1
|
Chen N, Zhang X, Lyu J, Zhao G, Gu K, Xia J, Chen Z, Shao Z. Preparation of a novel regenerated silk fibroin-based hydrogel for extrusion bioprinting. SOFT MATTER 2022; 18:7360-7368. [PMID: 36124911 DOI: 10.1039/d2sm00984f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) bioprinting technology, allowing rapid prototyping and personalized customization, has received much attention in recent years, while regenerated silk fibroin (RSF) has also been widely investigated for its excellent biocompatibility, processibility, and comprehensive mechanical properties. However, due to the difficulty in curing RSF aqueous solution and the tendency of conformational transition of RSF chains under shearing, it is rather complicated to fabricate RSF-based materials with high mechanical strength through extrusion bioprinting. To solve this problem, a printable hydrogel with thixotropy was prepared from regenerated silk fibroin with high-molecular-weight (HMWRSF) combined with a small amount of hydroxypropyl methylcellulose (HPMC) in urea containing aqueous solution. It was found that the introduction of urea could not only vary the solid content of the hydrogel to benefit the mechanical properties of the 3D-bioprinted pre-cured hydrogels or 3D-bioprinted sponges, but also expand the "printable window" of this system. Indeed, the printability and rheological properties could be modulated by varying the solid content, the heating time, the urea/HMWRSF weight ratio, etc. Moreover, the microstructure of nanospheres stacked in these lyophilized 3D-bioprinted sponges was interesting to observe, which indicated the existence of microhydrogels and both "the reversible network" and "the irreversible network" in this HMWRSF-based pre-cured hydrogel. Like other HMWRSF materials fabricated in other ways, these 3D-bioprinted HMWRSF-based sponges exhibited good cytocompatibility for dental pulp mesenchymal stem cells. This work may inspire the design of functional HMWRSF-based materials by regulating the relationship between structure and properties.
Collapse
Affiliation(s)
- Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Xinbo Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Jinyang Lyu
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Guanglei Zhao
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Kai Gu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Jun Xia
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Zhongchun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
2
|
Stemler T, Hoffmann C, Hierlmeier IM, Maus S, Krause E, Ezziddin S, Jung G, Bartholomä MD. A Structure-Activity Relationship Study of Bimodal BODIPY-Labeled PSMA-Targeting Bioconjugates. ChemMedChem 2021; 16:2535-2545. [PMID: 33905162 PMCID: PMC8453963 DOI: 10.1002/cmdc.202100210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to identify a high-affinity BODIPY peptidomimetic that targets the prostate-specific membrane antigen (PSMA) as a potential bimodal imaging probe for prostate cancer. For the structure-activity study, several BODIPY (difluoroboron dipyrromethene) derivatives with varying spacers between the BODIPY dye and the PSMA Glu-CO-Lys binding motif were prepared. Corresponding affinities were determined by competitive binding assays in PSMA-positive LNCaP cells. One compound was identified with comparable affinity (IC50 =21.5±0.1 nM) to Glu-CO-Lys-Ahx-HBED-CC (PSMA-11) (IC50 =18.4±0.2 nM). Radiolabeling was achieved by Lewis-acid-mediated 19 F/18 F exchange in moderate molar activities (∼0.7 MBq nmol-1 ) and high radiochemical purities (>99 %) with mean radiochemical yields of 20-30 %. Cell internalization of the 18 F-labeled high-affinity conjugate was demonstrated in LNCaP cells showing gradual increasing PSMA-mediated internalization over time. By fluorescence microscopy, localization of the high-affinity BODIPY-PSMA conjugate was found in the cell membrane at early time points and also in subcellular compartments at later time points. In summary, a high-affinity BODIPY-PSMA conjugate has been identified as a suitable candidate for the development of PSMA-specific dual-imaging agents.
Collapse
Affiliation(s)
- Tobias Stemler
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Caroline Hoffmann
- Department of Biophysical ChemistrySaarland UniversityCampus B2 266123SaarbrückenGermany
| | - Ina M. Hierlmeier
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Stephan Maus
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Elmar Krause
- Department of Cellular NeurophysiologyCenter for Integrative Physiology and Molecular Medicine (CIPMM)Saarland UniversityKirrbergerstrasse66421HomburgGermany
| | - Samer Ezziddin
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Gregor Jung
- Department of Biophysical ChemistrySaarland UniversityCampus B2 266123SaarbrückenGermany
| | - Mark D. Bartholomä
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| |
Collapse
|
3
|
Zhang Y, Lu R, Chen M, Zhou S, Zhang D, Han H, Zhang M, Qiu H. A highly efficient acyl-transfer approach to urea-functionalized silanes and their immobilization onto silica gel as stationary phases for liquid chromatography. J Chromatogr A 2020; 1626:461366. [DOI: 10.1016/j.chroma.2020.461366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
|
4
|
Bogolubsky AV, Moroz YS, Savych O, Pipko S, Konovets A, Platonov MO, Vasylchenko OV, Hurmach VV, Grygorenko OO. An Old Story in the Parallel Synthesis World: An Approach to Hydantoin Libraries. ACS COMBINATORIAL SCIENCE 2018; 20:35-43. [PMID: 29227678 DOI: 10.1021/acscombsci.7b00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An approach to the parallel synthesis of hydantoin libraries by reaction of in situ generated 2,2,2-trifluoroethylcarbamates and α-amino esters was developed. To demonstrate utility of the method, a library of 1158 hydantoins designed according to the lead-likeness criteria (MW 200-350, cLogP 1-3) was prepared. The success rate of the method was analyzed as a function of physicochemical parameters of the products, and it was found that the method can be considered as a tool for lead-oriented synthesis. A hydantoin-bearing submicromolar primary hit acting as an Aurora kinase A inhibitor was discovered with a combination of rational design, parallel synthesis using the procedures developed, in silico and in vitro screenings.
