencin, respectively. This skeletal reconstruction approach of the ent-pimarane core facilitates the preparation of analogs bearing different polycyclic scaffolds. Among these analogs, the previously unexplored cyclopropyl analog 47 exhibits improved antibacterial activity (MIC80 = 0.0625 μg/mL) against S. aureus compared to platensimycin.
Collapse
Affiliation(s)
- Zong-Xu Gao
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hongliang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Ai-Hong Su
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Qian-Ying Li
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Zhen Liang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Qing Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xu-Yuan Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Ming-Zhu Zhu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hai-Xia Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Tong Hou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xin Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Long-Ru Sun
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 429, Zhangheng Rd, Shanghai 200213, P. R. China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| |
Collapse
|
2
|
Zou S, Zhao Z, Huang H. Palladium-Catalyzed Aminoalkylative Cyclization Enables Modular Synthesis of Exocyclic 1,3-Dienes. Angew Chem Int Ed Engl 2023; 62:e202311603. [PMID: 37815155 DOI: 10.1002/anie.202311603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
A novel and efficient palladium-catalyzed regioselective and stereodivergent ring-closing reaction of aminoenynes with aldehydes and boronic acids or hydrosilane is developed. This three-component reaction allows for the modular synthesis of a series of exocyclic 1,3-dienes bearing 5- to 8-membered saturated N-heterocycles. The reactions utilize a simple Pd-catalyst and work with broad range of aminoenynes, aldehydes and organometallic reagents under mild reaction conditions. The products represent useful intermediates for chemical synthesis due to the versatility of the conjugated diene. Preliminary mechanistic details of the method are also revealed.
Collapse
Affiliation(s)
- Suchen Zou
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zeyu Zhao
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| |
Collapse
|
3
|
Pérez Á, Quílez
del Moral JF, Galisteo A, Amaro JM, Barrero AF. Bioinspired Synthesis of Platensimycin from Natural ent-Kaurenoic Acids. Org Lett 2023; 25:5401-5405. [PMID: 37338151 PMCID: PMC10391625 DOI: 10.1021/acs.orglett.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 06/21/2023]
Abstract
The biomimetic formal synthesis of the antibiotic platensimycin for the treatment of infection by multidrug-resistant bacteria was accomplished starting from either ent-kaurenoic acid or grandiflorenic acid, each of which is a natural compound available in multigram scale from its natural source. Apart from the natural origin of the selected precursors, the keys of the described approach are the long-distance functionalization of ent-kaurenoic acid at C11 and the efficient protocol for the A-ring degradation of the diterpene framework.
Collapse
Affiliation(s)
- Álvaro Pérez
- Department
of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - José F. Quílez
del Moral
- Department
of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - Alberto Galisteo
- Department
of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - Juan M. Amaro
- Department
of Chemistry, Faculty of Sciences, University
of Los Andes, Merida 5101, Venezuela
| | - Alejandro F. Barrero
- Department
of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
Wang Z, Chen X, Li D, Bai E, Zhang H, Duan Y, Huang Y. Platensimycin-berberine chloride co-amorphous drug system: Sustained release and prolonged half-life. Eur J Pharm Biopharm 2022; 179:126-136. [PMID: 36087879 DOI: 10.1016/j.ejpb.2022.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Co-amorphous technology is an emerging approach for pharmaceutical engineering of drugs and drug leads with improved physicochemical properties and bioavailability. Platensimycin (PTM) is a promising natural antibiotic lead that acts on bacterial fatty acid synthase and exhibits excellent antibacterial activity. Despite great strides to improve its poor pharmacokinetics by medicinal chemistry and nanotechnology, there are no convenient oral delivery systems developed. Here, a co-amorphous system of PTM and berberine chloride (BCL) was developed for oral delivery of PTM. Co-amorphous PTM-BCL was prepared by rotary vacuum evaporation method, and systematically characterized by powder X-ray diffraction, temperature modulated differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Compared with PTM or BCL alone, the equilibrium solubility and dissolution rate of both of them in the co-amorphous systems decreased significantly, showing the characteristics of sustained release. The molecular interactions between PTM and BCL were mediated by strong charged-mediated hydrogen bonds, based on FTIR, XPS, and NMR-based techniques. The co-amorphous PTM-BCL system showed excellent physiochemical stability at room and elevated (40 °C) temperature under dry conditions. The combination of PTM and BCL showed increased killing of a clinical isolated methicillin-resistant Staphylococcus aureus strain in killing checkerboard assays. Finally, co-amorphous PTM-BCL exhibited 2- or 3-fold longer half-life in rats than that of crystalline and amorphous PTM upon oral administration, respectively. Our study suggests a rational approach to realize the full potential of potent antibiotic PTM, which may be conveniently adapted for engineering of other important pharmaceutics.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Duanxiu Li
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China; Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, PR China
| | - Enhe Bai
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, PR China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, PR China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, PR China.
