Nosov R, Padnya P, Shurpik D, Stoikov I. Synthesis of Water-Soluble Amino Functionalized Multithiacalix[4]arene via Quaternization of Tertiary Amino Groups.
Molecules 2018;
23:molecules23051117. [PMID:
29738518 PMCID:
PMC6100039 DOI:
10.3390/molecules23051117]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 11/30/2022] Open
Abstract
A convenient approach to the synthesis of multithiacalix[4]arene derivatives containing amino groups and phthalimide fragments by the formation of quaternary ammonium salts is presented. As the initial macrocycle for the synthesis of multithiacalix[4]arenes, a differently substituted p-tert-butylthiacalix[4]arene containing bromoacetamide and three phthalimide fragments was used in a 1,3-alternate conformation. The macrocycle in cone conformation containing the tertiary amino groups was found to be a convenient core for the multithiacalix[4]arene systems. Interaction of the core multithiacalix[4]arene with monobromoacetamide derivatives of p-tert-butylthiacalix[4]arene resulted in formation in high yields of pentakisthiacalix[4]arene containing quaternary ammonium and phthalimide fragments. The removal of phthalimide groups led to the formation of amino multithiacalix[4]arene in a good yield. Based on dynamic light scattering, it was shown that the synthesized amino multithiacalix[4]arene, with pronounced hydrophobic and hydrophilic fragments, formed dendrimer-like nanoparticles in water via direct supramolecular self-assembly.
Collapse