Collapse
Affiliation(s)
| | - Yurii S. Moroz
- Enamine Ltd., 78 Chervonotkatska
Street, Kyiv 02094, Ukraine
- National Taras Shevchenko University of Kyiv, 60 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Olena Savych
- Enamine Ltd., 78 Chervonotkatska
Street, Kyiv 02094, Ukraine
- National Taras Shevchenko University of Kyiv, 60 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Sergey Pipko
- Enamine Ltd., 78 Chervonotkatska
Street, Kyiv 02094, Ukraine
- National Taras Shevchenko University of Kyiv, 60 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Angelika Konovets
- Enamine Ltd., 78 Chervonotkatska
Street, Kyiv 02094, Ukraine
- National Taras Shevchenko University of Kyiv, 60 Volodymyrska Street, Kyiv 01601, Ukraine
| | | | | | - Vasyl V. Hurmach
- Enamine Ltd., 78 Chervonotkatska
Street, Kyiv 02094, Ukraine
- National Taras Shevchenko University of Kyiv, 60 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd., 78 Chervonotkatska
Street, Kyiv 02094, Ukraine
- National Taras Shevchenko University of Kyiv, 60 Volodymyrska Street, Kyiv 01601, Ukraine
| |
Collapse
|
5
|
Pike SJ, Diemer V, Raftery J, Webb SJ, Clayden J. Designing foldamer-foldamer interactions in solution: the roles of helix length and terminus functionality in promoting the self-association of aminoisobutyric acid oligomers. Chemistry 2014; 20:15981-90. [PMID: 25280242 DOI: 10.1002/chem.201403626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 12/11/2022]
Abstract
The biological activity of antibiotic peptaibols has been linked to their ability to aggregate, but the structure-activity relationship for aggregation is not well understood. Herein, we report a systematic study of a class of synthetic helical oligomer (foldamer) composed of aminoisobutyric acid (Aib) residues, which mimic the folding behavior of peptaibols. NMR spectroscopic analysis was used to quantify the dimerization constants in solution, which showed hydrogen-bond donors at the N terminus promoted aggregation more effectively than similar modifications at the C terminus. Elongation of the peptide chain also favored aggregation. The geometry of aggregation in solution was investigated by means of titrations with [D6]DMSO and 2D NOE NMR spectroscopy, which allowed the NH protons most involved in intermolecular hydrogen bonds in solution to be identified. X-ray crystallography studies of two oligomers allowed a comparison of the inter- and intramolecular hydrogen-bonding interactions in the solid state and in solution and gave further insight into the geometry of foldamer-foldamer interactions. These solution-based and solid-state studies indicated that the preferred geometry for aggregation is through head-to-tail interactions between the N and C termini of adjacent Aib oligomers.
Collapse
Affiliation(s)
- Sarah J Pike
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK), Fax: (+44) 161-275-4939
| | | | | | | | | |
Collapse
|
6
|
Madhu C, Prabhu G, Pal R, Guru Row TN, Sureshbabu VV. Synthesis of Optically Active 2-Amino-1,3,4-oxadiazoles and their Hybrid Peptides. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chilakapati Madhu
- Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus; Bangalore University; Dr. B. R. Ambedkar Veedhi Bangalore 560 001 India
| | - Girish Prabhu
- Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus; Bangalore University; Dr. B. R. Ambedkar Veedhi Bangalore 560 001 India
| | - Rumpa Pal
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560012 India
| | - T. N. Guru Row
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560012 India
| | - Vommina V. Sureshbabu
- Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus; Bangalore University; Dr. B. R. Ambedkar Veedhi Bangalore 560 001 India
| |
Collapse
|
7
|
Bica K, Leder S, Mereiter K, Gaertner P. Design, synthesis, and application of novel chiral ONN ligands for asymmetric alkylation. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-012-0900-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Aresu E, Fioravanti S, Gasbarri S, Pellacani L, Sciubba F. Stereoselective synthesis of short benzyl malonyl peptides. RSC Adv 2013. [DOI: 10.1039/c3ra41852a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Synthesis of Hybrid Peptidomimetics and Neoglycoconjugates Employing Click Protocol: Dual Utility of Poc-Group for Inserting Carbamate-Triazole Units into Peptide Backbone. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9228-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|