| |
Collapse
|
5
|
Espeland LO, Georgiou C, Klein R, Bhukya H, Haug BE, Underhaug J, Mainkar PS, Brenk R. An Experimental Toolbox for Structure-Based Hit Discovery for P. aeruginosa FabF, a Promising Target for Antibiotics. ChemMedChem 2021; 16:2715-2726. [PMID: 34189850 PMCID: PMC8518799 DOI: 10.1002/cmdc.202100302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Indexed: 12/12/2022]
Abstract
FabF (3-oxoacyl-[acyl-carrier-protein] synthase 2), which catalyses the rate limiting condensation reaction in the fatty acid synthesis II pathway, is an attractive target for new antibiotics. Here, we focus on FabF from P. aeruginosa (PaFabF) as antibiotics against this pathogen are urgently needed. To facilitate exploration of this target we have set up an experimental toolbox consisting of binding assays using bio-layer interferometry (BLI) as well as saturation transfer difference (STD) and WaterLOGSY NMR in addition to robust conditions for structure determination. The suitability of the toolbox to support structure-based design of FabF inhibitors was demonstrated through the validation of hits obtained from virtual screening. Screening a library of almost 5 million compounds resulted in 6 compounds for which binding into the malonyl-binding site of FabF was shown. For one of the hits, the crystal structure in complex with PaFabF was determined. Based on the obtained binding mode, analogues were designed and synthesised, but affinity could not be improved. This work has laid the foundation for structure-based exploration of PaFabF.
Collapse
Affiliation(s)
- Ludvik Olai Espeland
- Department of BiomedicineUniversity of BergenJonas Lies Vei 915020BergenNorway
- Department of ChemistryUniversity of BergenAllégaten 415007BergenNorway
| | - Charis Georgiou
- Department of BiomedicineUniversity of BergenJonas Lies Vei 915020BergenNorway
| | - Raphael Klein
- Department of BiomedicineUniversity of BergenJonas Lies Vei 915020BergenNorway
- Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityStaudingerweg 555128MainzGermany
| | - Hemalatha Bhukya
- Department of Organic Synthesis & Process ChemistryCSIR-Indian Institute of Chemical TechnologyTarnakaHyderabad500007India
| | - Bengt Erik Haug
- Department of ChemistryUniversity of BergenAllégaten 415007BergenNorway
| | - Jarl Underhaug
- Department of ChemistryUniversity of BergenAllégaten 415007BergenNorway
| | - Prathama S. Mainkar
- Department of Organic Synthesis & Process ChemistryCSIR-Indian Institute of Chemical TechnologyTarnakaHyderabad500007India
| | - Ruth Brenk
- Department of BiomedicineUniversity of BergenJonas Lies Vei 915020BergenNorway
| |
Collapse
|
6
|
Sun P, Ao J, Qiao T, Wu S, Liang G. Synthetic Studies toward Leucosceptroid Family of Natural Products. J Org Chem 2021; 86:11040-11052. [PMID: 33410324 DOI: 10.1021/acs.joc.0c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leucosceptroids are sesterterpenoids with potent antifeedant and antifungal activities. In this paper, efforts on two synthetic strategies toward stereoselective total synthesis of the leucosceptroid family of natural products are reported. Intramolecular addition cyclization strategy could lead to a stereochemically mismatched core structure, while intermolecular addition/ring-closing metathesis cyclization strategy successfully furnished an advanced common intermediate bearing eight contiguous stereogenic centers, including three tetra-substituted ones, which fully matches all the stereochemistry on the tricyclic framework in leucosceptroid H. Late-stage transformation of this intermediate to leucosceptroid H encountered difficulty in oxidizing the secondary hydroxyl group to a carbonyl group in the target. Instead of the desired oxidation, an interesting tricyclic spiral product originating from a C-C bond cleavage was observed.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Junli Ao
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianjiao Qiao
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Shuming Wu
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Guangxin Liang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Troudi A, Pagès JM, Brunel JM. Chemical Highlights Supporting the Role of Lipid A in Efficient Biological Adaptation of Gram-Negative Bacteria to External Stresses. J Med Chem 2021; 64:1816-1834. [PMID: 33538159 DOI: 10.1021/acs.jmedchem.0c02185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria provides an efficient barrier against external noxious compounds such as antimicrobial agents. Associated with drug target modification, it contributes to the overall failure of chemotherapy. In the complex OM architecture, Lipid A plays an essential role by anchoring the lipopolysaccharide in the membrane and ensuring the spatial organization between lipids, proteins, and sugars. Currently, the targets of almost all antibiotics are intracellularly located and require translocation across membranes. We report herein an integrated view of Lipid A synthesis, membrane assembly, a structure comparison at the molecular structure level of numerous Gram-negative bacterial species, as well as its recent use as a target for original antibacterial molecules. This review paves the way for a new vision of a key membrane component that acts during bacterial adaptation to environmental stresses and for the development of new weapons against microbial resistance to usual antibiotics.
Collapse
Affiliation(s)
- Azza Troudi
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France.,Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1008, Tunisia
| | - Jean Marie Pagès
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| | - Jean Michel Brunel
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| |
Collapse
|
8
|
Sun P, Zhang C, Qiao T, Ao J, Wu S, Liang G. Stereoselective Construction of the Highly Congested Tricyclic Core Structure in Leucosceptroid H. Org Lett 2020; 22:4848-4851. [PMID: 32492347 DOI: 10.1021/acs.orglett.0c01672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leucosceptroids are sesterterpenoids with potent antifeedant and antifungal activities. An efficient stereoselective construction of the highly congested [5,6,5] tricyclic framework of leucosceptroid H is presented. This framework bearing eight contiguous stereogenic centers, including three tetrasubstituted ones, could serve as a common intermediate for the collective total synthesis of the leucosceptroid family of natural products.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Chi Zhang
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Tianjiao Qiao
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Junli Ao
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Shuming Wu
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Guangxin Liang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Trajkovic M, Ferjancic Z, Saicic RN, Bihelovic F. Enantioselective Synthesis of the Platensimycin Core by Silver(I)‐Promoted Cyclization of Δ 6‐α‐Iodoketone. Chemistry 2019; 25:4340-4344. [DOI: 10.1002/chem.201900497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Milos Trajkovic
- Faculty of ChemistryUniversity of Belgrade Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Zorana Ferjancic
- Faculty of ChemistryUniversity of Belgrade Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Radomir N. Saicic
- Faculty of ChemistryUniversity of Belgrade Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
- Serbian Academy of Sciences and Arts Knez Mihailova 35 11000 Belgrade Serbia
| | - Filip Bihelovic
- Faculty of ChemistryUniversity of Belgrade Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| |
Collapse
|
10
|
Gong Y, Cao ZY, Shi YB, Zhou F, Zhou Y, Zhou J. A highly efficient Hg(OTf)2-mediated Sakurai–Hosomi allylation of N-tert-butyloxycarbonylamino sulfones, aldehydes, fluoroalkyl ketones and α,β-unsaturated enones using allyltrimethylsilane. Org Chem Front 2019. [DOI: 10.1039/c9qo01049a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cheap and easily available Hg(OTf)2 can efficiently mediate the Sakurai–Hosomi reaction of N-Boc amino sulfones, aldehydes, α-fluoroalkyl ketones and α,β-unsaturated enones using allyltrimethylsilane with the catalyst loading down to 0.5–5.0 mol%.
Collapse
Affiliation(s)
- Yi Gong
- College of Pharmacy
- Guiyang University of Chinese Medicine
- Guiyang 550025
- P. R. China
| | - Zhong-Yan Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Ying-Bo Shi
- College of Chemistry and Material Sciences
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Ying Zhou
- College of Pharmacy
- Guiyang University of Chinese Medicine
- Guiyang 550025
- P. R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
11
|
Tian K, Deng Y, Qiu L, Zhu X, Shen B, Duan Y, Huang Y. Semisynthesis and Biological Evaluation of Platensimycin Analogues with Varying Aminobenzoic Acids. ChemistrySelect 2018; 3:12625-12629. [PMID: 32232122 PMCID: PMC7105086 DOI: 10.1002/slct.201802475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/19/2018] [Indexed: 11/06/2022]
Abstract
Platensimycin (PTM) is an excellent natural product drug lead against various gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. In this study, twenty PTM derivatives with varying aminobenzoic acids were semisynthesized. In contrast to all the previous reported inactive aminobenzaote analogues, a few of them showed moderate antibacterial activities against S. aureus. Our study suggested that modification of the conserved aminobenzoic acid remains a viable approach to diversify the PTM scaffold.
Collapse
Affiliation(s)
- Kai Tian
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
| | - Youchao Deng
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
| | - Lin Qiu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410205 (China)
| | - Ben Shen
- Departments of Chemistry and Molecular Medicine, and Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458 (USA)
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410205 (China)
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410205 (China)
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410205 (China)
| |
Collapse
|
12
|
|
13
|
Brill ZG, Condakes ML, Ting CP, Maimone TJ. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chem Rev 2017; 117:11753-11795. [PMID: 28293944 PMCID: PMC5638449 DOI: 10.1021/acs.chemrev.6b00834] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pool of abundant chiral terpene building blocks (i.e., "chiral pool terpenes") has long served as a starting point for the chemical synthesis of complex natural products, including many terpenes themselves. As inexpensive and versatile starting materials, such compounds continue to influence modern synthetic chemistry. This review highlights 21st century terpene total syntheses which themselves use small, terpene-derived materials as building blocks. An outlook to the future of research in this area is highlighted as well.
Collapse
Affiliation(s)
- Zachary G. Brill
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Matthew L. Condakes
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Chi P. Ting
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
14
|
Subba Reddy BV, Nair PN, Antony A, Srivastava N. Recent Advances in Prins Spirocyclization. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700633] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- B. V. Subba Reddy
- Centre for Semio Chemicals; CSIR - Indian Institute of Chemical Technology; Hyderabad India
| | - Preethi Narayanan Nair
- Centre for Semio Chemicals; CSIR - Indian Institute of Chemical Technology; Hyderabad India
| | - Aneesh Antony
- Centre for Semio Chemicals; CSIR - Indian Institute of Chemical Technology; Hyderabad India
| | - Nikhil Srivastava
- Centre for Semio Chemicals; CSIR - Indian Institute of Chemical Technology; Hyderabad India
| |
Collapse
|
15
|
A brief history of antibiotics and select advances in their synthesis. J Antibiot (Tokyo) 2017; 71:153-184. [DOI: 10.1038/ja.2017.62] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
|
16
|
Pombal S, Hernández Y, Diez D, Mondolis E, Mero A, Morán-Pinzón J, Guerrero EI, Rodilla JM. Antioxidant Activity of Carvone and Derivatives against Superoxide Ion. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carvone has corroborated its versatility as starting material for building blocks synthesis in organic chemistry, being achieved a new chiral lactone. It has been done a study on the antioxidant activity against superoxide of carvone and a chloro derivative that show the potent activity of the natural product ( R)-carvone, 1.
Collapse
Affiliation(s)
- Sofia Pombal
- Materiais Fibrosos e Tecnologias Ambientais-FibEnTech, Departamento de Química, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001- Covilhã, Portugal
| | - Yaiza Hernández
- Department of Organic Chemistry, Avda Los Caidos s/n, University of Salamanca, Salamanca, Spain, 37008
| | - David Diez
- Department of Organic Chemistry, Avda Los Caidos s/n, University of Salamanca, Salamanca, Spain, 37008
| | - Eily Mondolis
- Department of Pharmacology, Avda Gustavo García de Paredes, Panama University, Panama, Panama
| | - Aldahir Mero
- Department of Pharmacology, Avda Gustavo García de Paredes, Panama University, Panama, Panama
| | - Juan Morán-Pinzón
- Department of Pharmacology, Avda Gustavo García de Paredes, Panama University, Panama, Panama
| | - Estela I. Guerrero
- Department of Pharmacology, Avda Gustavo García de Paredes, Panama University, Panama, Panama
| | - Jesús M. Rodilla
- Materiais Fibrosos e Tecnologias Ambientais-FibEnTech, Departamento de Química, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001- Covilhã, Portugal
| |
Collapse
|
17
|
Ghorai MK, Halder S, Das S. Domino Michael–Michael and Aldol–Aldol Reactions: Diastereoselective Synthesis of Functionalized Cyclohexanone Derivatives Containing Quaternary Carbon Center. J Org Chem 2015; 80:9700-12. [PMID: 26334184 DOI: 10.1021/acs.joc.5b01768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manas K. Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016, India
| | - Sandipan Halder
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016, India
| | - Subhomoy Das
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016, India
| |
Collapse
|
18
|
Substituted 1,3-cyclohexadiene synthesis by NHC–Nickel(0) catalyzed [2+2+2] cycloaddition of 1,n-Enyne. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Maertens G, L'Homme C, Canesi S. Total synthesis of natural products using hypervalent iodine reagents. Front Chem 2015; 2:115. [PMID: 25601909 PMCID: PMC4283662 DOI: 10.3389/fchem.2014.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/10/2014] [Indexed: 12/16/2022] Open
Abstract
We present a review of natural product syntheses accomplished in our laboratory during the last 5 years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the "aromatic ring umpolung" concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.
Collapse
Affiliation(s)
| | | | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Département de Chimie, Université du Québec à MontréalMontréal, QC, Canada
| |
Collapse
|
20
|
Jiao ZW, Tu YQ, Zhang Q, Liu WX, Wang SH, Wang M. Formal synthesis of (−)-platensimycin. Org Chem Front 2015. [DOI: 10.1039/c5qo00109a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient formal synthesis of (−)-platensimycin was completed by using a tandem C–H oxidation/C–C coupling (cyclization)/rearrangement as the key step.
Collapse
Affiliation(s)
- Zhi-Wei Jiao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
| | - Yong-Qiang Tu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin
| | - Qing Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
| | - Wen-Xing Liu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
| | - Min Wang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| |
Collapse
|
21
|
Eschenbrenner-Lux V, Kumar K, Waldmann H. The asymmetric hetero-Diels-Alder reaction in the syntheses of biologically relevant compounds. Angew Chem Int Ed Engl 2014; 53:11146-57. [PMID: 25220929 DOI: 10.1002/anie.201404094] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/03/2014] [Indexed: 12/21/2022]
Abstract
The hetero-Diels-Alder reaction is one of the most powerful transformations in the chemistry toolbox for the synthesis of aza- and oxa-heterocycles embodying multiple stereogenic centers. However, as compared to other cycloadditions, in particular the dipolar cycloadditions and the Diels-Alder reaction, the hetero-Diels-Alder reaction has been much less explored and exploited in organic synthesis. Nevertheless, this powerful transformation has opened up efficient and creative routes to biologically relevant small molecules and different natural products which contain six-membered oxygen or nitrogen ring systems. Recent developments in this field, in particular in the establishment of enantioselectively catalyzed hetero-Diels-Alder cycloadditions steered by a plethora of different catalysts and the application of the resulting small molecules in chemical biology and medicinal chemistry research, are highlighted in this Minireview.
Collapse
Affiliation(s)
- Vincent Eschenbrenner-Lux
- Max-Planck-Institut für molekulare Physiologie, Dortmund (Germany); Technische Universität, Dortmund, Dortmund (Germany)
| | | | | |
Collapse
|
22
|
Eschenbrenner-Lux V, Kumar K, Waldmann H. Die asymmetrische Hetero-Diels-Alder-Reaktion in Synthesen biologisch relevanter Verbindungen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404094] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Eey STC, Lear MJ. Total Synthesis of (−)-Platensimycin by Advancing Oxocarbenium- and Iminium-Mediated Catalytic Methods. Chemistry 2014; 20:11556-73. [DOI: 10.1002/chem.201400131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Indexed: 11/10/2022]
|
24
|
Fisher M, Basak R, Kalverda AP, Fishwick CWG, Bruce Turnbull W, Nelson A. Discovery of novel FabF ligands inspired by platensimycin by integrating structure-based design with diversity-oriented synthetic accessibility. Org Biomol Chem 2014; 12:486-94. [DOI: 10.1039/c3ob41975d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Briones JF, Davies HML. Enantioselective Gold(I)-catalyzed vinylogous [3 + 2] cycloaddition between vinyldiazoacetates and enol ethers. J Am Chem Soc 2013; 135:13314-7. [PMID: 23978108 DOI: 10.1021/ja407179c] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The reaction of vinyldiazoacetates with enol ethers catalyzed by the binuclear gold complex (R)-DTBMSegphos(AuCl)2 activated by silver hexafluoroantimonate results in a highly enantioselective [3 + 2] cycloaddition. The [3 + 2] cycloaddition proceeds with dynamic kinetic resolution when the enol ether is a 4-substituted 1-(methoxymethylene)cyclohexane. The reaction is initiated by nucleophilic attack of the vinyl ethers at the vinylogous position of the gold vinylcarbene intermediate.
Collapse
Affiliation(s)
- John F Briones
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
26
|
Zhu L, Zhou C, Yang W, He S, Cheng GJ, Zhang X, Lee CS. Formal Syntheses of (±)-Platensimycin and (±)-Platencin via a Dual-Mode Lewis Acid Induced Cascade Cyclization Approach. J Org Chem 2013; 78:7912-29. [DOI: 10.1021/jo401105q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lizhi Zhu
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Congshan Zhou
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
- College of Chemistry and Chemical
Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wei Yang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Shuzhong He
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Gui-Juan Cheng
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Xinhao Zhang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| |
Collapse
|
27
|
|
28
|
Zhu L, Han Y, Du G, Lee CS. A Bifunctional Lewis Acid Induced Cascade Cyclization to the Tricyclic Core of ent-Kaurenoids and Its Application to the Formal Synthesis of (±)-Platensimycin. Org Lett 2013; 15:524-7. [DOI: 10.1021/ol3033412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lizhi Zhu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Yejian Han
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Guangyan Du
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| |
Collapse
|
29
|
Inhibitors of fatty acid synthesis in prokaryotes and eukaryotes as anti-infective, anticancer and anti-obesity drugs. Future Med Chem 2012; 4:1113-51. [PMID: 22709254 DOI: 10.4155/fmc.12.62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a large range of diseases, such diabetes and cancer, which are connected to abnormal fatty acid metabolism in human cells. Therefore, inhibitors of human fatty acid synthase have great potential to manage or treat these diseases. In prokaryotes, fatty acid synthesis is important for signaling, as well as providing starting materials for the synthesis of phospholipids, which are required for the formation of the cell membrane. Recently, there has been renewed interest in the development of new molecules that target bacterial fatty acid synthases for the treatment of bacterial diseases. In this review, we look at the differences and similarities between fatty acid synthesis in humans and bacteria and highlight various small molecules that have been shown to inhibit either the mammalian or bacterial fatty acid synthase or both.
Collapse
|
30
|
Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev 2012; 41:5185-238. [PMID: 22743704 PMCID: PMC3426871 DOI: 10.1039/c2cs35116a] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
31
|
Zhou F, Cao ZY, Zhang J, Yang HB, Zhou J. A Highly Efficient Friedel-Crafts Reaction of 3-Hydroxyoxindoles and Aromatic Compounds to 3,3-Diaryl and 3-Alkyl-3-aryloxindoles Catalyzed by Hg(ClO4)2⋅3 H2O. Chem Asian J 2011; 7:233-41. [DOI: 10.1002/asia.201100773] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Indexed: 12/26/2022]
|
32
|
Beaulieu MA, Guérard KC, Maertens G, Sabot C, Canesi S. Oxidative Prins-Pinacol Tandem Process Mediated by a Hypervalent Iodine Reagent: Scope, Limitations, and Applications. J Org Chem 2011; 76:9460-71. [DOI: 10.1021/jo2019027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marc-André Beaulieu
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| | - Kimiaka C. Guérard
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| | - Gaëtan Maertens
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| | - Cyrille Sabot
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| |
Collapse
|
33
|
Oblak EZ, Wright DL. Highly Substituted Oxabicyclic Derivatives from Furan: Synthesis of (±)-Platensimycin. Org Lett 2011; 13:2263-5. [DOI: 10.1021/ol2005775] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. Zachary Oblak
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
34
|
Wang J, Sintim HO. Dialkylamino-2,4-dihydroxybenzoic Acids as Easily Synthesized Analogues of Platensimycin and Platencin with Comparable Antibacterial Properties. Chemistry 2011; 17:3352-7. [DOI: 10.1002/chem.201002410] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/14/2010] [Indexed: 11/08/2022]
|
35
|
Zheng JC, Yun SY, Sun C, Lee NK, Lee D. Selectivity Control in Alkylidene Carbene-Mediated C−H Insertion and Allene Formation. J Org Chem 2011; 76:1086-99. [PMID: 21244086 DOI: 10.1021/jo102180f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jun-Cheng Zheng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Sang Young Yun
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Chunrui Sun
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Nam-Kyu Lee
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
36
|
Herndon JW. The chemistry of the carbon–transition metal double and triple bond: Annual survey covering the year 2009. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Hirai S, Nakada M. Enantioselective divergent approaches to both (−)-platensimycin and (−)-platencin. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.10.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Saleem M, Hussain H, Ahmed I, van Ree T, Krohn K. Platensimycin and its relatives: A recent story in the struggle to develop new naturally derived antibiotics. Nat Prod Rep 2011; 28:1534-79. [DOI: 10.1039/c1np00010a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Palanichamy K, Subrahmanyam AV, Kaliappan KP. A radical cyclization approach to the formal total syntheses of platencin. Org Biomol Chem 2011; 9:7877-86. [DOI: 10.1039/c1ob06155k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Ghosh AK. Capturing the essence of organic synthesis: from bioactive natural products to designed molecules in today's medicine. J Org Chem 2010; 75:7967-89. [PMID: 20936876 PMCID: PMC2993809 DOI: 10.1021/jo101606g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this Perspective, I outline my group's research involving the chemical syntheses of medicinally important natural products, exploration of their bioactivity, and the development of new asymmetric carbon-carbon bond-forming reactions. This paper also highlights our approach to molecular design and synthesis of conceptually novel inhibitors against target proteins involved in the pathogenesis of human diseases, including AIDS and Alzheimer's disease.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
41
|
Tiefenbacher K, Gollner A, Mulzer J. Syntheses and antibacterial properties of iso-platencin, Cl-iso-platencin and Cl-platencin: identification of a new lead structure. Chemistry 2010; 16:9616-22. [PMID: 20486112 DOI: 10.1002/chem.201000706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platencin is a novel antibiotic which is active against multiresistant pathogens. We describe efficient syntheses of three platencin analogues of varying activities which allow further conclusions about the pharmacophoric part of the molecule. The unnatural antibiotic iso-platencin, which is about as active as natural platencin, but much more selective, was identified as a new lead structure.
Collapse
Affiliation(s)
- Konrad Tiefenbacher
- University of Vienna, Institute of Organic Chemistry, Währingerstrasse 38, 1090 Wien, Austria
| | | | | |
Collapse
|
42
|
Leung GYC, Li H, Toh QY, Ng AMY, Sum RJ, Bandow JE, Chen DYK. Total Synthesis and Biological Evaluation of the Fab-Inhibitory Antibiotic Platencin and Analogues Thereof. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001281] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Eey STC, Lear MJ. A Bismuth(III)-Catalyzed Friedel−Crafts Cyclization and Stereocontrolled Organocatalytic Approach to (−)-Platensimycin. Org Lett 2010; 12:5510-3. [DOI: 10.1021/ol102390t] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stanley T.-C. Eey
- Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Martin J. Lear
- Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
44
|
Hirai S, Nakada M. An enantioselective approach to (−)-platencin via catalytic asymmetric intramolecular cyclopropanation. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.07.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Beaulieu MA, Sabot C, Achache N, Guérard KC, Canesi S. An Oxidative Prins-Pinacol Tandem Process and its Application to the synthesis of (−)-Platensimycin. Chemistry 2010; 16:11224-8. [DOI: 10.1002/chem.201001813] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Tiefenbacher K, Tröndlin L, Mulzer J, Pfaltz A. An expeditious asymmetric formal synthesis of the antibiotic platensimycin. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.04.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Palanichamy K, Kaliappan KP. Discovery and syntheses of "superbug challengers"-platensimycin and platencin. Chem Asian J 2010; 5:668-703. [PMID: 20209576 DOI: 10.1002/asia.200900423] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bacteria have developed resistance to almost all existing antibiotics known today and this has been a major issue over the last few decades. The search for a new class of antibiotics with a new mode of action to fight these multiply-drug-resistant strains, or "superbugs", allowed a team of scientists at Merck to discover two novel antibiotics, platensimycin and platencin using advanced screening strategies, as inhibitors of bacterial fatty acid biosynthesis, which is essential for the survival of bacteria. Though both these antibiotics are structurally related, they work by slightly different mechanisms and target different enzymes conserved in the bacterial fatty acid biosynthesis. This Focus Review summarizes the synthetic and biological aspects of these natural products and their analogues and congeners.
Collapse
Affiliation(s)
- Kalanidhi Palanichamy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | | |
Collapse
|
48
|
Qiao Y, Kumar S, Malachowski WP. Enantioselective synthesis of bicarbocyclic structures with an all-carbon quaternary stereocenter through sequential cross metathesis and intramolecular Rauhut–Currier reaction. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Affiliation(s)
- Wenyi Zhao
- Shasun Pharma Solutions, Incorporated, 10 Knightsbridge Road, Pistcataway, New Jersey 08854, USA
| |
Collapse
|
50
|
Jang KP, Kim CH, Na SW, Jang DS, Kim H, Kang H, Lee E. 7-Phenylplatensimycin and 11-methyl-7-phenylplatensimycin: more potent analogs of platensimycin. Bioorg Med Chem Lett 2010; 20:2156-8. [PMID: 20207542 DOI: 10.1016/j.bmcl.2010.02.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/02/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
Carbonyl ylide cycloaddition strategy was employed in the synthesis of platensimycin analogs. 7-Phenylplatensimycin and 11-methyl-7-phenylplatensimycin are more potent analogs of platensimycin.
Collapse
Affiliation(s)
- Ki Po Jang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|